Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
Eur J Immunol ; 51(8): 1980-1991, 2021 08.
Article in English | MEDLINE | ID: mdl-34060652

ABSTRACT

High mobility group box-1 protein (HMGB1) is an alarmin that, once released, promotes inflammatory responses, alone and as a complex with the chemokine CXCL12. Here, we report that the HMGB1-CXCL12 complex plays an essential role also in homeostasis by controlling the migration of B lymphocytes. We show that extracellular HMGB1 is critical for the CXCL12-dependent egress of B cells from the Peyer's patches (PP). This promigratory function of the complex was restricted to the PPs, since HMGB1 was not required for B-cell migratory processes in other locations. Accordingly, we detected higher constitutive levels of the HMGB1-CXCL12 complex in PPs than in other lymphoid organs. HMGB1-CXCL12 in vivo inhibition was associated with a reduced basal IgA production in the gut. Collectively, our results demonstrate a role for the HMGB1-CXCL12 complex in orchestrating B-cell trafficking in homeostasis, and provide a novel target to control lymphocyte migration in mucosal immunity.


Subject(s)
B-Lymphocytes/metabolism , Chemokine CXCL12/metabolism , HMGB1 Protein/metabolism , Immunity, Mucosal/immunology , Peyer's Patches/metabolism , Animals , B-Lymphocytes/immunology , Chemokine CXCL12/immunology , Chemotaxis, Leukocyte/immunology , HMGB1 Protein/immunology , Homeostasis/immunology , Mice , Mice, Inbred C57BL , Peyer's Patches/immunology
2.
Oncologist ; 18(7): 876-84, 2013.
Article in English | MEDLINE | ID: mdl-23814042

ABSTRACT

Lymphoma is the most common malignancy arising in the ocular adnexa, which includes conjunctiva, lachrymal gland, lachrymal sac, eyelids, orbit soft tissue, and extraocular muscles. Ocular adnexal lymphoma (OAL) accounts for 1%-2% of non-Hodgkin lymphoma and 5%-15% of extranodal lymphoma. Histology, stage, and primary localizations are the most important variables influencing the natural history and therapeutic outcome of these malignancies. Among the various lymphoma variants that could arise in the ocular adnexa, marginal zone B-cell lymphoma (OA-MZL) is the most common one. Other types of lymphoma arise much more rarely in these anatomical sites; follicular lymphoma is the second most frequent histology, followed by diffuse large B-cell lymphoma and mantle cell lymphoma. Additional lymphoma entities, like T-cell/natural killer cell lymphomas and Burkitt lymphoma, only occasionally involve orbital structures. Because they are so rare, related literature mostly consists of anecdotal cases included within series focused on OA-MZL and sporadic case reports. This bias hampers a global approach to clinical and molecular properties of these types of lymphoma, with a low level of evidence supporting therapeutic options. This review covers the prevalence, clinical presentation, behavior, and histological and molecular features of uncommon forms of primary OAL and provides practical recommendations for therapeutic management.


Subject(s)
Adnexal Diseases/pathology , Eye Neoplasms/pathology , Lymphoma/pathology , Adnexal Diseases/genetics , Adnexal Diseases/therapy , Biomarkers, Tumor/metabolism , Eye Neoplasms/genetics , Eye Neoplasms/therapy , Female , Humans , Lymphoma/genetics , Lymphoma/therapy , Lymphoma, B-Cell , Lymphoma, Non-Hodgkin/pathology , Lymphoma, Non-Hodgkin/therapy , Prognosis
3.
Oncoimmunology ; 12(1): 2201147, 2023.
Article in English | MEDLINE | ID: mdl-37089449

ABSTRACT

The clinical successes of immune checkpoint blockade (ICB) in advanced cancer patients have recently spurred the clinical implementation of ICB in the neoadjuvant and perioperative setting. However, how neoadjuvant ICB therapy affects the systemic immune landscape and metastatic spread remains to be established. Tumors promote both local and systemic expansion of regulatory T cells (Tregs), which are key orchestrators of tumor-induced immunosuppression, contributing to immune evasion, tumor progression and metastasis. Tregs express inhibitory immune checkpoint molecules and thus may be unintended targets for ICB therapy counteracting its efficacy. Using ICB-refractory models of spontaneous primary and metastatic breast cancer that recapitulate the poor ICB response of breast cancer patients, we observed that combined anti-PD-1 and anti-CTLA-4 therapy inadvertently promotes proliferation and activation of Tregs in the tumor, tumor-draining lymph node and circulation. Also in breast cancer patients, Treg levels were elevated upon ICB. Depletion of Tregs during neoadjuvant ICB in tumor-bearing mice not only reshaped the intratumoral immune landscape into a state favorable for ICB response but also induced profound and persistent alterations in systemic immunity, characterized by elevated CD8+ T cells and NK cells and durable T cell activation that was maintained after treatment cessation. While depletion of Tregs in combination with neoadjuvant ICB did not inhibit primary tumor growth, it prolonged metastasis-related survival driven predominantly by CD8+ T cells. This study demonstrates that neoadjuvant ICB therapy of breast cancer can be empowered by simultaneous targeting of Tregs, extending metastasis-related survival, independent of a primary tumor response.


Subject(s)
Breast Neoplasms , Lymphocyte Activation , T-Lymphocytes, Regulatory , Humans , Breast Neoplasms/immunology , Breast Neoplasms/therapy , T-Lymphocytes, Regulatory/immunology , Neoadjuvant Therapy , Immune Checkpoint Inhibitors/therapeutic use , Killer Cells, Natural/immunology , Myeloid Cells/immunology , Neoplasm Metastasis , Animals , Mice , CD8-Positive T-Lymphocytes/immunology
4.
Cancer Cell ; 41(1): 106-123.e10, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36525971

ABSTRACT

Immune checkpoint blockade (ICB) has heralded a new era in cancer therapy. Research into the mechanisms underlying response to ICB has predominantly focused on T cells; however, effective immune responses require tightly regulated crosstalk between innate and adaptive immune cells. Here, we combine unbiased analysis of blood and tumors from metastatic breast cancer patients treated with ICB with mechanistic studies in mouse models of breast cancer. We observe an increase in systemic and intratumoral eosinophils in patients and mice responding to ICB treatment. Mechanistically, ICB increased IL-5 production by CD4+ T cells, stimulating elevated eosinophil production from the bone marrow, leading to systemic eosinophil expansion. Additional induction of IL-33 by ICB-cisplatin combination or recombinant IL-33 promotes intratumoral eosinophil infiltration and eosinophil-dependent CD8+ T cell activation to enhance ICB response. This work demonstrates the critical role of eosinophils in ICB response and provides proof-of-principle for eosinophil engagement to enhance ICB efficacy.


Subject(s)
Immune Checkpoint Inhibitors , Neoplasms , Mice , Animals , Immune Checkpoint Inhibitors/therapeutic use , Eosinophils/pathology , Interleukin-5/therapeutic use , Interleukin-33 , Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , Antigen Presentation , CD4-Positive T-Lymphocytes/pathology
5.
Biomaterials ; 190-191: 111-120, 2019 01.
Article in English | MEDLINE | ID: mdl-30415018

ABSTRACT

Although immunotherapy shows great promise for the long-term control of cancer, many tumors still fail to respond to treatment. To improve the outcome, the delivery of immunostimulants to the lymph nodes draining the tumor, where the antitumor immune response is initiated, is key. Efforts to use nanoparticles as carriers for cancer immunotherapy have generally required targeting agents and chemical modification of the drug, and have unfortunately resulted in low delivery and therapeutic efficiency. Here, we report on the efficacy of gold nanoparticles with approximately 5 nm hydrodynamic diameter coated with a mixture of 1-octanethiol and 11-mercaptoundecanesulfonic acid for the delivery of an immunostimulatory TLR7 ligand to tumor-draining lymph nodes. The drug was loaded without modification through nonspecific adsorption into the ligand shell of the nanoparticles, taking advantage of their amphiphilic nature. After loading, nanoparticles retained their stability in solution without significant premature release of the drug, and the drug cargo was immunologically active. Upon subcutaneous injection into tumor-bearing mice, the drug-loaded particles were rapidly transported to the tumor-draining lymph nodes. There, they induced a local immune activation and fostered a cytotoxic T-cell response that was specific for the tumor. Importantly, the particle-delivered TLR7 ligand blocked the growth of large established tumors and significantly prolonged survival compared to the free form of the drug. Thus, we demonstrate for the first time that nanoparticle delivery of a TLR7 immunostimulant to the tumor-draining lymph nodes enhances antitumor immunity and improves the outcome of cancer immunotherapy.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Colonic Neoplasms/therapy , Drug Carriers/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Toll-Like Receptor 7/agonists , Adjuvants, Immunologic/therapeutic use , Animals , Cell Line , Cell Line, Tumor , Colonic Neoplasms/immunology , Drug Delivery Systems , Female , Humans , Immunotherapy , Lymph Nodes/drug effects , Lymph Nodes/immunology , Mice, Inbred C57BL , Toll-Like Receptor 7/immunology
7.
Dis Model Mech ; 11(10)2018 10 24.
Article in English | MEDLINE | ID: mdl-30355585

ABSTRACT

Metastatic disease is the leading cause of death in cancer patients. Metastasis formation involves a cascade of events for which the underlying mechanisms are still poorly understood. During the metastatic cascade, cancer cells tightly interact with the immune system and they influence each other, both in the tumor microenvironment and systemically. The crosstalk between cancer and immune cells adds another layer of complexity to our understanding of metastasis formation, but at the same time opens new therapeutic opportunities for cancer patients. The intensifying development of immunotherapeutic strategies calls for a better understanding of immune regulation of metastasis in order to maximize the therapeutic benefit for patients with metastatic disease. In this Review and accompanying poster, we describe the main mechanisms of immune regulation of metastasis that have been reported to date, and present promising immunotherapeutic options that are currently available, or may become so in the near future, to tackle metastasis.


Subject(s)
Neoplasm Metastasis/immunology , Neoplasm Metastasis/therapy , Animals , Humans , Immune System/pathology , Immunity , Inflammation/pathology , Neoplasms/immunology , Neoplasms/pathology
8.
Oncotarget ; 9(5): 5641-5651, 2018 Jan 19.
Article in English | MEDLINE | ID: mdl-29464024

ABSTRACT

Novel adjuvants are needed to increase the efficacy of vaccine formulations and immune therapies for cancer and chronic infections. In particular, adjuvants that promote a strong type I IFN response are required, since this cytokine is crucial for the development of efficient anti-tumoral and anti-viral immunity. Nucleic acid band 2 (NAB2) is a double-stranded RNA molecule isolated from yeast and identified as an agonist of the pattern-recognition receptors TLR3 and MDA-5. We compared the ability of NAB2 to activate innate immunity with that of poly(I:C), a well-characterized TLR3 and MDA-5 agonist known for the induction of type I IFN. NAB2 promoted stronger IFN-α production and induced a higher activation state of both murine and human innate immune cells compared to poly(I:C). This correlated with a stronger activation of the signalling pathway downstream of MDA-5, and IFN-α induction was dependent on MDA-5. Upon injection, NAB2 induced higher levels of serum IFN-α in mice than poly(I:C). These results suggest that NAB2 has the potential to become an efficient adjuvant for the induction of type-I IFN responses in therapeutic immunization against cancer or infections.

9.
Oncoimmunology ; 6(6): e1316437, 2017.
Article in English | MEDLINE | ID: mdl-28680747

ABSTRACT

Tumor angiogenesis promotes tumor growth and metastasis. Anti-angiogenic therapy in combination with chemotherapy is used for the treatment of metastatic cancers, including breast cancer but therapeutic benefits are limited. Mobilization and accumulation of myeloid-derived suppressor cells (MDSC) during tumor progression and therapy have been implicated in metastasis formation and resistance to anti-angiogenic treatments. Here, we used the 4T1 orthotopic syngenic mouse model of mammary adenocarcinoma to investigate the effect of VEGF/VEGFR-2 axis inhibition on lung metastasis, MDSC and regulatory T cells (Tregs). We show that treatment with the anti-VEGFR-2 blocking antibody DC101 inhibits primary tumor growth, angiogenesis and lung metastasis. DC101 treatment had no effect on MDSC mobilization, but partially attenuated the inhibitory effect of mMDSC on T cell proliferation and decreased the frequency of Tregs in primary tumors and lung metastases. Strikingly, DC101 treatment induced the expression of the immune-suppressive molecule arginase I in mMDSC. Treatment with the arginase inhibitor Nω-hydroxy-nor-Arginine (Nor-NOHA) reduced the inhibitory effect of MDSC on T cell proliferation and inhibited number and size of lung metastasis but had little or no additional effects in combination with DC101. In conclusion, DC101 treatment suppresses 4T1 tumor growth and metastasis, partially reverses the inhibitory effect of mMDSC on T cell proliferation, decreases Tregs in tumors and increases arginase I expression in mMDSC. Arginase inhibition suppresses lung metastasis independently of DC101 effects. These observations contribute to the further characterization of the immunomodulatory effect of anti-VEGF/VEGFR2 therapy and provide a rationale to pursue arginase inhibition as potential anti-metastatic therapy.

10.
Oncoimmunology ; 5(11): e1230578, 2016.
Article in English | MEDLINE | ID: mdl-27999739

ABSTRACT

Myeloid-derived suppressor cells (MDSC) are a heterogeneous population of immature myeloid cells with the capacity to inhibit immunological responses. During cancer progression, MDSC are recruited to the tumor sites and secondary lymphoid organs, leading to the suppression of the antitumor function of NK and T cells. Here, we show that the TLR7/8 agonist resiquimod (R848) has a direct effect on MDSC populations in tumor-bearing mice. Systemic application of R848 led to a rapid reduction in both intratumoral and circulating MDSC. The subpopulation of monocytic MDSC (m-MDSC) was the most affected by R848 treatment with an up to 5-fold decrease in the tumor. We found that TLR7 stimulation in tumor-bearing mice led to a maturation and differentiation of MDSC with upregulation of the surface molecules CD11c, F4/80, MHC-I, and MHC-II. MDSC treated with R848 lost their immunosuppressive function and acquired instead an antigen-presenting phenotype with the capability to induce specific T-cell proliferation. Importantly, we found that MDSC co-injected s.c. with CT26 tumor cells lost their ability to support tumor growth after pretreatment with R848. Our results demonstrate that treatment of tumor-bearing mice with a TLR7/8 agonist acts directly on MDSC to induce their maturation and leads them to acquire a non-suppressive status. Considering the obstacles posed by MDSC for cancer immunotherapy, targeting these cells by a TLR7/8 agonist may improve immune responses against cancer.

11.
Oncoimmunology ; 5(11): e1232219, 2016.
Article in English | MEDLINE | ID: mdl-27999742

ABSTRACT

Toll-like receptor (TLR) 7 agonists are effective in topical application for the immunotherapy of skin cancers, but their performance for the systemic treatment of solid tumors is limited by the development of TLR tolerance. In this study, we describe a novel strategy to overcome TLR tolerance and enhance TLR7-dependent antitumor immune responses through reprogramming of TLR signaling pathways. The sensitivity of TLR7 signaling in dendritic cells (DC) was increased by prior stimulation with the dsRNA poly(I:C) that mimics virally induced immune activation. Timing of the stimulations was important, as sequential stimulation with poly(I:C) and the TLR7 agonist R848 interspaced by 24 h induced higher MAPK and NFkB signaling in DC than the simultaneous application of the same ligands. DC activated by sequential poly(I:C)/R848 stimulation efficiently induced Th1 differentiation and primed NK-cell and cytotoxic T-cell responses. We have developed a treatment regimen taking advantage of TLR7 reprogram-ming that cured over 80% of large immunogenic tumors in mice by the action of NK cells and cytotoxic T cells. These results have direct implications for the use of these clinically established ligands in the immunotherapy of cancer.

12.
Neoplasia ; 15(6): 579-90, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23730206

ABSTRACT

The CDC25A-CDK2 pathway has been proposed as critical for the oncogenic action of human epidermal growth factor receptor 2 (HER2) in mammary epithelial cells. In particular, transgenic expression of CDC25A cooperates with HER2 in promoting mammary tumors, whereas CDC25A hemizygous loss attenuates the HER2-induced tumorigenesis penetrance. On the basis of this evidence of a synergism between HER2 and the cell cycle regulator CDC25A in a mouse model of mammary tumorigenesis, we investigated the role of CDC25A in human HER2-positive breast cancer and its possible implications in therapeutic response. HER2 status and CDC25A expression were assessed in 313 breast cancer patients and we found statistically significant correlation between HER2 and CDC25A (P = .007). Moreover, an HER2-positive breast cancer subgroup with high levels of CDC25A and very aggressive phenotype was identified (P = .005). Importantly, our in vitro studies on breast cancer cell lines showed that the HER2 inhibitor efficacy on cell growth and viability relied also on CDC25A expression and that such inhibition induces CDC25A down-regulation through phosphatidylinositol 3-kinase/protein kinase B pathway and DNA damage response activation. In line with this observation, we found a statistical significant association between CDC25A overexpression and trastuzumab-combined therapy response rate in two different HER2-positive cohorts of trastuzumab-treated patients in either metastatic or neoadjuvant setting (P = .018 for the metastatic cohort and P = .021 for the neoadjuvant cohort). Our findings highlight a link between HER2 and CDC25A that positively modulates HER2-targeted therapy response, suggesting that, in HER2-positive breast cancer patients, CDC25A overexpression affects trastuzumab sensitivity.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Breast Neoplasms/drug therapy , Breast Neoplasms/metabolism , Receptor, ErbB-2/metabolism , cdc25 Phosphatases/metabolism , Adult , Aged , Aged, 80 and over , Antibodies, Monoclonal, Humanized/therapeutic use , Breast Neoplasms/mortality , Breast Neoplasms/pathology , Cell Death/drug effects , Cell Line, Tumor , Cohort Studies , Disease-Free Survival , Female , Humans , Middle Aged , Neoadjuvant Therapy , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Predictive Value of Tests , Protein Stability , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-2/antagonists & inhibitors , Signal Transduction , Trastuzumab
SELECTION OF CITATIONS
SEARCH DETAIL