Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 123
Filter
1.
Hum Mol Genet ; 26(11): 2076-2090, 2017 06 01.
Article in English | MEDLINE | ID: mdl-28369367

ABSTRACT

Both transmembrane and extracellular cues, one of which is collagen XIII, regulate the formation and function of the neuromuscular synapse, and their absence results in myasthenia. We show that the phenotypical changes in collagen XIII knock-out mice are milder than symptoms in human patients, but the Col13a1-/- mice recapitulate major muscle findings of congenital myasthenic syndrome type 19 and serve as a disease model. In the lack of collagen XIII neuromuscular synapses do not reach full size, alignment, complexity and function resulting in reduced muscle strength. Collagen XIII is particularly important for the preterminal integrity, and when absent, destabilization of the motor nerves results in muscle regeneration and in atrophy especially in the case of slow muscle fibers. Collagen XIII was found to affect synaptic integrity through binding the ColQ tail of acetylcholine esterase. Although collagen XIII is a muscle-bound transmembrane molecule, it also undergoes ectodomain shedding to become a synaptic basal lamina component. We investigated the two forms' roles by novel Col13a1tm/tm mice in which ectodomain shedding is impaired. While postsynaptic maturation, terminal branching and neurotransmission was exaggerated in the Col13a1tm/tm mice, the transmembrane form's presence sufficed to prevent defects in transsynaptic adhesion, Schwann cell invagination/retraction, vesicle accumulation and acetylcholine receptor clustering and acetylcholinesterase dispersion seen in the Col13a1-/- mice, pointing to the transmembrane form as the major conductor of collagen XIII effects. Altogether, collagen XIII secures postsynaptic, synaptic and presynaptic integrity, and it is required for gaining and maintaining normal size, complexity and functional capacity of the neuromuscular synapse.


Subject(s)
Collagen Type XIII/genetics , Collagen Type XIII/metabolism , Synapses/metabolism , Acetylcholinesterase/metabolism , Animals , Basement Membrane/metabolism , Cell Adhesion/physiology , Collagen/metabolism , Mice , Mice, Knockout , Muscle Proteins/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Receptor Protein-Tyrosine Kinases/metabolism , Receptors, Cholinergic/metabolism , Synaptic Transmission
2.
Eur J Neurosci ; 49(11): 1491-1511, 2019 06.
Article in English | MEDLINE | ID: mdl-30667565

ABSTRACT

Transmembrane collagen XIII has been linked to maturation of the musculoskeletal system. Its absence in mice (Col13a1-/- ) results in impaired neuromuscular junction (NMJ) differentiation and function, while transgenic overexpression (Col13a1oe ) leads to abnormally high bone mass. Similarly, loss-of-function mutations in COL13A1 in humans produce muscle weakness, decreased motor synapse function and mild dysmorphic skeletal features. Here, analysis of the exogenous overexpression of collagen XIII in various muscles revealed highly increased transcript and protein levels, especially in the diaphragm. Unexpectedly, the main location of exogenous collagen XIII in the muscle was extrasynaptic, in fibroblast-like cells, while some motor synapses were devoid of collagen XIII, possibly due to a dominant negative effect. Concomitantly, phenotypical changes in the NMJs of the Col13a1oe mice partly resembled those previously observed in Col13a1-/- mice. Namely, the overall increase in collagen XIII expression in the muscle produced both pre- and postsynaptic abnormalities at the NMJ, especially in the diaphragm. We discovered delayed and compromised acetylcholine receptor (AChR) clustering, axonal neurofilament aggregation, patchy acetylcholine vesicle (AChV) accumulation, disrupted adhesion of the nerve and muscle, Schwann cell invagination and altered evoked synaptic function. Furthermore, the patterns of the nerve trunks and AChR clusters in the diaphragm were broader in the adult muscles, and already prenatally in the Col13a1oe mice, suggesting collagen XIII involvement in the development of the neuromuscular system. Overall, these results confirm the role of collagen XIII at the neuromuscular synapses and highlight the importance of its correct expression and localization for motor synapse formation and function.


Subject(s)
Collagen Type XIII/metabolism , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/metabolism , Animals , Axons/metabolism , Collagen Type XIII/genetics , Diaphragm/metabolism , Mice , Mice, Knockout , Neuromuscular Junction/genetics , Receptors, Cholinergic/genetics , Synaptic Transmission/physiology , Synaptic Vesicles/metabolism
3.
Am J Hum Genet ; 98(4): 735-43, 2016 Apr 07.
Article in English | MEDLINE | ID: mdl-27058446

ABSTRACT

Deficits in the basal ganglia pathways modulating cortical motor activity underlie both Parkinson disease (PD) and Huntington disease (HD). Phosphodiesterase 10A (PDE10A) is enriched in the striatum, and animal data suggest that it is a key regulator of this circuitry. Here, we report on germline PDE10A mutations in eight individuals from two families affected by a hyperkinetic movement disorder due to homozygous mutations c.320A>G (p.Tyr107Cys) and c.346G>C (p.Ala116Pro). Both mutations lead to a reduction in PDE10A levels in recombinant cellular systems, and critically, positron-emission-tomography (PET) studies with a specific PDE10A ligand confirmed that the p.Tyr107Cys variant also reduced striatal PDE10A levels in one of the affected individuals. A knock-in mouse model carrying the homologous p.Tyr97Cys variant had decreased striatal PDE10A and also displayed motor abnormalities. Striatal preparations from this animal had an impaired capacity to degrade cyclic adenosine monophosphate (cAMP) and a blunted pharmacological response to PDE10A inhibitors. These observations highlight the critical role of PDE10A in motor control across species.


Subject(s)
Corpus Striatum/pathology , Hyperkinesis/genetics , Mutation , Phosphoric Diester Hydrolases/genetics , Alleles , Amino Acid Sequence , Animals , Disease Models, Animal , Gene Expression Regulation , Genetic Variation , HEK293 Cells , Humans , Hyperkinesis/diagnosis , Hyperkinesis/pathology , Male , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Pedigree , Phosphodiesterase Inhibitors/metabolism , Sequence Alignment
4.
Circ Res ; 120(9): 1414-1425, 2017 Apr 28.
Article in English | MEDLINE | ID: mdl-28298294

ABSTRACT

RATIONALE: Vascular endothelial growth factor (VEGF) is the main driver of angiogenesis and vascular permeability via VEGF receptor 2 (VEGFR2), whereas lymphangiogenesis signals are transduced by VEGFC/D via VEGFR3. VEGFR3 also regulates sprouting angiogenesis and blood vessel growth, but to what extent VEGFR3 signaling controls blood vessel permeability remains unknown. OBJECTIVE: To investigate the role of VEGFR3 in the regulation of VEGF-induced vascular permeability. METHODS AND RESULTS: Long-term global Vegfr3 gene deletion in adult mice resulted in increased fibrinogen deposition in lungs and kidneys, indicating enhanced vascular leakage at the steady state. Short-term deletion of Vegfr3 in blood vascular endothelial cells increased baseline leakage in various tissues, as well as in tumors, and exacerbated vascular permeability in response to VEGF, administered via intradermal adenoviral delivery or through systemic injection of recombinant protein. VEGFR3 gene silencing upregulated VEGFR2 protein levels and phosphorylation in cultured endothelial cells. Consistent with elevated VEGFR2 activity, vascular endothelial cadherin showed reduced localization at endothelial cell-cell junctions in postnatal retinas after Vegfr3 deletion, or after VEGFR3 silencing in cultured endothelial cells. Furthermore, concurrent deletion of Vegfr2 prevented VEGF-induced excessive vascular leakage in mice lacking Vegfr3. CONCLUSIONS: VEGFR3 limits VEGFR2 expression and VEGF/VEGFR2 pathway activity in quiescent and angiogenic blood vascular endothelial cells, thereby preventing excessive vascular permeability.


Subject(s)
Capillary Permeability , Carcinoma, Lewis Lung/blood supply , Endothelial Cells/metabolism , Lung/blood supply , Retinal Vessels/metabolism , Signal Transduction , Vascular Endothelial Growth Factor A/metabolism , Vascular Endothelial Growth Factor Receptor-2/metabolism , Vascular Endothelial Growth Factor Receptor-3/metabolism , Adherens Junctions/metabolism , Animals , Antigens, CD/metabolism , Cadherins/metabolism , Capillary Permeability/drug effects , Carcinoma, Lewis Lung/metabolism , Cells, Cultured , Endothelial Cells/drug effects , Female , Genotype , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Male , Mice, Inbred C57BL , Mice, Knockout , Neovascularization, Pathologic , Neovascularization, Physiologic , Phenotype , Retinal Vessels/drug effects , Signal Transduction/drug effects , Tight Junctions/metabolism , Transfection , Vascular Endothelial Growth Factor A/genetics , Vascular Endothelial Growth Factor A/pharmacology , Vascular Endothelial Growth Factor Receptor-2/deficiency , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-3/deficiency , Vascular Endothelial Growth Factor Receptor-3/genetics
5.
Hum Mol Genet ; 25(17): 3810-3823, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27466183

ABSTRACT

Age-related macular degeneration (AMD), affecting the retinal pigment epithelium (RPE), is the leading cause of blindness in middle-aged and older people in developed countries. Genetic and environmental risk factors have been identified, but no effective cure exists. Using a mouse model we show that a transmembrane prolyl 4-hydroxylase (P4H-TM), which participates in the oxygen-dependent regulation of the hypoxia-inducible factor (HIF), is a potential novel candidate gene for AMD. We show that P4h-tm had its highest expression levels in the mouse RPE and brain, heart, lung, skeletal muscle and kidney. P4h-tm-/- mice were fertile and had a normal life span. Lack of P4h-tm stabilized HIF-1α in cortical neurons under normoxia, while in hypoxia it increased the expression of certain HIF target genes in tissues with high endogenous P4h-tm expression levels more than in wild-type mice. Renal erythropoietin levels increased in P4h-tm-/- mice with aging, but the resulting ∼2-fold increase in erythropoietin serum levels did not lead to erythrocytosis. Instead, accumulation of lipid-containing lamellar bodies in renal tubuli was detected in P4h-tm-/- mice with aging, resulting in inflammation and fibrosis, and later glomerular sclerosis and albuminuria. Lack of P4h-tm was associated with retinal thinning, rosette-like infoldings and drusen-like structure accumulation in RPE with aging, as is characteristic of AMD. Photoreceptor recycling was compromised, and electroretinograms revealed functional impairment of the cone pathway in adult P4h-tm-/- mice and cone and rod deficiency in middle-aged mice. P4H-TM is therefore imperative for normal vision, and potentially a novel candidate for age-induced diseases, such as AMD.


Subject(s)
Hypoxia-Inducible Factor-Proline Dioxygenases/genetics , Hypoxia-Inducible Factor-Proline Dioxygenases/metabolism , Kidney Diseases/genetics , Kidney/pathology , Macular Degeneration/genetics , Prolyl Hydroxylases/genetics , Prolyl Hydroxylases/metabolism , Retinal Pigment Epithelium/pathology , Animals , Brain/metabolism , Disease Models, Animal , Erythropoietin/blood , Erythropoietin/metabolism , Humans , Kidney/metabolism , Kidney Diseases/metabolism , Kidney Diseases/pathology , Lung/metabolism , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Muscle, Skeletal/metabolism , Myocardium/metabolism , Retinal Pigment Epithelium/metabolism , Tissue Distribution
6.
Development ; 142(5): 983-93, 2015 Mar 01.
Article in English | MEDLINE | ID: mdl-25715398

ABSTRACT

Muscle is an integrated tissue composed of distinct cell types and extracellular matrix. While much emphasis has been placed on the factors required for the specification of the cells that comprise muscle, little is known about the crosstalk between them that enables the development of a patterned and functional tissue. We find in mice that deletion of lysyl oxidase (Lox), an extracellular enzyme regulating collagen maturation and organization, uncouples the balance between the amount of myofibers and that of muscle connective tissue (MCT). We show that Lox secreted from the myofibers attenuates TGFß signaling, an inhibitor of myofiber differentiation and promoter of MCT development. We further demonstrate that a TGFß-Lox feedback loop between the MCT and myofibers maintains the dynamic developmental homeostasis between muscle components while also regulating MCT organization. Our results allow a better understanding of diseases such as Duchenne muscular dystrophy, in which LOX and TGFß signaling have been implicated and the balance between muscle constituents is disturbed.


Subject(s)
Extracellular Matrix Proteins/metabolism , Muscles/embryology , Muscles/metabolism , Protein-Lysine 6-Oxidase/metabolism , Transforming Growth Factor beta/metabolism , Animals , Connective Tissue/embryology , Connective Tissue/metabolism , Connective Tissue/ultrastructure , Extracellular Matrix Proteins/genetics , Female , Immunohistochemistry , In Situ Hybridization , Mice , Microscopy, Electron, Transmission , Muscles/ultrastructure , Pregnancy , Protein-Lysine 6-Oxidase/genetics , Signal Transduction/genetics , Signal Transduction/physiology , Transforming Growth Factor beta/genetics
7.
Acta Neuropathol ; 135(5): 727-742, 2018 05.
Article in English | MEDLINE | ID: mdl-29423877

ABSTRACT

A novel multi-organ disease that is fatal in early childhood was identified in three patients from two non-consanguineous families. These children were born asymptomatic but at the age of 2 months they manifested progressive multi-organ symptoms resembling no previously known disease. The main clinical features included progressive cerebropulmonary symptoms, malabsorption, progressive growth failure, recurrent infections, chronic haemolytic anaemia and transient liver dysfunction. In the affected children, neuropathology revealed increased angiomatosis-like leptomeningeal, cortical and superficial white matter vascularisation and congestion, vacuolar degeneration and myelin loss in white matter, as well as neuronal degeneration. Interstitial fibrosis and previously undescribed granuloma-like lesions were observed in the lungs. Hepatomegaly, steatosis and collagen accumulation were detected in the liver. A whole-exome sequencing of the two unrelated families with the affected children revealed the transmission of two heterozygous variants in the NHL repeat-containing protein 2 (NHLRC2); an amino acid substitution p.Asp148Tyr and a frameshift 2-bp deletion p.Arg201GlyfsTer6. NHLRC2 is highly conserved and expressed in multiple organs and its function is unknown. It contains a thioredoxin-like domain; however, an insulin turbidity assay on human recombinant NHLRC2 showed no thioredoxin activity. In patient-derived fibroblasts, NHLRC2 levels were low, and only p.Asp148Tyr was expressed. Therefore, the allele with the frameshift deletion is likely non-functional. Development of the Nhlrc2 null mouse strain stalled before the morula stage. Morpholino knockdown of nhlrc2 in zebrafish embryos affected the integrity of cells in the midbrain region. This is the first description of a fatal, early-onset disease; we have named it FINCA disease based on the combination of pathological features that include fibrosis, neurodegeneration, and cerebral angiomatosis.


Subject(s)
Angiomatosis/genetics , Brain Diseases/genetics , Genetic Variation , Intracellular Signaling Peptides and Proteins/genetics , Neurodegenerative Diseases/genetics , Pulmonary Fibrosis/genetics , Angiomatosis/pathology , Angiomatosis/physiopathology , Animals , Animals, Genetically Modified , Brain/metabolism , Brain/pathology , Brain Diseases/pathology , Brain Diseases/physiopathology , Cells, Cultured , Family , Fatal Outcome , Humans , Infant , Intracellular Signaling Peptides and Proteins/metabolism , Liver Diseases/genetics , Liver Diseases/pathology , Liver Diseases/physiopathology , Male , Mice, Inbred C57BL , Neurodegenerative Diseases/pathology , Neurodegenerative Diseases/physiopathology , Prospective Studies , Pulmonary Fibrosis/pathology , Pulmonary Fibrosis/physiopathology , Syndrome , Zebrafish , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
8.
Carcinogenesis ; 38(8): 812-820, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28854563

ABSTRACT

Central nervous system (CNS) relapse is a devastating complication that occurs in about 5% of diffuse large B-cell lymphoma (DLBCL) patients. Currently, there are no predictive biological markers. We wanted to study potential biomarkers of CNS tropism that play a role in adhesion, migration and/or in the regulation of inflammatory responses. The expression levels of ITGA10, CD44, PTEN, cadherin-11, CDH12, N-cadherin, P-cadherin, lactoferrin and E-cadherin were studied with IHC and IEM. GEP was performed to see whether found expressional changes are regulated at DNA/RNA level. IHC included 96 samples of primary CNS lymphoma (PCNSL), secondary CNS lymphoma (sCNSL) and systemic DLBCL (sDLBCL). IEM included two PCNSL, one sCNSL, one sDLBCL and one reactive lymph node samples. GEP was performed on two DLBCL samples, one with and one without CNS relapse. CNS disease was associated with enhanced expression of cytoplasmic and membranous ITGA10 and nuclear PTEN (P < 0.0005, P = 0.002, P = 0.024, respectively). sCNSL presented decreased membranous CD44 and nuclear and cytoplasmic cadherin-11 expressions (P = 0.001, P = 0.006, P = 0.048, respectively). In PCNSL lactoferrin expression was upregulated (P < 0.0005). IEM results were mainly supportive of the IHC results. In GEP CD44, cadherin-11, lactoferrin and E-cadherin were under-expressed in CNS disease. Our results are in line with previous studies, where gene expressions in extracellular matrix and adhesion-related pathways are altered in CNS lymphoma. This study gives new information on the DLBCL CNS tropism. If further verified, these markers might become useful in predicting CNS relapses.


Subject(s)
Cadherins/genetics , Central Nervous System Diseases/genetics , Hyaluronan Receptors/genetics , Integrin alpha Chains/genetics , Lactoferrin/genetics , Lymphoma, Large B-Cell, Diffuse/genetics , PTEN Phosphohydrolase/genetics , Adult , Aged , Aged, 80 and over , Biomarkers, Tumor/genetics , Cadherins/biosynthesis , Central Nervous System/pathology , Central Nervous System Diseases/etiology , Central Nervous System Diseases/pathology , Female , Gene Expression Regulation, Neoplastic , Humans , Hyaluronan Receptors/biosynthesis , Integrin alpha Chains/biosynthesis , Lactoferrin/biosynthesis , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphoma, Large B-Cell, Diffuse/complications , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , PTEN Phosphohydrolase/biosynthesis
9.
Hum Mol Genet ; 24(22): 6374-89, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26319232

ABSTRACT

Venous malformations (VMs) are localized defects in vascular morphogenesis frequently caused by mutations in the gene for the endothelial tyrosine kinase receptor TIE2. Here, we report the analysis of a comprehensive collection of 22 TIE2 mutations identified in patients with VM, either as single amino acid substitutions or as double-mutations on the same allele. Using endothelial cell (EC) cultures, mouse models and ultrastructural analysis of tissue biopsies from patients, we demonstrate common as well as mutation-specific cellular and molecular features, on the basis of which mutations cluster into categories that correlate with data from genetic studies. Comparisons of double-mutants with their constituent single-mutant forms identified the pathogenic contributions of individual changes, and their compound effects. We find that defective receptor trafficking and subcellular localization of different TIE2 mutant forms occur via a variety of mechanisms, resulting in attenuated response to ligand. We also demonstrate, for the first time, that TIE2 mutations cause chronic activation of the MAPK pathway resulting in loss of normal EC monolayer due to extracellular matrix (ECM) fibronectin deficiency and leading to upregulation of plasminogen/plasmin proteolytic pathway. Corresponding EC and ECM irregularities are observed in affected tissues from mouse models and patients. Importantly, an imbalance between plasminogen activators versus inhibitors would also account for high d-dimer levels, a major feature of unknown cause that distinguishes VMs from other vascular anomalies.


Subject(s)
Receptor, TIE-2/genetics , Vascular Malformations/genetics , Amino Acid Substitution , Animals , Cell Movement/genetics , Endothelial Cells/metabolism , Female , Fibrin Fibrinogen Degradation Products , Human Umbilical Vein Endothelial Cells , Humans , Ligands , Mice , Mice, SCID , Mutation , Phosphorylation , Receptor, TIE-2/metabolism , Signal Transduction , Spheroids, Cellular , Vascular Malformations/enzymology
10.
Exp Cell Res ; 344(2): 229-40, 2016 06 10.
Article in English | MEDLINE | ID: mdl-27090016

ABSTRACT

The invasion of carcinoma cells is a crucial feature in carcinogenesis. The penetration efficiency not only depends on the cancer cells, but also on the composition of the tumor microenvironment. Our group has developed a 3D invasion assay based on human uterine leiomyoma tissue. Here we tested whether human, porcine, mouse or rat hearts as well as porcine tongue tissues could be similarly used to study carcinoma cell invasion in vitro. Three invasive human oral tongue squamous cell carcinoma (HSC-3, SCC-25 and SCC-15), melanoma (G-361) and ductal breast adenocarcinoma (MDA-MB-231) cell lines, and co-cultures of HSC-3 and carcinoma-associated or normal oral fibroblasts were assayed. Myoma tissue, both native and lyophilized, promoted invasion and growth of the cancer cells. However, the healthy heart or tongue matrices were unable to induce the invasion of any type of cancer cells tested. Moreover, when studied in more detail, small molecular weight fragments derived from heart tissue rinsing media inhibited HSC-3 horizontal migration. Proteome analysis of myoma rinsing media, on the other hand, revealed migration enhancing factors. These results highlight the important role of matrix composition for cancer invasion studies in vitro and further demonstrate the unique properties of human myoma organotypic model.


Subject(s)
Extracellular Matrix/metabolism , Neoplasms/pathology , Tumor Microenvironment , Animals , Cell Line, Tumor , Cell Membrane/pathology , Cell Movement , Collagen/metabolism , Freeze Drying , Humans , Mice , Myocardium/pathology , Myoma/pathology , Neoplasm Invasiveness , Rats , Receptors, Cell Surface/metabolism , Solubility , Sus scrofa , Tongue/pathology
11.
Proc Natl Acad Sci U S A ; 111(30): E3043-52, 2014 Jul 29.
Article in English | MEDLINE | ID: mdl-25024173

ABSTRACT

Collagen XVIII is an evolutionary conserved ubiquitously expressed basement membrane proteoglycan produced in three isoforms via two promoters (P). Here, we assess the function of the N-terminal, domain of unknown function/frizzled-like sequences unique to medium/long collagen XVIII by creating P-specific null mice. P2-null mice, which only produce short collagen XVIII, developed reduced bulk-adiposity, hepatic steatosis, and hypertriglyceridemia. These abnormalities did not develop in P1-null mice, which produce medium/long collagen XVIII. White adipose tissue samples from P2-null mice contain larger reserves of a cell population enriched in early adipocyte progenitors; however, their embryonic fibroblasts had ∼ 50% lower adipocyte differentiation potential. Differentiating 3T3-L1 fibroblasts into mature adipocytes produced striking increases in P2 gene-products and dramatic falls in P1-transcribed mRNA, whereas Wnt3a-induced dedifferentiation of mature adipocytes produced reciprocal changes in P1 and P2 transcript levels. P2-derived gene-products containing frizzled-like sequences bound the potent adipogenic inhibitor, Wnt10b, in vitro. Previously, we have shown that these same sequences bind Wnt3a, inhibiting Wnt3a-mediated signaling. P2-transcript levels in visceral fat were positively correlated with serum free fatty acid levels, suggesting that collagen α1 (XVIII) expression contributes to regulation of adipose tissue metabolism in visceral obesity. Medium/long collagen XVIII is deposited in the Space of Disse, and interaction between hepatic apolipoprotein E and this proteoglycan is lost in P2-null mice. These results describe a previously unidentified extracellular matrix-directed mechanism contributing to the control of the multistep adipogenic program that determines the number of precursors committing to adipocyte differentiation, the maintenance of the differentiated state, and the physiological consequences of its impairment on ectopic fat deposition.


Subject(s)
Adipocytes/metabolism , Adipose Tissue/metabolism , Cell Differentiation/physiology , Collagen Type XVIII/biosynthesis , Fatty Acids/metabolism , Fibroblasts/metabolism , 3T3-L1 Cells , Adipocytes/cytology , Adipose Tissue/cytology , Adiposity/physiology , Animals , Collagen Type XVIII/genetics , Embryo, Mammalian/cytology , Embryo, Mammalian/metabolism , Fatty Acids/genetics , Fatty Liver/genetics , Fatty Liver/metabolism , Female , Fibroblasts/cytology , Humans , Male , Mice , Mice, Mutant Strains , Transcription, Genetic/physiology
12.
J Biol Chem ; 290(27): 16964-78, 2015 Jul 03.
Article in English | MEDLINE | ID: mdl-26001784

ABSTRACT

Collagen prolyl 4-hydroxylases (C-P4H-I, C-P4H-II, and C-P4H-III) catalyze formation of 4-hydroxyproline residues required to form triple-helical collagen molecules. Vertebrate C-P4Hs are α2ß2 tetramers differing in their catalytic α subunits. C-P4H-I is the major isoenzyme in most cells, and inactivation of its catalytic subunit (P4ha1(-/-)) leads to embryonic lethality in mouse, whereas P4ha1(+/-) mice have no abnormalities. To study the role of C-P4H-II, which predominates in chondrocytes, we generated P4ha2(-/-) mice. Surprisingly, they had no apparent phenotypic abnormalities. To assess possible functional complementarity, we established P4ha1(+/-);P4ha2(-/-) mice. They were smaller than their littermates, had moderate chondrodysplasia, and developed kyphosis. A transient inner cell death phenotype was detected in their developing growth plates. The columnar arrangement of proliferative chondrocytes was impaired, the amount of 4-hydroxyproline and the Tm of collagen II were reduced, and the extracellular matrix was softer in the growth plates of newborn P4ha1(+/-);P4ha2(-/-) mice. No signs of uncompensated ER stress were detected in the mutant growth plate chondrocytes. Some of these defects were also found in P4ha2(-/-) mice, although in a much milder form. Our data show that C-P4H-I can to a large extent compensate for the lack of C-P4H-II in proper endochondral bone development, but their combined partial and complete inactivation, respectively, leads to biomechanically impaired extracellular matrix, moderate chondrodysplasia, and kyphosis. Our mouse data suggest that inactivating mutations in human P4HA2 are not likely to lead to skeletal disorders, and a simultaneous decrease in P4HA1 function would most probably be required to generate such a disease phenotype.


Subject(s)
Chondrocytes/enzymology , Extracellular Matrix/metabolism , Osteochondrodysplasias/enzymology , Procollagen-Proline Dioxygenase/deficiency , Animals , Apoptosis , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/metabolism , Collagen/biosynthesis , Disease Models, Animal , Female , Humans , Male , Mice , Mice, Knockout , Osteochondrodysplasias/embryology , Osteochondrodysplasias/genetics , Osteochondrodysplasias/metabolism , Osteochondrodysplasias/physiopathology , Procollagen-Proline Dioxygenase/genetics
13.
J Neurochem ; 138(6): 830-44, 2016 09.
Article in English | MEDLINE | ID: mdl-27364987

ABSTRACT

Peripheral nerve myelination is a complex event resulting from spatially and temporally regulated reciprocal interactions between the neuron and myelin-forming Schwann cells. The dynamic process and the protein functional modules and networks that operate throughout the myelination process are poorly understood because of a lack of methodologies suitable for observing specific changes in the Schwann cell/neuron-unit. The identification of the precise roles for the proteins participating in the functional modules and networks that participate in the myelination process is hindered by the cellular and molecular complexity of the nervous tissue itself. We have developed an approach based on a myelinating dorsal root ganglion explant model that allows distinguishing clear, reproducible and predictable differences between the biochemical properties and the genomic and proteomic expression profiles of both cellular components of the Schwann cell/neuron unit at different stages of the myelination process. This model, derived from E13.5 C57BL/6J mouse embryos, is sufficiently robust for use in identifying the protein functional networks and modules related to peripheral nerve myelin formation. The genomic expression profiles of the selected neuronal, Schwann cell and myelin-specific proteins in the cultures reflect in vivo profiles reported in the literature, and the structural and ultrastructural properties of the myelin, as well as the myelination schedule of the cultures, closely resemble those observed in peripheral nerves in situ. The RNA expression data set is available through NCBI gene expression omnibus accession GSE60345. We have developed a reproducible and robust cell culture-based approach, accompanied by a genome-wide expression data set, which allows studying myelination in the peripheral nervous system at the proteomic and transcriptomic levels in Schwann cells and neurons. Myelinating dorsal root explant cultures, prepared from C57BL/6J mouse embryos, present distinct developmental stages comparable to those observed in a peripheral nerve in situ. This model can be used for identifying the protein functional networks and modules related to peripheral nerve myelin formation.


Subject(s)
Genome/genetics , Myelin Sheath/genetics , Neurons/metabolism , Peripheral Nerves/embryology , Proteome/genetics , Schwann Cells/metabolism , Animals , Embryonic Development , Female , Ganglia, Spinal/embryology , Immunohistochemistry , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Myelin Sheath/physiology , Peripheral Nerves/physiology , Pregnancy , RNA/biosynthesis , RNA/genetics
14.
Tumour Biol ; 37(10): 13811-13820, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27481516

ABSTRACT

Mucin-1 (MUC1) affects cancer progression in lung adenocarcinoma, and its aberrant expression pattern has been correlated with poor tumor differentiation and impaired prognosis. In this study, the immunohistochemical expression of MUC1 and Mucin-4 (MUC4) was analyzed in a series of 106 surgically operated stage I-IV pulmonary adenocarcinomas. MUC1 immunohistochemistry was evaluated according to the Nagai classification, and the immunohistochemical profile of the tumors was correlated with detailed clinical and histological data. The effect of cigarette smoke on MUC1 expression in lung cancer cell lines was examined using real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR) and immunoelectron microscopy (IEM). In contrast to the normal apical localization of MUC1, a basolateral and cytoplasmic (depolarized) MUC1 expression pattern was frequently encountered in the high-grade subtypes, i.e., solid predominant adenocarcinoma and the cribriform variant of acinar predominant adenocarcinoma (p < 0.001), and was rarely observed in tumors containing a non-predominant lepidic component (p < 0.001). Furthermore, the altered staining pattern of MUC1 correlated with stage (p = 0.002), reduced overall survival (p = 0.031), and was associated with smoking (p < 0.001). When H1650 adenocarcinoma cells were exposed to cigarette smoke and analyzed by RT-qPCR and IEM, the levels of the MUC1 transcript and protein were elevated (p = 0.042). In conclusion, MUC1 participates in the pathogenesis of lung adenocarcinoma and associates with smoking both in vitro and in vivo. In lung adenocarcinoma, depolarized MUC1 protein expression correlated with histological growth patterns, stage, and patient outcome.


Subject(s)
Adenocarcinoma/mortality , Adenocarcinoma/pathology , Biomarkers, Tumor/metabolism , Lung Neoplasms/mortality , Lung Neoplasms/pathology , Mucin-1/metabolism , Smoking/adverse effects , Adenocarcinoma/etiology , Adenocarcinoma/metabolism , Aged , Apoptosis , Biomarkers, Tumor/genetics , Cell Proliferation , Female , Follow-Up Studies , Humans , Immunoenzyme Techniques , Lung Neoplasms/etiology , Lung Neoplasms/metabolism , Male , Microscopy, Immunoelectron , Neoplasm Staging , Prognosis , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Retrospective Studies , Reverse Transcriptase Polymerase Chain Reaction , Survival Rate , Tumor Cells, Cultured
15.
Respir Res ; 17: 14, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26846335

ABSTRACT

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is an incurable lung disease with a poor prognosis. Fibroblasts and myofibroblasts are the key cells in the fibrotic process. Recently two drugs, pirfenidone and nintedanib, were approved for clinical use as they are able to slow down the disease progression. The mechanisms by which these two drugs act in in vitro cell systems are not known. The aim of this study was therefore to examine the effects of pirfenidone and nintedanib on fibroblasts and myofibroblasts structure and function established from patients with or without IPF. METHODS: Stromal cells were collected and cultured from control lung (n = 4) or IPF (n = 7). The cells were treated with pirfenidone and/or nintedanib and the effect of treatment was evaluated by measuring cell proliferation, alpha smooth muscle actin (α-SMA) and fibronectin expression by Western analysis and/or immunoelectron microscopy, ultrastructural properties by transmission electron microscopy and functional properties by collagen gel contraction and invasion assays. RESULTS: Both pirfenidone and nintedanib reduced in vitro proliferation of fibroblastic cells in a dose dependent manner. The number of cells from control lung was reduced to 47 % (p = 0.04) and of IPF cells to 42 % (p = 0.04) by 1 mM pirfenidone and correspondingly to 67 % (p = 0.04) and 68 % (p = 0.04), by 1 µM nintedanib. If both drugs were used together, a further reduced proliferation was observed. Both pirfenidone and nintedanib were able to reduce the amount of α-SMA and the myofibroblastic appearance although the level of reduction was cell line dependent. In functional assays, the effect of both drugs was also variable. CONCLUSIONS: We conclude that the ultrastructure and function of fibroblasts and myofibroblasts are affected by pirfenidone and nintedanib. Combination of the drugs reduced cell proliferation more than either of them individually. Human lung derived cell culture systems represent a potential platform for screening and testing drugs for fibrotic diseases.


Subject(s)
Fibroblasts/drug effects , Fibroblasts/pathology , Idiopathic Pulmonary Fibrosis/drug therapy , Idiopathic Pulmonary Fibrosis/pathology , Indoles/administration & dosage , Pyridones/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Cell Proliferation/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Drug Therapy, Combination , Humans , Myofibroblasts/drug effects , Myofibroblasts/pathology , Treatment Outcome
16.
Exp Dermatol ; 25(5): 348-54, 2016 05.
Article in English | MEDLINE | ID: mdl-26660139

ABSTRACT

As the second most common skin malignancy, cutaneous squamous cell carcinoma (cSCC) is an increasing health concern, while its pathogenesis at molecular level remains largely unknown. We studied the expression and localisation of two homologous basement membrane (BM) collagens, types XV and XVIII, at different stages of cSCC. These collagens are involved in angiogenesis and tumorigenesis, but their role in cancer development is incompletely understood. Quantitative RT-PCR analysis revealed upregulation of collagen XVIII, but not collagen XV, in primary cSCC cells in comparison with normal human epidermal keratinocytes. In addition, the Ha-ras-transformed invasive cell line II-4 expressed high levels of collagen XVIII mRNA, indicating upregulation in the course of malignant transformation. Immunohistochemical analyses of a large human tissue microarray material showed that collagen XVIII is expressed by tumor cells from grade 1 onwards, while keratinocytes in normal skin and in premalignant lesions showed negative staining for it. Collagen XV appeared instead as deposits in the tumor stroma. Our findings in human cSCCs and in mouse cSCCs from the DMBA-TPA skin carcinogenesis model showed that collagen XVIII, but not collagen XV or the BM markers collagen IV or laminin, was selectively reduced in the tumor vasculature, and this decrease associated significantly with cancer progression. Our results demonstrate that collagens XV and XVIII are expressed in different sites of cSCC and may contribute in a distinct manner to processes related to cSCC tumorigenesis, identifying these collagens as potential biomarkers in the disease.


Subject(s)
Basement Membrane/metabolism , Carcinoma, Squamous Cell/metabolism , Collagen Type XVIII/metabolism , Collagen/metabolism , Skin Neoplasms/metabolism , Animals , Cell Line, Tumor , Disease Progression , Humans , Mice
17.
Eur J Haematol ; 96(5): 492-501, 2016 May.
Article in English | MEDLINE | ID: mdl-26153511

ABSTRACT

Central nervous system (CNS) relapse occurs in around 5% of diffuse large B-cell lymphoma (DLBCL) cases. No biomarkers to identify high-risk patients have been discovered. We evaluated the expression of lymphocyte-guiding chemokine receptors in systemic and CNS lymphomas. Immunohistochemical staining for CXCR4, CXCR5, CCR7, CXCL12, and CXCL13 was performed on 89 tissue samples, including cases of primary central nervous system lymphoma (PCNSL), secondary CNS lymphoma (sCNSL), and systemic DLBCL. Also, 10 reactive lymph node samples were included. Immunoelectron microscopy was performed on two PCNSLs, one sCNSL, one systemic DLBCL, and one reactive lymph node samples, and staining was performed for CXCR4, CXCR5, CXCL12, and CXCL13. Chi-square test was used to determine correlations between clinical parameters, diagnostic groups, and chemokine receptor expression. Strong nuclear CXCR4 positivity correlated with systemic DLBCL, whereas strong cytoplasmic CXCR5 positivity correlated with CNS involvement (P = 0.003 and P = 0.039). Immunoelectron microscopy revealed a nuclear CXCR4 staining in reactive lymph node, compared with cytoplasmic and membranous localization seen in CNS lymphomas. We found that CNS lymphoma presented a chemokine receptor profile different from systemic disease. Our findings give new information on the CNS tropism of DLBCL and, if confirmed, may contribute to more effective targeting of CNS prophylaxis among patients with DLBCL.


Subject(s)
Central Nervous System Neoplasms/metabolism , Central Nervous System Neoplasms/secondary , Lymphoma/metabolism , Lymphoma/pathology , Receptors, Chemokine/metabolism , Adult , Aged , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers , Case-Control Studies , Central Nervous System Neoplasms/drug therapy , Endothelial Cells/metabolism , Female , Humans , Immunohistochemistry , Lymph Nodes/metabolism , Lymph Nodes/pathology , Lymphoma, Large B-Cell, Diffuse/metabolism , Lymphoma, Large B-Cell, Diffuse/pathology , Male , Middle Aged , Premedication , Retrospective Studies
18.
Dev Biol ; 391(1): 66-80, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24726525

ABSTRACT

To understand the functional role of the peroxisomal membrane channel Pxmp2, mice with a targeted disruption of the Pxmp2 gene were generated. These mice were viable, grew and bred normally. However, Pxmp2(-/-) female mice were unable to nurse their pups. Lactating mammary gland epithelium displayed secretory lipid droplets and milk proteins, but the size of the ductal system was greatly reduced. Examination of mammary gland development revealed that retarded mammary ductal outgrowth was due to reduced proliferation of epithelial cells during puberty. Transplantation experiments established the Pxmp2(-/-) mammary stroma as a tissue responsible for suppression of epithelial growth. Morphological and biochemical examination confirmed the presence of peroxisomes in the mammary fat pad adipocytes, and functional Pxmp2 was detected in the stroma of wild-type mammary glands. Deletion of Pxmp2 led to an elevation in the expression of peroxisomal proteins in the mammary fat pad but not in liver or kidney of transgenic mice. Lipidomics of Pxmp2(-/-)mammary fat pad showed a decrease in the content of myristic acid (C14), a principal substrate for protein myristoylation and a potential peroxisomal ß-oxidation product. Analysis of complex lipids revealed a reduced concentration of a variety of diacylglycerols and phospholipids containing mostly polyunsaturated fatty acids that may be caused by activation of lipid peroxidation. However, an antioxidant-containing diet did not stimulate mammary epithelial proliferation in Pxmp2(-/-) mice. The results point to disturbances of lipid metabolism in the mammary fat pad that in turn may result in abnormal epithelial growth. The work reveals impaired mammary gland development as a new category of peroxisomal disorders.


Subject(s)
Lipid Metabolism , Mammary Glands, Animal/metabolism , Membrane Proteins/genetics , Membrane Proteins/physiology , Peroxisomes/metabolism , Adipose Tissue/metabolism , Animals , Bile Acids and Salts/chemistry , Epithelial Cells/cytology , Fatty Acids/chemistry , Female , Homeostasis , Lactation , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phenotype , Polyamines/chemistry , Subcellular Fractions , Time Factors
19.
BMC Cancer ; 15: 25, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25633184

ABSTRACT

BACKGROUND: Caveolin-1 (CAV1) may be upregulated by hypoxia and acts in a tumor-dependent manner. We investigated CAV1 in tongue squamous cell carcinoma (TSCC) and its association with clinical outcomes, and studied in vitro possible ways for CAV1 accumulation in the tumor microenvironment (TME). METHODS: TSCC cases (N = 64) were immunohistochemically stained for CAV1. Scores were separately assessed in the tumor and TME and plotted for association with recurrence and survival (univariate analysis with log-rank test). In vitro studies were performed on a 3D myoma organotypic model, a mimicker of TME. Prior to monoculturing HSC-3 tongue cancer cells, the model underwent modifications in oxygenation level (1%O2 hypoxia to upregulate CAV1) and/or in the amount of natural soluble factors [deleted by 14-day rinsing (rinsed myoma, RM), to allow only HSC-3-derived factors to act]. Controls included normoxia (21%O2) and naturally occurring soluble factors (intact myoma, IM). HSC-3 cells were also co-cultured with CaDEC12 cells (fibroblasts exposed to human tongue cancer). CAV1 expression and cellular distribution were examined in different cellular components in hypoxic and rinsed myoma assays. Twist served as a marker for the process of epithelial-mesenchymal transition (EMT). Exosomes isolated from HSC-3 media were investigated for containing CAV1. RESULTS: Expression of CAV1 in TSCC had a higher score in TME than in the tumor cells and a negative impact on recurrence (p = 0.01) and survival (p = 0.003). Monocultures of HSC-3 revealed expression of CAV1 mainly in the TME-like myoma assay, similar to TSCC. CAV1+, alpha-smooth muscle actin (αSMA) + and Twist + CAF-like cells were observed surrounding the invading HSC-3, possibly reflecting EMT. RM findings were similar to IM, inferring action of HSC-3 derived factors, and no differences were seen when hypoxia was induced. HSC-3-CaDEC12 co-cultures revealed CAV1+, αSMA+ and cytokeratin-negative CAF-like cells, raising the possibility of CaDEC12 cells gaining a CAF phenotype. HSC-3-derived exosomes were loaded with CAV1. CONCLUSIONS: Accumulation of CAV1-TME in TSCC had a negative prognostic value. In vitro studies showed the presence of CAV1 in cancer cells undergoing EMT and in fibroblasts undergoing trans-differentiation to CAFs. CAV1 delivery to the TME involved cancer cell-derived exosomes.


Subject(s)
Caveolin 1/metabolism , Tongue Neoplasms/metabolism , Tongue Neoplasms/mortality , Tumor Microenvironment , Adult , Aged , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/mortality , Caveolin 1/genetics , Cell Culture Techniques , Coculture Techniques , Female , Follow-Up Studies , Gene Expression , Humans , Immunohistochemistry , Male , Middle Aged , Neoplasm Staging , Prognosis , Tongue Neoplasms/genetics , Tongue Neoplasms/pathology , Tumor Cells, Cultured , Tumor Microenvironment/genetics
20.
Biochem J ; 461(1): 125-35, 2014 Jul 01.
Article in English | MEDLINE | ID: mdl-24735479

ABSTRACT

Cholesterol is catabolized to bile acids by peroxisomal ß-oxidation in which the side chain of C27-bile acid intermediates is shortened by three carbon atoms to form mature C24-bile acids. Knockout mouse models deficient in AMACR (α-methylacyl-CoA racemase) or MFE-2 (peroxisomal multifunctional enzyme type 2), in which this ß-oxidation pathway is prevented, display a residual C24-bile acid pool which, although greatly reduced, implies the existence of alternative pathways of bile acid synthesis. One alternative pathway could involve Mfe-1 (peroxisomal multifunctional enzyme type 1) either with or without Amacr. To test this hypothesis, we generated a double knockout mouse model lacking both Amacr and Mfe-1 activities and studied the bile acid profiles in wild-type, Mfe-1 and Amacr single knockout mouse line and Mfe-1 and Amacr double knockout mouse lines. The total bile acid pool was decreased in Mfe-1-/- mice compared with wild-type and the levels of mature C24-bile acids were reduced in the double knockout mice when compared with Amacr-deficient mice. These results indicate that Mfe-1 can contribute to the synthesis of mature bile acids in both Amacr-dependent and Amacr-independent pathways.


Subject(s)
Bile Acids and Salts/biosynthesis , Multienzyme Complexes/physiology , Racemases and Epimerases/physiology , Animals , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Models, Animal , Multienzyme Complexes/deficiency , Multienzyme Complexes/genetics , Racemases and Epimerases/deficiency , Racemases and Epimerases/genetics , Signal Transduction/genetics , Signal Transduction/physiology
SELECTION OF CITATIONS
SEARCH DETAIL