Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Mol Cell ; 70(5): 842-853.e7, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29861157

ABSTRACT

Heterochromatic repetitive satellite RNAs are extensively transcribed in a variety of human cancers, including BRCA1 mutant breast cancer. Aberrant expression of satellite RNAs in cultured cells induces the DNA damage response, activates cell cycle checkpoints, and causes defects in chromosome segregation. However, the mechanism by which satellite RNA expression leads to genomic instability is not well understood. Here we provide evidence that increased levels of satellite RNAs in mammary glands induce tumor formation in mice. Using mass spectrometry, we further show that genomic instability induced by satellite RNAs occurs through interactions with BRCA1-associated protein networks required for the stabilization of DNA replication forks. Additionally, de-stabilized replication forks likely promote the formation of RNA-DNA hybrids in cells expressing satellite RNAs. These studies lay the foundation for developing novel therapeutic strategies that block the effects of non-coding satellite RNAs in cancer cells.


Subject(s)
BRCA1 Protein/genetics , Breast Neoplasms/genetics , Cell Transformation, Neoplastic/genetics , DNA Damage , Genomic Instability , Heterochromatin/genetics , RNA, Neoplasm/genetics , RNA, Satellite/genetics , Animals , BRCA1 Protein/metabolism , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Proliferation , Cell Transformation, Neoplastic/metabolism , Cell Transformation, Neoplastic/pathology , Female , Gene Expression Regulation, Neoplastic , HEK293 Cells , Heterochromatin/metabolism , Humans , MCF-7 Cells , Mice , Protein Binding , RNA, Neoplasm/metabolism , RNA, Satellite/metabolism , Tumor Burden
2.
J Biol Chem ; 299(10): 105230, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689116

ABSTRACT

Macrophages must respond appropriately to pathogens and other pro-inflammatory stimuli in order to perform their roles in fighting infection. One way in which inflammatory stimuli can vary is in their dynamics-that is, the amplitude and duration of stimulus experienced by the cell. In this study, we performed long-term live cell imaging in a microfluidic device to investigate how the pro-inflammatory genes IRF1, CXCL10, and CXCL9 respond to dynamic interferon-gamma (IFNγ) stimulation. We found that IRF1 responds to low concentration or short duration IFNγ stimulation, whereas CXCL10 and CXCL9 require longer or higherconcentration stimulation to be expressed. We also investigated the heterogeneity in the expression of each gene and found that CXCL10 and CXCL9 have substantial cell-to-cell variability. In particular, the expression of CXCL10 appears to be largely stochastic with a subpopulation of nonresponding cells across all the stimulation conditions tested. We developed both deterministic and stochastic models for the expression of each gene. Our modeling analysis revealed that the heterogeneity in CXCL10 can be attributed to a slow chromatin-opening step that is on a similar timescale to that of adaptation of the upstream signal. In this way, CXCL10 expression in individual cells can remain stochastic in response to each pulse of repeated stimulation, which we also validated by experiments. Together, we conclude that pro-inflammatory genes in the same signaling pathway can respond to dynamic IFNγ stimulus with very different response features and that upstream signal adaptation can contribute to shaping heterogeneous gene expression.


Subject(s)
Chemokine CXCL10 , Chemokine CXCL9 , Gene Expression Regulation , Interferon Regulatory Factor-1 , Macrophages , Chemokine CXCL10/genetics , Chemokine CXCL10/metabolism , Chemokine CXCL9/genetics , Chemokine CXCL9/metabolism , Interferon-gamma/pharmacology , Macrophages/metabolism , Signal Transduction/genetics , RAW 264.7 Cells , Animals , Mice , Interferon Regulatory Factor-1/genetics , Interferon Regulatory Factor-1/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Computer Simulation , Single-Cell Analysis , Adjuvants, Immunologic/pharmacology
3.
Bio Protoc ; 14(6): e4960, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38841290

ABSTRACT

CRISPR/Cas9 genome editing is a widely used tool for creating genetic knock-ins, which allow for endogenous tagging of genes. This is in contrast with random insertion using viral vectors, where expression of the inserted transgene changes the total copy number of a gene in a cell and does not reflect the endogenous chromatin environment or any trans-acting regulation experienced at a locus. There are very few protocols for endogenous fluorescent tagging in macrophages. Here, we describe a protocol to design and test CRISPR guide RNAs and donor plasmids, to transfect them into RAW 264.7 mouse macrophage-like cells using the Neon transfection system and to grow up clonal populations of cells containing the endogenous knock-in at various loci. We have used this protocol to create endogenous fluorescent knock-ins in at least six loci, including both endogenously tagging genes and inserting transgenes in the Rosa26 and Tigre safe harbor loci. This protocol uses circular plasmid DNA as the donor template and delivers the sgRNA and Cas9 as an all-in-one expression plasmid. We designed this protocol for fluorescent protein knock-ins; it is best used when positive clones can be identified by fluorescence. However, it may be possible to adapt the protocol for non-fluorescent knock-ins. This protocol allows for the fairly straightforward creation of clonal populations of macrophages with tags at the endogenous loci of genes. We also describe how to set up imaging experiments in 24-well plates to track fluorescence in the edited cells over time. Key features • CRISPR knock-in of fluorescent proteins in RAW 264.7 mouse macrophages at diverse genomic loci. • This protocol is optimized for the use of the Neon transfection system. • Includes instructions for growing up edited clonal populations from single cells with one single-cell sorting step and efficient growth in conditioned media after cell sorting. • Designed for knocking in fluorescent proteins and screening transfected cells by FACS, but modification for non-fluorescent knock-ins may be possible.

4.
bioRxiv ; 2024 Jul 13.
Article in English | MEDLINE | ID: mdl-39026714

ABSTRACT

Tagmentation combines DNA fragmentation and sequencing adapter addition by leveraging the transposition activity of the bacterial cut-and-paste Tn5 transposase, to enable efficient sequencing library preparation. Here we present an open-source protocol for the generation of multi-purpose hyperactive Tn5 transposase, including its benchmarking in CUT&Tag, bulk and single-cell ATAC-seq. The OpenTn5 protocol yields multi-milligram quantities of pG-Tn5E54K, L372P protein per liter of E. coli culture, sufficient for thousands of tagmentation reactions and the enzyme retains activity in storage for more than a year.

5.
Curr Opin Cell Biol ; 84: 102211, 2023 10.
Article in English | MEDLINE | ID: mdl-37556867

ABSTRACT

The last two decades of work on chromosome conformation in eukaryotic nuclei have revealed a complex and highly regulated hierarchy of architectural features, from self-associating domains and compartmental interactions to locus-specific loops. Recent findings have shown that these structures are dynamic and heterogeneous, with emerging insights into the factors that shape them and implications for the control of transcription and other nuclear processes. Here, we review the latest advances in the DNA sequencing- and microscopy-based technologies for probing these features in space and time (4D) and discuss how they have been combined with complementary approaches such as genetic perturbations, protein and RNA measurements, and modeling to gain mechanistic insights about genome regulation across space and time.


Subject(s)
Chromosomes , Genome , Chromosomes/genetics , Cell Nucleus/genetics , Molecular Conformation , Chromatin
SELECTION OF CITATIONS
SEARCH DETAIL