Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 167
Filter
1.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36736301

ABSTRACT

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Subject(s)
COVID-19 , Mycobacterium , Child , Humans , Interferon-gamma , SARS-CoV-2 , Interferon-alpha , Interferon Regulatory Factor-1
2.
Blood ; 2024 Jul 11.
Article in English | MEDLINE | ID: mdl-38991192

ABSTRACT

The genomics era has facilitated discovery of new genes predisposing to bone marrow failure (BMF) and hematological malignancy (HM). We report the discovery of ERG as a novel autosomal dominant BMF/HM predisposition gene. ERG is a highly constrained transcription factor critical for definitive hematopoiesis, stem cell function and platelet maintenance. ERG colocalizes with other transcription factors including RUNX1 and GATA2 on promoters/enhancers of genes orchestrating hematopoiesis. We identified a rare heterozygous ERG missense variant in 3 thrombocytopenic individuals from one family and 14 additional ERG variants in unrelated individuals with BMF/HM including 2 de novo cases and 3 truncating variants. Phenotypes associated with pathogenic germline ERG variants included cytopenias (thrombocytopenia, neutropenia, pancytopenia) and HMs (acute myeloid leukemia, myelodysplastic syndrome, acute lymphoblastic leukemia) with onset before 40 years. Twenty ERG variants (19 missense, 1 truncating) including 3 missense population variants were functionally characterized. Thirteen potentially pathogenic ETS domain missense variants displayed loss-of-function characteristics disrupting transcriptional transactivation, DNA-binding and/or nuclear localization. Selected variants overexpressed in mouse fetal liver cells failed to drive myeloid differentiation and cytokine-independent growth in culture, and to promote acute erythroleukemia when transplanted into mice, concordant with these variants being loss-of-function. Four individuals displayed somatic genetic rescue by copy neutral loss of heterozygosity. Identification of predisposing germline ERG variants has clinical implications for patient/family diagnosis, counselling, surveillance, and treatment strategies including selection of bone marrow donors or cell/gene therapy.

3.
Hum Mol Genet ; 32(11): 1836-1849, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36721989

ABSTRACT

Biallelic germline mutations in BRCA2 occur in the Fanconi anemia (FA)-D1 subtype of the rare pediatric disorder, FA, characterized clinically by severe congenital abnormalities and a very high propensity to develop malignancies early in life. Clinical and genetic data from 96 FA-D1 patients with biallelic BRCA2 mutations were collected and used to develop a new cancer risk prediction score system based on the specific mutations in BRCA2. This score takes into account the location of frameshift/stop and missense mutations relative to exon 11 of BRCA2, which encodes the major sites for interaction with the RAD51 recombinase, and uses the MaxEnt and HBond splicing scores to analyze potential splice site perturbations. Among 75 FA-D1 patients with ascertained BRCA2 mutations, 66 patients developed 102 malignancies, ranging from one to three independent tumors per individual. The median age at the clinical presentation of peripheral embryonal tumors was 1.0, at the onset of hematologic malignancies 1.8 and at the manifestation of CNS tumors 2.7 years, respectively. Patients who received treatment lived longer than those without. Using our novel scoring system, we could distinguish three distinct cancer risk groups among FA-D1 patients: in the first, patients developed their initial malignancy at a median age of 1.3 years (n = 36, 95% CI = 0.9-1.8), in the second group at 2.3 years (n = 17, 95% CI = 1.4-4.4) and in the third group at 23.0 years (n = 22, 95% CI = 4.3-n/a). Therefore, this scoring system allows, for the first time, to predict the cancer manifestation of FA-D1 patients simply based on the type and position of the mutations in BRCA2.


Subject(s)
Fanconi Anemia , Neoplasms , Humans , Child , Infant , Fanconi Anemia/genetics , BRCA2 Protein/genetics , Neoplasms/genetics , Mutation , Rad51 Recombinase/genetics
4.
Blood ; 141(15): 1812-1816, 2023 04 13.
Article in English | MEDLINE | ID: mdl-36626252

ABSTRACT

Patients with paroxysmal nocturnal hemoglobinuria (PNH) are susceptible to complement-mediated intravascular hemolysis and thrombosis. Factor H (FH) is the main regulator of the complement alternative pathway, which protects cells from unwanted complement-mediated damage. Although FH is not a glycosylphosphatidylinositol-linked molecule, it may play a role in PNH. We sought to determine if rare germline variants in complement factor H (CFH) affect the PNH course, screening 84 patients with PNH treated with eculizumab for rare variants in CFH, CFI, and C3 genes. We compared the allelic frequencies with populational data and a geographically-matched control group, looking for an association between presence of the variants and treatment response (transfusion independence by 6 months). Sixteen patients presented rare variants, 9 in CFH (10.7%). Germline CFH variants were more frequent among patients with PNH than among controls (P = .02) or public data (P < .001) and were more likely to be transfusion-dependent at 6 months after eculizumab initiation (P = .015). With a median follow-up of 5.8 years, 8 of 9 patients with the CFH variant received transfusions, and 2 developed thromboses. None of the patients with the CFH variant had severe aplastic anemia from eculizumab initiation until 6 months. We demonstrated for the first time that rare CFH variants are over-represented among patients with PNH and that germline genetic background may affect the response to eculizumab.


Subject(s)
Complement Factor H , Hemoglobinuria, Paroxysmal , Thrombosis , Humans , Anemia, Aplastic , Complement Factor H/genetics , Hemoglobinuria, Paroxysmal/drug therapy , Hemoglobinuria, Paroxysmal/genetics , Hemolysis
5.
Blood ; 141(23): 2853-2866, 2023 06 08.
Article in English | MEDLINE | ID: mdl-36952636

ABSTRACT

Biallelic germ line excision repair cross-complementing 6 like 2 (ERCC6L2) variants strongly predispose to bone marrow failure (BMF) and myeloid malignancies, characterized by somatic TP53-mutated clones and erythroid predominance. We present a series of 52 subjects (35 families) with ERCC6L2 biallelic germ line variants collected retrospectively from 11 centers globally, with a follow-up of 1165 person-years. At initial investigations, 32 individuals were diagnosed with BMF and 15 with a hematological malignancy (HM). The subjects presented with 19 different variants of ERCC6L2, and we identified a founder mutation, c.1424delT, in Finnish patients. The median age of the subjects at baseline was 18 years (range, 2-65 years). Changes in the complete blood count were mild despite severe bone marrow (BM) hypoplasia and somatic TP53 mutations, with no significant difference between subjects with or without HMs. Signs of progressive disease included increasing TP53 variant allele frequency, dysplasia in megakaryocytes and/or erythroid lineage, and erythroid predominance in the BM morphology. The median age at the onset of HM was 37.0 years (95% CI, 31.5-42.5; range, 12-65 years). The overall survival (OS) at 3 years was 95% (95% CI, 85-100) and 19% (95% CI, 0-39) for patients with BMF and HM, respectively. Patients with myelodysplastic syndrome or acute myeloid leukemia with mutated TP53 undergoing hematopoietic stem cell transplantation had a poor outcome with a 3-year OS of 28% (95% CI, 0-61). Our results demonstrated the importance of early recognition and active surveillance in patients with biallelic germ line ERCC6L2 variants.


Subject(s)
Anemia, Aplastic , Leukemia, Myeloid, Acute , Pancytopenia , Humans , Child, Preschool , Child , Adolescent , Young Adult , Adult , Middle Aged , Aged , Retrospective Studies , Bone Marrow Failure Disorders , Leukemia, Myeloid, Acute/genetics , Anemia, Aplastic/genetics , DNA Repair , Acute Disease , DNA Helicases/genetics
6.
Blood ; 142(21): 1806-1817, 2023 11 23.
Article in English | MEDLINE | ID: mdl-37595275

ABSTRACT

KMT2A-rearranged (KMT2A-r) B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is widely recognized as a high-risk leukemia in both children and adults. However, there is a paucity of data on adults treated in recent protocols, and the optimal treatment strategy for these patients is still a matter of debate. In this study, we set out to refine the prognosis of adult KMT2A-r BCP-ALL treated with modern chemotherapy regimen and investigate the prognostic impact of comutations and minimal residual disease (MRD). Of 1091 adult patients with Philadelphia-negative BCP-ALL enrolled in 3 consecutive trials from the Group for Research on Adult Acute Lymphoblastic Leukemia (GRAALL), 141 (12.9%) had KMT2A-r, with 5-year cumulative incidence of relapse (CIR) and overall survival (OS) rates of 40.7% and 53.3%, respectively. Molecular profiling highlighted a low mutational burden in this subtype, reminiscent of infant BCP-ALL. However, the presence of TP53 and/or IKZF1 alterations defined a subset of patients with significantly poorer CIR (69.3% vs 36.2%; P = .001) and OS (28.1% vs 60.7%; P = .006) rates. Next, we analyzed the prognostic implication of MRD measured after induction and first consolidation, using both immunoglobulin (IG) or T-cell receptor (TR) gene rearrangements and KMT2A genomic fusion as markers. In approximately one-third of patients, IG/TR rearrangements were absent or displayed clonal evolution during the disease course, compromising MRD monitoring. In contrast, KMT2A-based MRD was highly reliable and strongly associated with outcome, with early good responders having an excellent outcome (3-year CIR, 7.1%; OS, 92.9%). Altogether, our study reveals striking heterogeneity in outcomes within adults with KMT2A-r BCP-ALL and provides new biomarkers to guide risk-based therapeutic stratification.


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Child , Humans , Adult , Neoplasm, Residual/genetics , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/therapy , Recurrence , Immunoglobulins , Risk Assessment
7.
Nucleic Acids Res ; 51(15): 7988-8004, 2023 08 25.
Article in English | MEDLINE | ID: mdl-37395445

ABSTRACT

Fanconi anemia (FA) is a genetic disorder associated with developmental defects, bone marrow failure and cancer. The FA pathway is crucial for the repair of DNA interstrand crosslinks (ICLs). In this study, we have developed and characterized a new tool to investigate ICL repair: a clickable version of the crosslinking agent melphalan which we name click-melphalan. Our results demonstrate that click-melphalan is as effective as its unmodified counterpart in generating ICLs and associated toxicity. The lesions induced by click-melphalan can be detected in cells by post-labelling with a fluorescent reporter and quantified using flow cytometry. Since click-melphalan induces both ICLs and monoadducts, we generated click-mono-melphalan, which only induces monoadducts, in order to distinguish between the two types of DNA repair. By using both molecules, we show that FANCD2 knock-out cells are deficient in removing click-melphalan-induced lesions. We also found that these cells display a delay in repairing click-mono-melphalan-induced monoadducts. Our data further revealed that the presence of unrepaired ICLs inhibits monoadduct repair. Finally, our study demonstrates that these clickable molecules can differentiate intrinsic DNA repair deficiencies in primary FA patient cells from those in primary xeroderma pigmentosum patient cells. As such, these molecules may have potential for developing diagnostic tests.


Subject(s)
Fanconi Anemia , Melphalan , Humans , Melphalan/pharmacology , Fanconi Anemia/pathology , DNA Repair , DNA Damage , DNA
8.
Blood ; 139(3): 399-412, 2022 01 20.
Article in English | MEDLINE | ID: mdl-34624096

ABSTRACT

Mixed-phenotype acute leukemia is a rare subtype of leukemia in which both myeloid and lymphoid markers are co-expressed on the same malignant cells. The pathogenesis is largely unknown, and the treatment is challenging. We previously reported the specific association of the recurrent t(8;12)(q13;p13) chromosomal translocation that creates the ETV6-NCOA2 fusion with T/myeloid leukemias. Here we report that ETV6-NCOA2 initiates T/myeloid leukemia in preclinical models; ectopic expression of ETV6-NCOA2 in mouse bone marrow hematopoietic progenitors induced T/myeloid lymphoma accompanied by spontaneous Notch1-activating mutations. Similarly, cotransduction of human cord blood CD34+ progenitors with ETV6-NCOA2 and a nontransforming NOTCH1 mutant induced T/myeloid leukemia in immunodeficient mice; the immunophenotype and gene expression pattern were similar to those of patient-derived ETV6-NCOA2 leukemias. Mechanistically, we show that ETV6-NCOA2 forms a transcriptional complex with ETV6 and the histone acetyltransferase p300, leading to derepression of ETV6 target genes. The expression of ETV6-NCOA2 in human and mouse nonthymic hematopoietic progenitor cells induces transcriptional dysregulation, which activates a lymphoid program while failing to repress the expression of myeloid genes such as CSF1 and MEF2C. The ETV6-NCOA2 induced arrest at an early immature T-cell developmental stage. The additional acquisition of activating NOTCH1 mutations transforms the early immature ETV6-NCOA2 cells into T/myeloid leukemias. Here, we describe the first preclinical model to depict the initiation of T/myeloid leukemia by a specific somatic genetic aberration.


Subject(s)
Gene Expression Regulation, Leukemic , Hematopoietic Stem Cells/metabolism , Leukemia, Myeloid/genetics , Nuclear Receptor Coactivator 2/genetics , Oncogene Proteins, Fusion/genetics , Proto-Oncogene Proteins c-ets/genetics , Repressor Proteins/genetics , Animals , Cell Transformation, Neoplastic , Cells, Cultured , Female , Hematopoietic Stem Cells/pathology , Humans , Leukemia, Myeloid/pathology , Mice , Mice, Inbred C57BL , Mice, SCID , ETS Translocation Variant 6 Protein
9.
Blood ; 139(24): 3505-3518, 2022 06 16.
Article in English | MEDLINE | ID: mdl-35316324

ABSTRACT

Oncogenic alterations underlying B-cell acute lymphoblastic leukemia (B-ALL) in adults remain incompletely elucidated. To uncover novel oncogenic drivers, we performed RNA sequencing and whole-genome analyses in a large cohort of unresolved B-ALL. We identified a novel subtype characterized by a distinct gene expression signature and the unique association of 2 genomic microdeletions. The 17q21.31 microdeletion resulted in a UBTF::ATXN7L3 fusion transcript encoding a chimeric protein. The 13q12.2 deletion resulted in monoallelic ectopic expression of the homeobox transcription factor CDX2, located 138 kb in cis from the deletion. Using 4C-sequencing and CRISPR interference experiments, we elucidated the mechanism of CDX2 cis-deregulation, involving PAN3 enhancer hijacking. CDX2/UBTF ALL (n = 26) harbored a distinct pattern of additional alterations including 1q gain and CXCR4 activating mutations. Within adult patients with Ph- B-ALL enrolled in GRAALL trials, patients with CDX2/UBTF ALL (n = 17/723, 2.4%) were young (median age, 31 years) and dramatically enriched in females (male/female ratio, 0.2, P = .002). They commonly presented with a pro-B phenotype ALL and moderate blast cell infiltration. They had poor response to treatment including a higher risk of failure to first induction course (19% vs 3%, P = .017) and higher post-induction minimal residual disease (MRD) levels (MRD ≥ 10-4, 93% vs 46%, P < .001). This early resistance to treatment translated into a significantly higher cumulative incidence of relapse (75.0% vs 32.4%, P = .004) in univariate and multivariate analyses. In conclusion, we discovered a novel B-ALL entity defined by the unique combination of CDX2 cis-deregulation and UBTF::ATXN7L3 fusion, representing a high-risk disease in young adults.


Subject(s)
CDX2 Transcription Factor , Pol1 Transcription Initiation Complex Proteins , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Transcription Factors , Adult , CDX2 Transcription Factor/genetics , Female , Genes, Homeobox , Humans , Male , Neoplasm, Residual/genetics , Oncogene Proteins, Fusion , Pol1 Transcription Initiation Complex Proteins/genetics , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/metabolism , Transcription Factors/genetics
10.
Blood ; 140(7): 756-768, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35443031

ABSTRACT

DDX41 germline mutations (DDX41MutGL) are the most common genetic predisposition to myelodysplastic syndrome and acute myeloid leukemia (AML). Recent reports suggest that DDX41MutGL myeloid malignancies could be considered as a distinct entity, even if their specific presentation and outcome remain to be defined. We describe here the clinical and biological features of 191 patients with DDX41MutGL AML. Baseline characteristics and outcome of 86 of these patients, treated with intensive chemotherapy in 5 prospective Acute Leukemia French Association/French Innovative Leukemia Organization trials, were compared with those of 1604 patients with DDX41 wild-type (DDX41WT) AML, representing a prevalence of 5%. Patients with DDX41MutGL AML were mostly male (75%), in their seventh decade, and with low leukocyte count (median, 2 × 109/L), low bone marrow blast infiltration (median, 33%), normal cytogenetics (75%), and few additional somatic mutations (median, 2). A second somatic DDX41 mutation (DDX41MutSom) was found in 82% of patients, and clonal architecture inference suggested that it could be the main driver for AML progression. DDX41MutGL patients displayed higher complete remission rates (94% vs 69%; P < .0001) and longer restricted mean overall survival censored at hematopoietic stem cell transplantation (HSCT) than 2017 European LeukemiaNet intermediate/adverse (Int/Adv) DDX41WT patients (5-year difference in restricted mean survival times, 13.6 months; P < .001). Relapse rates censored at HSCT were lower at 1 year in DDX41MutGL patients (15% vs 44%) but later increased to be similar to Int/Adv DDX41WT patients at 3 years (82% vs 75%). HSCT in first complete remission was associated with prolonged relapse-free survival (hazard ratio, 0.43; 95% confidence interval, 0.21-0.88; P = .02) but not with longer overall survival (hazard ratio, 0.77; 95% confidence interval, 0.35-1.68; P = .5).


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , DEAD-box RNA Helicases/genetics , Female , Germ-Line Mutation , Humans , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/therapy , Male , Prognosis , Prospective Studies , Retrospective Studies
11.
Chemistry ; 30(28): e202303887, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38478740

ABSTRACT

Novel fluorinated foldamers based on aminomethyl-1,4-triazolyl-difluoroacetic acid (1,4-Tz-CF2) units were synthesized and their conformational behaviour was studied by NMR and molecular dynamics. Their activity on the aggregation of the human islet amyloid polypeptide (hIAPP) amyloid protein was evaluated by fluorescence spectroscopy and mass spectrometry. The fluorine labelling of these foldamers allowed the analysis of their interaction with the target protein. We demonstrated that the preferred extended conformation of homotriazolamers of 1,4-Tz-CF2 unit increases the aggregation of hIAPP, while the hairpin-like conformation of more flexible heterotriazolamers containing two 1,4-Tz-CF2 units mixed with natural amino acids from the hIAPP sequence reduces it, and more efficiently than the parent natural peptide. The longer heterotriazolamers having three 1,4-Tz-CF2 units adopting more folded hairpin-like and ladder-like structures similar to short multi-stranded ß-sheets have no effect. This work demonstrates that a good balance between the structuring and flexibility of these foldamers is necessary to allow efficient interaction with the target protein.


Subject(s)
Islet Amyloid Polypeptide , Triazoles , Islet Amyloid Polypeptide/chemistry , Islet Amyloid Polypeptide/metabolism , Humans , Triazoles/chemistry , Molecular Dynamics Simulation , Halogenation , Protein Aggregates
12.
J Intern Med ; 294(4): 413-436, 2023 10.
Article in English | MEDLINE | ID: mdl-37424223

ABSTRACT

Genetic testing has been applied for decades in clinical routine diagnostics of hematological malignancies to improve disease (sub)classification, prognostication, patient management, and survival. In recent classifications of hematological malignancies, disease subtypes are defined by key recurrent genetic alterations detected by conventional methods (i.e., cytogenetics, fluorescence in situ hybridization, and targeted sequencing). Hematological malignancies were also one of the first disease areas in which targeted therapies were introduced, the prime example being BCR::ABL1 inhibitors, followed by an increasing number of targeted inhibitors hitting the Achilles' heel of each disease, resulting in a clear patient benefit. Owing to the technical advances in high-throughput sequencing, we can now apply broad genomic tests, including comprehensive gene panels or whole-genome and whole-transcriptome sequencing, to identify clinically important diagnostic, prognostic, and predictive markers. In this review, we give examples of how precision diagnostics has been implemented to guide treatment selection and improve survival in myeloid (myelodysplastic syndromes and acute myeloid leukemia) and lymphoid malignancies (acute lymphoblastic leukemia, diffuse large B-cell lymphoma, and chronic lymphocytic leukemia). We discuss the relevance and potential of monitoring measurable residual disease using ultra-sensitive techniques to assess therapy response and detect early relapses. Finally, we bring up the promising avenue of functional precision medicine, combining ex vivo drug screening with various omics technologies, to provide novel treatment options for patients with advanced disease. Although we are only in the beginning of the field of precision hematology, we foresee rapid development with new types of diagnostics and treatment strategies becoming available to the benefit of our patients.


Subject(s)
Hematologic Neoplasms , Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Humans , Precision Medicine , In Situ Hybridization, Fluorescence , Hematologic Neoplasms/diagnosis , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Leukemia, Myeloid, Acute/therapy
13.
Haematologica ; 108(9): 2369-2379, 2023 09 01.
Article in English | MEDLINE | ID: mdl-36951151

ABSTRACT

Debates on the role and timing of allogeneic hemtopoietic stem cell transplantation (HSCT) in acute myelogenous leukemia (AML) have persisted for decades. Time to transplant introduces an immortal time and current treatment algorithm mainly relies on the European LeukemiaNet disease risk classification. Previous studies are also limited to age groups, remission status and other ill-defined parameters. We studied all patients at diagnosis irrespective of age and comorbidities to estimate the cumulative incidence and potential benefit or disadvantage of HSCT in a single center. As a time-dependent covariate, HSCT improved overall survival in intermediate- and poor-risk patients (hazard ratio =0.51; P=0.004). In goodrisk patients only eight were transplanted in first complete remission. Overall, the 4-year cumulative incidence of HSCT was only 21.9% but was higher (52.1%) for patients in the first age quartile (16-57 years old) and 26.4% in older patients (57-70 years old) (P<0.001). It was negligible in patients older than 70 years reflecting our own transplant policy but also barriers to transplantation (comorbidities and remission status). However, HSCT patients need to survive, be considered eligible both by the referring and the HSCT physicians and have a suitable donor to get transplantation. We, thus, comprehensively analyzed the complete decision-making and outcome of all our AML patients from diagnosis to last followup to decipher how patient allocation and therapy inform the value of HSCT. The role of HSCT in AML is shifting with broad access to different donors including haploidentical ones. Thus, it may (or may not) lead to increased numbers of allogeneic HSCT in AML in adults.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Adult , Humans , Aged , Adolescent , Young Adult , Middle Aged , Transplantation, Homologous , Leukemia, Myeloid, Acute/therapy , Remission Induction , Proportional Hazards Models , Retrospective Studies
14.
Transfusion ; 62(1): 165-172, 2022 01.
Article in English | MEDLINE | ID: mdl-34751952

ABSTRACT

BACKGROUND: Fanconi anemia (FA) is an inherited disorder characterized clinically by congenital abnormalities, progressive bone marrow failure (BMF), and a predisposition to malignancy. Gene therapy (GT) of FA, via the infusion of gene-corrected peripheral blood (PB) autologous hematopoietic stem cells (HSCs), may constitute a cure for BMF. GT bypasses the donor restrictions and adverse events associated with allogenic HSC transplantation. However, adequate harvesting of PB-HSCs is a crucial determinant of successful engraftment in gene therapy. Harvesting the low numbers of HSCs in patients with FA is particularly challenging. STUDY DESIGN AND METHODS: This open-label phase I/II trial evaluates the feasibility and safety of co-administration of G-CSF and plerixafor in patients with FA for the mobilization and harvesting of peripheral HSCs, intending to use them in a gene therapy trial. Patients with mutations in the FANCA gene received two subcutaneous injections of G-CSF (6 µg/kg × 2/d from D1 to D8. Plerixafor (0.24 mg/kg/d) was administered 2 h before apheresis (from D5 onward). RESULTS: CD34+ cells were mobilized for four patients quickly but transiently after the plerixafor injection. One patient had a CD34+ cell count of over 100/µl; the mobilization peaked 2 h after the injection and lasted for more than 9 h. There were no short-term adverse events associated with the mobilization or harvesting procedures. CONCLUSION: Our data in patients with FA show that the mobilization of HSCs with G-CSF and plerixafor is safe and more efficient in younger individuals without BMF.


Subject(s)
Fanconi Anemia , Hematopoietic Stem Cell Transplantation , Heterocyclic Compounds , Antigens, CD34/metabolism , Fanconi Anemia/chemically induced , Fanconi Anemia/genetics , Fanconi Anemia/therapy , Genetic Therapy/methods , Granulocyte Colony-Stimulating Factor , Hematopoietic Stem Cell Mobilization/methods , Hematopoietic Stem Cell Transplantation/methods , Humans
15.
Blood ; 134(17): 1441-1444, 2019 10 24.
Article in English | MEDLINE | ID: mdl-31484648

ABSTRACT

Germline DDX41 mutations are involved in familial myelodysplastic syndromes (MDSs) and acute myeloid leukemias (AMLs). We analyzed the prevalence and characteristics of DDX41-related myeloid malignancies in an unselected cohort of 1385 patients with MDS or AML. Using targeted next-generation sequencing, we identified 28 different germline DDX41 variants in 43 unrelated patients, which we classified as causal (n = 21) or unknown significance (n = 7) variants. We focused on the 33 patients having causal variants, representing 2.4% of our cohort. The median age was 69 years; most patients were men (79%). Only 9 patients (27%) had a family history of hematological malignancy, and 15 (46%) had a personal history of cytopenia years before MDS/AML diagnosis. Most patients had a normal karyotype (85%), and the most frequent somatic alteration was a second DDX41 mutation (79%). High-risk DDX41 MDS/AML patients treated with intensive chemotherapy (n = 9) or azacitidine (n = 11) had an overall response rate of 100% or 73%, respectively, with a median overall survival of 5.2 years. Our study highlights that germline DDX41 mutations are relatively common in adult MDS/AML, often without known family history, arguing for systematic screening. Salient features of DDX41-related myeloid malignancies include male preponderance, frequent preexisting cytopenia, additional somatic DDX41 mutation, and relatively good outcome.


Subject(s)
DEAD-box RNA Helicases/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Adult , Aged , Aged, 80 and over , Cohort Studies , Female , Germ-Line Mutation , Humans , Male , Middle Aged
16.
Blood ; 131(4): 421-425, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29187379

ABSTRACT

The Janus kinase 3 (JAK3) tyrosine kinase is mutated in 10% to 16% of T-cell acute lymphoblastic leukemia (T-ALL) cases. JAK3 mutants induce constitutive JAK/STAT signaling and cause leukemia when expressed in the bone marrow cells of mice. Surprisingly, we observed that one third of JAK3-mutant T-ALL cases harbor 2 JAK3 mutations, some of which are monoallelic and others that are biallelic. Our data suggest that wild-type JAK3 competes with mutant JAK3 (M511I) for binding to the common γ chain and thereby suppresses its oncogenic potential. We demonstrate that JAK3 (M511I) can increase its limited oncogenic potential through the acquisition of an additional mutation in the mutant JAK3 allele. These double JAK3 mutants show increased STAT5 activation and increased potential to transform primary mouse pro-T cells to interleukin-7-independent growth and were not affected by wild-type JAK3 expression. These data extend our insight into the oncogenic properties of JAK3 mutations and provide an explanation of why progression of JAK3-mutant T-ALL cases can be associated with the accumulation of additional JAK3 mutations.


Subject(s)
Janus Kinase 3/genetics , Point Mutation , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Signal Transduction , Alleles , Cell Line, Tumor , Humans , Janus Kinase 3/metabolism , Models, Molecular , Mutation Rate , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/metabolism
17.
Blood ; 131(3): 289-300, 2018 01 18.
Article in English | MEDLINE | ID: mdl-29051182

ABSTRACT

Risk stratification in childhood T-cell acute lymphoblastic leukemia (T-ALL) is mainly based on minimal residual disease (MRD) quantification. Whether oncogenetic mutation profiles can improve the discrimination of MRD-defined risk categories was unknown. Two hundred and twenty FRALLE2000T-treated patients were tested retrospectively for NOTCH1/FBXW7/RAS and PTEN alterations. Patients with NOTCH1/FBXW7 (N/F) mutations and RAS/PTEN (R/P) germ line (GL) were classified as oncogenetic low risk (gLoR; n = 111), whereas those with N/F GL and R/P GL mutations or N/F and R/P mutations were classified as high risk (gHiR; n = 109). Day 35 MRD status was available for 191 patients. Five-year cumulative incidence of relapse (CIR) and disease-free survival were 36% and 60% for gHiR patients and 11% and 89% for gLoR patients, respectively. Importantly, among the 60% of patients with MRD <10-4, 5-year CIR was 29% for gHiR patients and 4% for gLoR patients. Based on multivariable Cox models and stepwise selection, the 3 most discriminating variables were the oncogenetic classifier, MRD, and white blood cell (WBC) count. Patients harboring a WBC count ≥200 × 109/L, gHiR classifier, and MRD ≥10-4 demonstrated a 5-year CIR of 46%, whereas the 58 patients (30%) with a WBC count <200 × 109/L, gLoR classifier, and MRD <10-4 had a very low risk of relapse, with a 5-year CIR of only 2%. In childhood T-ALL, the N/F/R/P mutation profile is an independent predictor of relapse. When combined with MRD and a WBC count ≥200 × 109/L, it identifies a significant subgroup of patients with a low risk of relapse.


Subject(s)
Mutation/genetics , Neoplasm, Residual/genetics , Oncogenes/genetics , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Adolescent , Child , Child, Preschool , Disease-Free Survival , Genes, Neoplasm , Humans , Infant , Infant, Newborn , Leukocyte Count , Neoplasm, Residual/blood , Prognosis , Recurrence , Treatment Outcome
19.
Blood ; 131(7): 717-732, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29146883

ABSTRACT

Bone marrow (BM) failure (BMF) in children and young adults is often suspected to be inherited, but in many cases diagnosis remains uncertain. We studied a cohort of 179 patients (from 173 families) with BMF of suspected inherited origin but unresolved diagnosis after medical evaluation and Fanconi anemia exclusion. All patients had cytopenias, and 12.0% presented ≥5% BM blast cells. Median age at genetic evaluation was 11 years; 20.7% of patients were aged ≤2 years and 36.9% were ≥18 years. We analyzed genomic DNA from skin fibroblasts using whole-exome sequencing, and were able to assign a causal or likely causal germ line mutation in 86 patients (48.0%), involving a total of 28 genes. These included genes in familial hematopoietic disorders (GATA2, RUNX1), telomeropathies (TERC, TERT, RTEL1), ribosome disorders (SBDS, DNAJC21, RPL5), and DNA repair deficiency (LIG4). Many patients had an atypical presentation, and the mutated gene was often not clinically suspected. We also found mutations in genes seldom reported in inherited BMF (IBMF), such as SAMD9 and SAMD9L (N = 16 of the 86 patients, 18.6%), MECOM/EVI1 (N = 6, 7.0%), and ERCC6L2 (N = 7, 8.1%), each of which was associated with a distinct natural history; SAMD9 and SAMD9L patients often experienced transient aplasia and monosomy 7, whereas MECOM patients presented early-onset severe aplastic anemia, and ERCC6L2 patients, mild pancytopenia with myelodysplasia. This study broadens the molecular and clinical portrait of IBMF syndromes and sheds light on newly recognized disease entities. Using a high-throughput sequencing screen to implement precision medicine at diagnosis can improve patient management and family counseling.


Subject(s)
Bone Marrow Diseases/genetics , Germ-Line Mutation , Adolescent , Bone Marrow Diseases/epidemiology , Child , Child, Preschool , Cohort Studies , DNA Mutational Analysis , Female , High-Throughput Nucleotide Sequencing , Humans , Infant , Infant, Newborn , Male , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics , Exome Sequencing
20.
Genes Chromosomes Cancer ; 58(8): 595-601, 2019 08.
Article in English | MEDLINE | ID: mdl-30779244

ABSTRACT

Burkitt lymphoma (BL) is characterized by a translocation of the MYC oncogene that leads to the upregulation of MYC expression, cell growth and proliferation. It is well-established that MYC translocation is not a sufficient genetic event to cause BL. Next-generation sequencing has recently provided a comprehensive analysis of the landscape of additional genetic events that contribute to BL lymphomagenesis. Refractory BL or relapsing BL are almost always incurable as a result of the selection of a highly chemoresistant clonally related cell population. Conversely, a few BL recurrence cases arising from clonally distinct tumors have been reported and were associated with a favorable outcome similar to that reported for first-line treatment. Here, we used an unusual case of recurrent but clonally distinct EBV+ BL to highlight the key genetic events that drive BL lymphomagenesis. By whole exome sequencing, we established that ID3 gene was targeted by distinct mutations in the two clonally unrelated diseases, highlighting the crucial role of this gene during lymphomagenesis. We also detected a heterozygous E1021K PIK3CD mutation, thus increasing the spectrum of somatic mutations altering the PI3K signaling pathway in BL. Interestingly, this mutation is known to be associated with activated phosphoinositide 3-kinase delta syndrome (APDS). Finally, we also identified an inherited heterozygous truncating c.5791CT FANCM mutation that may contribute to the unusual recurrence of BL.


Subject(s)
Biomarkers, Tumor , Burkitt Lymphoma/diagnosis , Burkitt Lymphoma/genetics , Cell Transformation, Neoplastic/genetics , Clonal Evolution , Genetic Predisposition to Disease , Adult , Alleles , Burkitt Lymphoma/therapy , Genetic Association Studies/methods , Genetic Background , High-Throughput Nucleotide Sequencing , Humans , Male , Models, Biological , Molecular Targeted Therapy , Mutation , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL