Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Biol Lett ; 16(5): 20200003, 2020 05.
Article in English | MEDLINE | ID: mdl-32370688

ABSTRACT

Honeybees have developed many unique mechanisms to help ensure the proper maintenance of homeostasis within the hive. One method includes the collection of chemically complex plant resins combined with wax to form propolis, which is deposited throughout the hive. Propolis is believed to play a significant role in reducing disease load in the colony due to its antimicrobial and antiseptic properties. However, little is known about how propolis may interact with bee-associated microbial symbionts, and if propolis alters microbial community structure. In this study, we found that propolis appears to maintain a stable microbial community composition and reduce the overall taxonomic diversity of the honeybee microbiome. Several key members of the gut microbiota were significantly altered in the absence of propolis, suggesting that it may play an important role in maintaining favourable abundance and composition of gut symbionts. Overall, these findings suggest that propolis may help to maintain honeybee colony microbial health by limiting changes to the overall microbial community.


Subject(s)
Anti-Infective Agents , Gastrointestinal Microbiome , Microbiota , Propolis , Animals , Bees
2.
PLoS Pathog ; 10(7): e1004261, 2014 Jul.
Article in English | MEDLINE | ID: mdl-25079600

ABSTRACT

Israeli acute paralysis virus (IAPV) is a widespread RNA virus of honey bees that has been linked with colony losses. Here we describe the transmission, prevalence, and genetic traits of this virus, along with host transcriptional responses to infections. Further, we present RNAi-based strategies for limiting an important mechanism used by IAPV to subvert host defenses. Our study shows that IAPV is established as a persistent infection in honey bee populations, likely enabled by both horizontal and vertical transmission pathways. The phenotypic differences in pathology among different strains of IAPV found globally may be due to high levels of standing genetic variation. Microarray profiles of host responses to IAPV infection revealed that mitochondrial function is the most significantly affected biological process, suggesting that viral infection causes significant disturbance in energy-related host processes. The expression of genes involved in immune pathways in adult bees indicates that IAPV infection triggers active immune responses. The evidence that silencing an IAPV-encoded putative suppressor of RNAi reduces IAPV replication suggests a functional assignment for a particular genomic region of IAPV and closely related viruses from the Family Dicistroviridae, and indicates a novel therapeutic strategy for limiting multiple honey bee viruses simultaneously and reducing colony losses due to viral diseases. We believe that the knowledge and insights gained from this study will provide a new platform for continuing studies of the IAPV-host interactions and have positive implications for disease management that will lead to mitigation of escalating honey bee colony losses worldwide.


Subject(s)
Bees/virology , Colony Collapse/epidemiology , Dicistroviridae/pathogenicity , Virus Diseases/epidemiology , Virus Diseases/pathology , Animals , Biomarkers/metabolism , Colony Collapse/genetics , Colony Collapse/virology , Dicistroviridae/genetics , Gene Expression Profiling , Genome, Viral , Host-Pathogen Interactions , In Situ Hybridization , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Small Interfering/genetics , RNA, Viral/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Viral Proteins/antagonists & inhibitors , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Diseases/genetics , Virus Diseases/virology
3.
J Exp Biol ; 218(Pt 22): 3689-99, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26449975

ABSTRACT

Honey bees, as social insects, rely on collective behavioral defenses that produce a colony-level immune phenotype, or social immunity, which in turn impacts the immune response of individuals. One behavioral defense is the collection and deposition of antimicrobial plant resins, or propolis, in the nest. We tested the effect of a naturally constructed propolis envelope within standard beekeeping equipment on the pathogen and parasite load of large field colonies, and on immune system activity, virus and storage protein levels of individual bees over the course of a year. The main effect of the propolis envelope was a decreased and more uniform baseline expression of immune genes in bees during summer and autumn months each year, compared with the immune activity in bees with no propolis envelope in the colony. The most important function of the propolis envelope may be to modulate costly immune system activity. As no differences were found in levels of bacteria, pathogens and parasites between the treatment groups, the propolis envelope may act directly on the immune system, reducing the bees' need to activate the physiologically costly production of humoral immune responses. Colonies with a natural propolis envelope had increased colony strength and vitellogenin levels after surviving the winter in one of the two years of the study, despite the fact that the biological activity of the propolis diminished over the winter. A natural propolis envelope acts as an important antimicrobial layer enshrouding the colony, benefiting individual immunity and ultimately colony health.


Subject(s)
Bees/immunology , Propolis/physiology , Animals , Bees/microbiology , Bees/parasitology , Gene Expression , Nosema/physiology , Propolis/pharmacology , Seasons , Varroidae/physiology , Vitellogenins/metabolism
4.
PLoS One ; 19(1): e0291744, 2024.
Article in English | MEDLINE | ID: mdl-38295039

ABSTRACT

When wild honey bee colonies (Apis mellifera) nest in hollow tree cavities, they coat the rough cavity walls with a continuous layer of propolis, a substance comprised primarily of plant resins. Studies have shown that the resulting "propolis envelope" leads to both individual- and colony-level health benefits. Unfortunately, the smooth wooden boxes most commonly used in beekeeping do little to stimulate propolis collection. As a result, most managed bees live in hives that are propolis-poor. In this study, we assessed different surface texture treatments (rough wood boxes, boxes outfitted with propolis traps, and standard, smooth wood boxes) in terms of their ability to stimulate propolis collection, and we examined the effect of propolis on colony health, pathogen loads, immune gene expression, bacterial gene expression, survivorship, and honey production in both stationary and migratory beekeeping contexts. We found that rough wood boxes are the most effective box type for stimulating propolis deposition. Although the use of rough wood boxes did not improve colony survivorship overall, Melissococcus plutonius detections via gene expression were significantly lower in rough wood boxes, and viral loads for multiple viruses tended to decrease as propolis deposition increased. By the end of year one, honey bee populations in migratory rough box colonies were also significantly larger than those in migratory control colonies. The use of rough wood boxes did correspond with decreased honey production in year one migratory colonies but had no effect during year two. Finally, in both stationary and migratory operations, propolis deposition was correlated with a seasonal decrease and/or stabilization in the expression of multiple immune and bacterial genes, suggesting that propolis-rich environments contribute to hive homeostasis. These findings provide support for the practical implementation of rough box hives as a means to enhance propolis collection and colony health in multiple beekeeping contexts.


Subject(s)
Ascomycota , Honey , Propolis , Urticaria , Bees , Animals , Propolis/pharmacology , Beekeeping
5.
PLoS One ; 19(3): e0297623, 2024.
Article in English | MEDLINE | ID: mdl-38483922

ABSTRACT

Deformed wing virus (DWV) was first detected in dead honey bees in 1982 but has been in honey bees for at least 300 years. Due to its high prevalence and virulence, they have been linked with the ongoing decline in honey bee populations worldwide. A rapid, simple, semi-automated, high-throughput, and cost-effective method of screening colonies for viruses would benefit bee research and the beekeeping industry. Here we describe a semi-automated approach that combines an RNA-grade liquid homogenizer followed by magnetic bead capture for total virus nucleic acid extraction. We compare it to the more commonly applied nucleic acid column-based purification method and use qPCR plus Oxford Nanopore Technologies sequencing to evaluate the accuracy of analytical results for both methods. Our results showed high reproducibility and accuracy for both approaches. The semi-automated method described here allows for faster screening of viral loads in units of 96 samples at a time. We developed this method to monitor viral loads in honey bee colonies, but it could be easily applied for any PCR or genomic-based screening assays.


Subject(s)
Nucleic Acids , RNA Viruses , Viruses , Bees , Animals , Reproducibility of Results , Viruses/genetics , RNA Viruses/genetics
6.
J Apic Res ; 52(1)2013 Jan.
Article in English | MEDLINE | ID: mdl-24198438

ABSTRACT

Chalkbrood and stonebrood are two fungal diseases associated with honey bee brood. Chalkbrood, caused by Ascosphaera apis, is a common and widespread disease that can result in severe reduction of emerging worker bees and thus overall colony productivity. Stonebrood is caused by Aspergillus spp. that are rarely observed, so the impact on colony health is not very well understood. A major concern with the presence of Aspergillus in honey bees is the production of airborne conidia, which can lead to allergic bronchopulmonary aspergillosis, pulmonary aspergilloma, or even invasive aspergillosis in lung tissues upon inhalation by humans. In the current chapter we describe the honey bee disease symptoms of these fungal pathogens. In addition, we provide research methodologies and protocols for isolating and culturing, in vivo and in vitro assays that are commonly used to study these host pathogen interactions. We give guidelines on the preferred methods used in current research and the application of molecular techniques. We have added photographs, drawings and illustrations to assist bee-extension personnel and bee scientists in the control of these two diseases.

7.
Foods ; 12(17)2023 Sep 03.
Article in English | MEDLINE | ID: mdl-37685249

ABSTRACT

The chemical composition of stingless bee honey and propolis depends on the plant sources they are derived from, and thus reflects the flora available in the vicinity of the hives, the preferences of the bee species, and the climate (altitude and temperature). To understand the relative influence of these factors, we studied the composition of honey and propolis of the stingless bee Scaptotrigona mexicana. Samples from 24 colonies were analyzed: 12 each from two S. mexicana meliponaries located in the state of Chiapas in southern Mexico, approximately 8.5 km apart, Tuxtla Chico and Cacahoatán. The chemical composition of honey and propolis was studied using nuclear magnetic resonance (NMR) and gas chromatography-mass spectrometry (GC-MS), respectively. The antioxidant activity of propolis was also studied. Chemometric analyses were applied. The Tuxtla Chico honey samples contained higher concentrations of glucose and fructose, while the Cacahoatán samples displayed a rich composition of di- and trisaccharides. These differences can be attributed to the distinct nectar sources utilized by the bees at each location. Propolis compositions in the two locations also demonstrated qualitative differences, indicating a specific choice of resins by the bees. The observed substantial variations in the chemical composition of propolis and honey of S. mexicana from two locations relatively close to each other supports the assumption that bee species cannot be considered the most important factor in determining their chemistry.

8.
Insects ; 12(8)2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34442285

ABSTRACT

Stingless bees (Meliponini) are highly social bees that are native to tropical and sub-tropical ecosystems. Resin use is vital to many aspects of stingless bee colony function. Stingless bees use resin to build essential nest structures, repel predators, and kill would-be invaders. Furthermore, resin-derived compounds have been found to enrich the cuticular chemical profiles of many stingless bee species, and resin may play an important role in shaping the microbial communities associated with stingless bees and their nests. Despite its importance for colony function, previous reviews of resin use by stingless bees are lacking. This topic grows increasingly urgent as changes in beekeeping and land use practices occur, potentially diminishing stingless bees' ability to incorporate resin into the nest environment. In this article, we review existing literature on resin use by stingless bees and discuss potential areas of future research.

9.
PLoS One ; 16(11): e0259603, 2021.
Article in English | MEDLINE | ID: mdl-34724003

ABSTRACT

[This corrects the article DOI: 10.1371/journal.pone.0228169.].

10.
PLoS One ; 16(1): e0245490, 2021.
Article in English | MEDLINE | ID: mdl-33449973

ABSTRACT

Honey bee colony losses in the US have exceeded acceptable levels for at least a decade, leaving beekeepers in need of management practices to improve colony health and survival. Here, an empirical Best Management Practice (BMP) regimen was tested, comprised of the top four management practices associated with reduced colony mortality in backyard beekeeping operations according to Bee Informed Partnership Loss and Management survey results. Seven study locations were established across the US, and each location consisted of ten colonies treated according to empirical BMPs and ten according to average beekeeping practice. After 3 years, colonies treated according to empirical BMPs experienced reduced Varroa infestation, viral infection, and mortality compared to colonies managed with Average practices. In addition, BMP colonies produced more new colonies via splits. The colonies under Average practices were given chemical Varroa treatments only once per year, and thus spent more months above economic threshold of 3.0 mites/100 bees. Increased time spent above the economic threshold was significantly correlated to both increased viral infection and colony mortality. This study demonstrates the cumulative effects of management and colony health stressors over months and years, especially the dire importance of regular Varroa monitoring and management.


Subject(s)
Beekeeping/methods , Bees , Mortality , Surveys and Questionnaires , Animals , Bees/parasitology , Conservation of Natural Resources , Risk Factors , Seasons
11.
Mol Ecol ; 19(7): 1452-61, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20298472

ABSTRACT

Honeybee hygienic behaviour provides colonies with protection from many pathogens and is an important model system of the genetics of a complex behaviour. It is a textbook example of complex behaviour under simple genetic control: hygienic behaviour consists of two components--uncapping a diseased brood cell, followed by removal of the contents--each of which are thought to be modulated independently by a few loci of medium to large effect. A worker's genetic propensity to engage in hygienic tasks affects the intensity of the stimulus required before she initiates the behaviour. Genetic diversity within colonies leads to task specialization among workers, with a minority of workers performing the majority of nest-cleaning tasks. We identify three quantitative trait loci that influence the likelihood that workers will engage in hygienic behaviour and account for up to 30% of the phenotypic variability in hygienic behaviour in our population. Furthermore, we identify two loci that influence the likelihood that a worker will perform uncapping behaviour only, and one locus that influences removal behaviour. We report the first candidate genes associated with engaging in hygienic behaviour, including four genes involved in olfaction, learning and social behaviour, and one gene involved in circadian locomotion. These candidates will allow molecular characterization of this distinctive behavioural mode of disease resistance, as well as providing the opportunity for marker-assisted selection for this commercially significant trait.


Subject(s)
Bees/genetics , Behavior, Animal , Quantitative Trait Loci , Social Behavior , Animals , Chromosome Mapping , Female , Genes, Insect , Genome, Insect , Genotype , Microsatellite Repeats , Phenotype , Sequence Analysis, DNA
12.
J Invertebr Pathol ; 103 Suppl 1: S62-72, 2010 Jan.
Article in English | MEDLINE | ID: mdl-19909975

ABSTRACT

Honey bees are attacked by numerous parasites and pathogens toward which they present a variety of individual and group-level defenses. In this review, we briefly introduce the many pathogens and parasites afflicting honey bees, highlighting the biology of specific taxonomic groups mainly as they relate to virulence and possible defenses. Second, we describe physiological, immunological, and behavioral responses of individual bees toward pathogens and parasites. Third, bees also show behavioral mechanisms for reducing the disease risk of their nestmates. Accordingly, we discuss the dynamics of hygienic behavior and other group-level behaviors that can limit disease. Finally, we conclude with several avenues of research that seem especially promising for understanding host-parasite relationships in bees and for developing breeding or management strategies for enhancing honey bee health. We discuss how human efforts to maintain healthy colonies intersect with similar efforts by the bees, and how bee management and breeding protocols can affect disease traits in the short and long term.


Subject(s)
Beekeeping , Bees , Host-Parasite Interactions , Host-Pathogen Interactions , Animal Husbandry/methods , Animals , Bees/immunology , Bees/microbiology , Bees/parasitology , Dicistroviridae/genetics , Dicistroviridae/pathogenicity , Disease Outbreaks , Immunity, Innate , Mite Infestations/veterinary , Mite Infestations/virology , Picornaviridae Infections/pathology , Picornaviridae Infections/therapy , Picornaviridae Infections/transmission , Picornaviridae Infections/veterinary , Social Behavior
13.
Insects ; 11(8)2020 Aug 13.
Article in English | MEDLINE | ID: mdl-32823597

ABSTRACT

Honey bees use several strategies to protect themselves and the colony from parasites and pathogens. In addition to individual immunity, social immunity involves the cumulative effort of some individuals to limit the spread of parasites and pathogens to uninfected nestmates. Examples of social immunity in honey bees that have received attention include hygienic behavior, or the removal of diseased brood, and the collection and deposition of antimicrobial resins (propolis) on interior nest surfaces. Advances in our understanding of another form of social immunity, social fever, are lacking. Honey bees were shown to raise the temperature of the nest in response to temperature-sensitive brood pathogen, Ascosphaera apis. The increase in nest temperature (-0.6 °C) is thought to limit the spread of A. apis infection to uninfected immatures. We established observation hives and monitored the temperature of the brood nest for 40 days. This observation period was broken into five distinct segments, corresponding to sucrose solution feedings-Pre-Feed, Feed I, Challenge, Feed II, and Post-Feed. Ascosphaera apis was administered to colonies as a 1% solution of ground sporulating chalkbrood mummies in 50% v/v sucrose solution, during the Challenge period. Like previous reports, we observed a modest increase in brood nest temperature during the Challenge period. However, all hives presented signs of chalkbrood disease, suggesting that elevation of the nest temperature was not sufficient to stop the spread of infection among immatures. We also began to explore the molecular mechanisms of temperature increase by exposing adult bees in cages to A. apis, without the presence of immatures. Compared to adult workers who were given sucrose solution only, workers exposed to A. apis showed increased expression of the antimicrobial peptides abaecin (p = 0.07) and hymenoptaecin (p = 0.04), but expression of the heat shock response protein Hsp 70Ab-like (p = 0.76) and the nutritional marker vitellogenin (p = 0.72) were unaffected. These results indicate that adult honey bee workers exposed to a brood pathogen elevate the temperature of the brood nest and initiate an immune response, but the effect of this fever on preventing disease requires further study.

14.
Insects ; 11(7)2020 Jul 18.
Article in English | MEDLINE | ID: mdl-32708479

ABSTRACT

Honey bees collect and apply plant resins to the interior of their nest cavity, in order to form a layer around the nest cavity called a propolis envelope. Propolis displays antimicrobial activity against honey bee pathogens, but the effect of propolis on the honey bee microbiome is unknown. Honey bees do not intentionally consume propolis, but they do manipulate propolis with their mouthparts. Because honey bee mouthparts are used for collecting and storing nectar and pollen, grooming and trophallaxis between adults, feeding larvae, and cleaning the colony, they are an important interface between the bees' external and internal environments and serve as a transmission route for core gut bacteria and pathogens alike. We hypothesized that the antimicrobial activity of an experimentally applied propolis envelope would influence the bacterial diversity and abundance of the worker mouthpart microbiome. The results revealed that the mouthparts of worker bees in colonies with a propolis envelope exhibited a significantly lower bacterial diversity and significantly higher bacterial abundance compared to the mouthparts of bees in colonies without a propolis envelope. Based on the taxonomic results, the propolis envelope appeared to reduce pathogenic or opportunistic microbes and promote the proliferation of putatively beneficial microbes on the honey bee mouthparts, thus reinforcing the core microbiome of the mouthpart niche.

15.
PLoS One ; 15(2): e0228169, 2020.
Article in English | MEDLINE | ID: mdl-32049993

ABSTRACT

Honey bee (Apis mellifera) colonies are valued for the pollination services that they provide. However, colony mortality has increased to unsustainable levels in some countries, including the United States. Landscape conversion to monocrop agriculture likely plays a role in this increased mortality by decreasing the food sources available to honey bees. Many land owners and organizations in the Upper Midwest region of the United States would like to restore/reconstruct native prairie habitats. With increasing public awareness of high bee mortality, many landowners and beekeepers have wondered whether these restored prairies could significantly improve honey bee colony nutrition. Conveniently, honey bees have a unique communication signal called a waggle dance, which indicates the locations of the flower patches that foragers perceive as highly profitable food sources. We used these communication signals to answer two main questions: First, is there any part of the season in which the foraging force of a honey bee colony will devote a large proportion of its recruitment efforts (waggle dances) to flower patches within prairies? Second, will honey bee foragers advertise specific taxa of native prairie flowers as profitable pollen sources? We decoded 1528 waggle dances in colonies located near two large, reconstructed prairies. We also collected pollen loads from a subset of waggle-dancing bees, which we then analyzed to determine the flower taxon advertised. Most dances advertised flower patches outside of reconstructed prairies, but the proportion of dances advertising nectar sources within prairies increased significantly in the late summer/fall at one site. Honey bees advertised seven native prairie taxa as profitable pollen sources, although the three most commonly advertised pollen taxa were non-native. Our results suggest that including certain native prairie flower taxa in reconstructed prairies may increase the chances that colonies will use those prairies as major food sources during the period of greatest colony growth and honey production.


Subject(s)
Animal Communication , Bees , Grassland , Nesting Behavior , Animals , Bees/metabolism , Pollen/metabolism
16.
Insects ; 11(6)2020 Jun 20.
Article in English | MEDLINE | ID: mdl-32575712

ABSTRACT

Throughout a honey bee queen's lifetime, she is tended to by her worker daughters, who feed and groom her. Such interactions provide possible horizontal transmission routes for pathogens from the workers to the queen, and as such a queen's pathogen profile may be representative of the workers within a colony. To explore this further, we investigated known honey bee pathogen co-occurrence, as well as pathogen transmission from workers to queens. Queens from 42 colonies were removed from their source hives and exchanged into a second, unrelated foster colony. Worker samples were taken from the source colony on the day of queen exchange and the queens were collected 24 days after introduction. All samples were screened for Nosema spp., Trypanosome spp., acute bee paralysis virus (ABPV), black queen cell virus (BQCV), chronic bee paralysis virus (CBPV), Israeli acute paralysis virus (IAPV), Lake Sinai virus (LSV), and deformed wing virus master variants (DWV-A, B, and C) using RT-qPCR. The data show that LSV, Nosema, and DWV-B were the most abundant pathogens in colonies. All workers (n = 42) were LSV-positive, 88% were Nosema-positive, whilst pathogen loads were low (<1 × 106 genome equivalents per pooled worker sample). All queens (n = 39) were negative for both LSV and Nosema. We found no evidence of DWV transmission occurring from worker to queen when comparing queens to foster colonies, despite DWV being present in both queens and workers. Honey bee pathogen presence and diversity in queens cannot be revealed from screening workers, nor were pathogens successfully transmitted to the queen.

17.
J Chem Ecol ; 35(9): 1108-16, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19816752

ABSTRACT

Social insects that live in large colonies are vulnerable to disease transmission due to relatively high genetic relatedness among individuals and high rates of contact within and across generations. While individual insects rely on innate immune responses, groups of individuals also have evolved social immunity. Hygienic behavior, in which individual honeybees detect chemical stimuli from diseased larvae and subsequently remove the diseased brood from the nest, is one type of social immunity that reduces pathogen transmission. Three volatile compounds, collected from larvae infected with the fungal pathogen Ascosphaera apis and detected by adult honey bees, were identified by coupled gas chromatography-electroantennographic detection and gas chromatography-mass spectrometry. These three compounds, phenethyl acetate, 2-phenylethanol, and benzyl alcohol, were present in volatile collections from infected larvae but were absent from collections from healthy larvae. Two field bioassays revealed that one of the compounds, phenethyl acetate is a key compound associated with Ascosphaera apis-infected larvae that induces hygienic behavior.


Subject(s)
Bees/chemistry , Bees/physiology , Behavior, Animal , Odorants , Acetates/chemistry , Animals , Ascomycota/physiology , Bees/microbiology , Benzyl Alcohol/chemistry , Gas Chromatography-Mass Spectrometry , Larva/chemistry , Larva/microbiology , Larva/physiology , Phenylethyl Alcohol/analogs & derivatives , Phenylethyl Alcohol/chemistry , Social Behavior , Spores, Fungal/isolation & purification
18.
Curr Opin Insect Sci ; 33: 49-55, 2019 06.
Article in English | MEDLINE | ID: mdl-31358195

ABSTRACT

We use the term social-medication to describe the deliberate consumption or use of plant compounds by social insects that are detrimental to a pathogen or parasite at the colony level, result in increased inclusive fitness to the colony, and have potential costs either at the individual or colony level in the absence of parasite infection. These criteria for social-medication differ from those for self-medication in that inclusive fitness costs and benefits are distinguished from individual costs and benefits. The consumption of pollen and nectar may be considered a form of social immunity if they help fight infection, resulting in a demonstrated increase in colony health and survival. However, the dietary use of pollen and nectar per se is likely not a form of social-medication unless there is a detriment or cost to their consumption in the absence of parasite infection, such as when they contain phytochemicals that are toxic at certain doses. We provide examples among social bees (bumblebees, stingless bees and honey bees) in which the consumption or use of plant compounds have a demonstrated role in parasite defense and health of the colony. We indicate where more work is needed to distinguish between prophylactic and therapeutic effects of these compounds, and whether the effects are observed at the individual or colony level.


Subject(s)
Bees/physiology , Feeding Behavior , Social Behavior , Animals , Bees/microbiology , Bees/parasitology , Behavior, Animal , Plants/chemistry
19.
Insects ; 10(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626029

ABSTRACT

Failure of the queen is often identified as a leading cause of honey bee colony mortality. However, the factors that can contribute to "queen failure" are poorly defined and often misunderstood. We studied one specific sign attributed to queen failure: poor brood pattern. In 2016 and 2017, we identified pairs of colonies with "good" and "poor" brood patterns in commercial beekeeping operations and used standard metrics to assess queen and colony health. We found no queen quality measures reliably associated with poor-brood colonies. In the second year (2017), we exchanged queens between colony pairs (n = 21): a queen from a poor-brood colony was introduced into a good-brood colony and vice versa. We observed that brood patterns of queens originally from poor-brood colonies significantly improved after placement into a good-brood colony after 21 days, suggesting factors other than the queen contributed to brood pattern. Our study challenges the notion that brood pattern alone is sufficient to judge queen quality. Our results emphasize the challenges in determining the root source for problems related to the queen when assessing honey bee colony health.

20.
Insects ; 10(1)2019 Jan 08.
Article in English | MEDLINE | ID: mdl-30626027

ABSTRACT

Pollinators, including honey bees, are responsible for the successful reproduction of more than 87% of flowering plant species: they are thus vital to ecosystem health and agricultural services world-wide. To investigate honey bee exposure to pesticides, 168 pollen samples and 142 wax comb samples were collected from colonies within six stationary apiaries in six U.S. states. These samples were analyzed for evidence of pesticides. Samples were taken bi-weekly when each colony was active. Each apiary included thirty colonies, of which five randomly chosen colonies in each apiary were sampled for pollen. The pollen samples were separately pooled by apiary. There were a total of 714 detections in the collected pollen and 1008 detections in collected wax. A total of 91 different compounds were detected: of these, 79 different pesticides and metabolites were observed in the pollen and 56 were observed in the wax. In all years, insecticides were detected more frequently than were fungicides or herbicides: one third of the detected pesticides were found only in pollen. The mean (standard deviation (SD)) number of detections per pooled pollen sample varied by location from 1.1 (1.1) to 8.7 (2.1). Ten different modes of action were found across all four years and nine additional modes of action occurred in only one year. If synergy in toxicological response is a function of simultaneous occurrence of multiple distinct modes of action, then a high frequency of potential synergies was found in pollen and wax-comb samples. Because only pooled pollen samples were obtained from each apiary, and these from only five colonies per apiary per year, more data are needed to adequately evaluate the differences in pesticide exposure risk to honey bees among colonies in the same apiary and by year and location.

SELECTION OF CITATIONS
SEARCH DETAIL