Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 44
Filter
1.
Am J Hum Genet ; 104(5): 925-935, 2019 05 02.
Article in English | MEDLINE | ID: mdl-30982609

ABSTRACT

Colony stimulating factor 1 receptor (CSF1R) plays key roles in regulating development and function of the monocyte/macrophage lineage, including microglia and osteoclasts. Mono-allelic mutations of CSF1R are known to cause hereditary diffuse leukoencephalopathy with spheroids (HDLS), an adult-onset progressive neurodegenerative disorder. Here, we report seven affected individuals from three unrelated families who had bi-allelic CSF1R mutations. In addition to early-onset HDLS-like neurological disorders, they had brain malformations and skeletal dysplasia compatible to dysosteosclerosis (DOS) or Pyle disease. We identified five CSF1R mutations that were homozygous or compound heterozygous in these affected individuals. Two of them were deep intronic mutations resulting in abnormal inclusion of intron sequences in the mRNA. Compared with Csf1r-null mice, the skeletal and neural phenotypes of the affected individuals appeared milder and variable, suggesting that at least one of the mutations in each affected individual is hypomorphic. Our results characterized a unique human skeletal phenotype caused by CSF1R deficiency and implied that bi-allelic CSF1R mutations cause a spectrum of neurological and skeletal disorders, probably depending on the residual CSF1R function.


Subject(s)
Brain/abnormalities , Leukoencephalopathies/etiology , Mutation , Osteochondrodysplasias/etiology , Osteosclerosis/etiology , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/genetics , Adolescent , Adult , Alleles , Animals , Brain/metabolism , Brain/pathology , Child, Preschool , Female , Humans , Leukoencephalopathies/pathology , Male , Mice , Mice, Knockout , Osteochondrodysplasias/pathology , Osteosclerosis/pathology , Phenotype , Receptors, Granulocyte-Macrophage Colony-Stimulating Factor/physiology , Young Adult
2.
Am J Med Genet A ; 188(1): 104-115, 2022 01.
Article in English | MEDLINE | ID: mdl-34523780

ABSTRACT

Primary ciliopathies are heterogenous disorders resulting from perturbations in primary cilia form and/or function. Primary cilia are cellular organelles which mediate key signaling pathways during development, such as the sonic hedgehog (SHH) pathway which is required for neuroepithelium and central nervous system development. Joubert syndrome is a primary ciliopathy characterized by cerebellar/brain stem malformation, hypotonia, and developmental delays. At least 35 genes are associated with Joubert syndrome, including the gene KIAA0753, which is part of a complex required for primary ciliogenesis. The phenotypic spectrum associated with biallelic pathogenic variants in KIAA0753 is broad and not well-characterized. We describe four individuals with biallelic pathogenic KIAA0753 variants, including five novel variants. We report in vitro results assessing the function of each variant indicating that mutant proteins are not fully competent to promote primary ciliogenesis. Ablation of KIAA0753 in vitro blocks primary ciliogenesis and SHH pathway activity. Correspondingly, KIAA0753 patient fibroblasts have a deficit in primary ciliation and improper SHH and WNT signaling, with a particularly blunted response to SHH pathway stimulation. Our work expands the phenotypic spectrum of KIAA0753 ciliopathies and demonstrates the utility of patient-focused functional assays for proving causality of genetic variants.


Subject(s)
Abnormalities, Multiple , Ciliopathies , Eye Abnormalities , Kidney Diseases, Cystic , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Cerebellum/abnormalities , Cilia/genetics , Cilia/pathology , Ciliopathies/genetics , Ciliopathies/pathology , Eye Abnormalities/genetics , Eye Abnormalities/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/metabolism , Humans , Kidney Diseases, Cystic/genetics , Kidney Diseases, Cystic/pathology , Microtubule-Associated Proteins , Retina/abnormalities
3.
Am J Hum Genet ; 98(6): 1243-1248, 2016 06 02.
Article in English | MEDLINE | ID: mdl-27236923

ABSTRACT

Spondyloepimetaphyseal dysplasias (SEMDs) comprise a heterogeneous group of autosomal-dominant and autosomal-recessive disorders. An apparent X-linked recessive (XLR) form of SEMD in a single Italian family was previously reported. We have been able to restudy this family together with a second family from Korea by segregating a severe SEMD in an X-linked pattern. Exome sequencing showed missense mutations in BGN c.439A>G (p.Lys147Glu) in the Korean family and c.776G>T (p.Gly259Val) in the Italian family; the c.439A>G (p.Lys147Glu) mutation was also identified in a further simplex SEMD case from India. Biglycan is an extracellular matrix proteoglycan that can bind transforming growth factor beta (TGF-ß) and thus regulate its free concentration. In 3-dimensional simulation, both altered residues localized to the concave arc of leucine-rich repeat domains of biglycan that interact with TGF-ß. The observation of recurrent BGN mutations in XLR SEMD individuals from different ethnic backgrounds allows us to define "XLR SEMD, BGN type" as a nosologic entity.


Subject(s)
Biglycan/genetics , Genetic Diseases, X-Linked/genetics , Mutation/genetics , Osteochondrodysplasias/genetics , Adult , Aged , Amino Acid Sequence , Biglycan/chemistry , Biglycan/metabolism , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , Pedigree , Protein Binding , Protein Conformation , Sequence Homology, Amino Acid , Transforming Growth Factor beta/chemistry , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism
5.
Am J Med Genet A ; 179(7): 1270-1275, 2019 07.
Article in English | MEDLINE | ID: mdl-31148362

ABSTRACT

PIGQ (OMIM *605754) encodes phosphatidylinositol glycan biosynthesis class Q (PIGQ) and is required for proper functioning of an N-acetylglucosamine transferase complex in a similar manner to the more established PIGA, PIGC, and PIGH. There are two previous patients reported with homozygous and apparently deleterious PIGQ mutations. Here, we provide the first detailed clinical report of a patient with heterozygous deleterious mutations associated with glycosylphosphatidylinositol-anchored protein (GPI-AP) biosynthesis deficiency. Our patient died at 10 months of age. The rare skeletal findings in this disorder expand the differential diagnosis of long bone radiolucent lesions and sphenoid wing dysplasia. This clinical report describes a new and rare disorder-PIGQ GPI-AP biosynthesis deficiency syndrome.


Subject(s)
Abnormalities, Multiple/genetics , Bone Diseases, Developmental/genetics , Glycosylphosphatidylinositols/deficiency , Membrane Proteins/genetics , Muscle Hypotonia/genetics , Mutation , Seizures/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/metabolism , Abnormalities, Multiple/pathology , Bone Diseases, Developmental/diagnosis , Bone Diseases, Developmental/metabolism , Bone Diseases, Developmental/pathology , Fatal Outcome , Gene Expression , Glycosylphosphatidylinositols/genetics , Glycosylphosphatidylinositols/metabolism , Heterozygote , Humans , Infant , Male , Membrane Proteins/deficiency , Muscle Hypotonia/diagnosis , Muscle Hypotonia/metabolism , Muscle Hypotonia/pathology , Phenotype , Seizures/diagnosis , Seizures/metabolism , Seizures/pathology , Sphenoid Bone/metabolism , Sphenoid Bone/pathology , Syndrome , Exome Sequencing
6.
Am J Hum Genet ; 94(6): 915-23, 2014 Jun 05.
Article in English | MEDLINE | ID: mdl-24906020

ABSTRACT

We identified four different missense mutations in the single-exon gene MAB21L2 in eight individuals with bilateral eye malformations from five unrelated families via three independent exome sequencing projects. Three mutational events altered the same amino acid (Arg51), and two were identical de novo mutations (c.151C>T [p.Arg51Cys]) in unrelated children with bilateral anophthalmia, intellectual disability, and rhizomelic skeletal dysplasia. c.152G>A (p.Arg51His) segregated with autosomal-dominant bilateral colobomatous microphthalmia in a large multiplex family. The fourth heterozygous mutation (c.145G>A [p.Glu49Lys]) affected an amino acid within two residues of Arg51 in an adult male with bilateral colobomata. In a fifth family, a homozygous mutation (c.740G>A [p.Arg247Gln]) altering a different region of the protein was identified in two male siblings with bilateral retinal colobomata. In mouse embryos, Mab21l2 showed strong expression in the developing eye, pharyngeal arches, and limb bud. As predicted by structural homology, wild-type MAB21L2 bound single-stranded RNA, whereas this activity was lost in all altered forms of the protein. MAB21L2 had no detectable nucleotidyltransferase activity in vitro, and its function remains unknown. Induced expression of wild-type MAB21L2 in human embryonic kidney 293 cells increased phospho-ERK (pERK1/2) signaling. Compared to the wild-type and p.Arg247Gln proteins, the proteins with the Glu49 and Arg51 variants had increased stability. Abnormal persistence of pERK1/2 signaling in MAB21L2-expressing cells during development is a plausible pathogenic mechanism for the heterozygous mutations. The phenotype associated with the homozygous mutation might be a consequence of complete loss of MAB21L2 RNA binding, although the cellular function of this interaction remains unknown.


Subject(s)
Anophthalmos/genetics , Eye Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Mutation, Missense , Adult , Alleles , Animals , Brain Diseases, Metabolic, Inborn/genetics , Coloboma/genetics , Corneal Opacity/genetics , Exome , Eye Proteins/metabolism , Female , Gene Expression , HEK293 Cells , Heterozygote , Homozygote , Humans , Intellectual Disability/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Male , Mice , Microcephaly/genetics , Microphthalmos/genetics , Pedigree , Phenotype , Protein Conformation , Signal Transduction
7.
J Med Genet ; 53(8): 568-74, 2016 08.
Article in English | MEDLINE | ID: mdl-27055475

ABSTRACT

BACKGROUND: Osteosclerotic metaphyseal dysplasia (OSMD) is a unique form of osteopetrosis characterised by severe osteosclerosis localised to the bone ends. The mode of inheritance is autosomal recessive. Its genetic basis is not known. OBJECTIVE: To identify the disease gene for OSMD. METHODS AND RESULTS: By whole exome sequencing in a boy with OSMD, we identified a homozygous 7 bp deletion (c.5938_5944delGAGTGGT) in the LRRK1 gene. His skeletal phenotype recapitulated that seen in the Lrrk1-deficient mouse. The shared skeletal hallmarks included severe sclerosis in the undermodelled metaphyses and epiphyseal margins of the tubular bones, costal ends, vertebral endplates and margins of the flat bones. The deletion is predicted to result in an elongated LRRK1 protein (p.E1980Afs*66) that lacks a part of its WD40 domains. In vitro functional studies using osteoclasts from Lrrk1-deficient mice showed that the deletion was a loss of function mutation. Genetic analysis of LRRK1 in two unrelated patients with OSMD suggested that OSMD is a genetically heterogeneous condition. CONCLUSIONS: This is the first study to identify the causative gene of OSMD. Our study provides evidence that LRRK1 plays a critical role in the regulation of bone mass in humans.


Subject(s)
Mutation/genetics , Osteochondrodysplasias/genetics , Osteosclerosis/genetics , Protein Serine-Threonine Kinases/genetics , Animals , Bone and Bones/pathology , Child, Preschool , Homozygote , Humans , Male , Mice , Osteoclasts/pathology , Osteopetrosis/genetics
8.
Pediatr Endocrinol Rev ; 15(Suppl 1): 102-108, 2017 Nov.
Article in English | MEDLINE | ID: mdl-29292873

ABSTRACT

The official nosology and classification of genetic skeletal disorders lists more than 500 recognized diagnostic entities and groups them by clinical, radiographic and - if available - molecular data. The list helps in the diagnosis of individual cases, in the delineation of novel disorders, and in building bridges between clinicians and scientists. It can be the basis of a nosology-guided skeletal dysplasia registry and archive. An archive using a slightly modified classification system has been established in Magdeburg/Germany. Its benefits include: i. guidance of molecular testing, ii. disclosure of genetic heterogeneity, iii. delineation of new disorders, iv. disclosure of etiopathogenetic relationships, v. individual prognostication through follow-up. These items are illustrated with examples from classification subgroup 7, the spondylometaphyseal dysplasias. In contrast to usual, passive depositories we expect classifying registries to be living tools connecting researchers, students, patients and their relatives with each other and with self-help organisations.


Subject(s)
Osteochondrodysplasias , Germany , Humans , Registries
9.
J Med Genet ; 52(7): 476-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-26032025

ABSTRACT

INTRODUCTION: Mesomelic dysplasias are a group of skeletal disorders characterised by shortness of the middle limb segments (mesomelia). They are divided into 11 different categories. Among those without known molecular basis is mesomelic dysplasia Savarirayan type, characterised by severe shortness of the middle segment of the lower limb. OBJECTIVE: To identify the molecular cause of mesomelic dysplasia Savarirayan type. METHODS AND RESULTS: We performed array comparative genomic hybridisation in three unrelated patients with mesomelic dysplasia Savarirayan type and identified 2 Mb overlapping de novo microdeletions on chromosome 6p22.3. The deletions encompass four known genes: MBOAT1, E2F3, CDKAL1 and SOX4. All patients showed mesomelia of the lower limbs with hypoplastic tibiae and fibulae. We identified a fourth patient with intellectual disability and an overlapping slightly larger do novo deletion also encompassing the flanking gene ID4. Given the fact that the fourth patient had no skeletal abnormalities and none of the genes in the deleted interval are known to be associated with abnormalities in skeletal development, other mutational mechanisms than loss of function of the deleted genes have to be considered. Analysis of the genomic region showed that the deletion removes two regulatory boundaries and brings several potential limb enhancers into close proximity of ID4. Thus, the deletion could result in the aberrant activation and misexpression of ID4 in the limb bud, thereby causing the mesomelic dysplasia. CONCLUSIONS: Our data indicate that the distinct deletion 6p22.3 is associated with mesomelic dysplasia Savarirayan type featuring hypoplastic, triangular-shaped tibiae and abnormally shaped or hypoplastic fibulae.


Subject(s)
Chromosome Aberrations , Chromosomes, Human, Pair 6/genetics , Fibula/abnormalities , Inhibitor of Differentiation Proteins/metabolism , Leg/abnormalities , Osteochondrodysplasias/genetics , Osteochondrodysplasias/pathology , Radius/abnormalities , Sequence Deletion/genetics , Tibia/abnormalities , Ulna/abnormalities , Acetyltransferases/genetics , Base Sequence , Comparative Genomic Hybridization , Cyclin-Dependent Kinase 5/genetics , E2F3 Transcription Factor/genetics , Fibula/pathology , Humans , Inhibitor of Differentiation Proteins/genetics , Membrane Proteins/genetics , Molecular Sequence Data , Radius/pathology , Real-Time Polymerase Chain Reaction , SOXC Transcription Factors , Sequence Analysis, DNA , Tibia/pathology , Ulna/pathology , tRNA Methyltransferases
10.
Am J Med Genet C Semin Med Genet ; 169(4): 314-27, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26531771

ABSTRACT

Fractures in infancy or early childhood require prompt evaluation with consideration of accidental or non-accidental trauma as well as a large number of genetic disorders that predispose to fractures. Bone fragility has been reported in more than 100 genetic disorders, including skeletal dysplasias, inborn errors of metabolism and congenital insensitivity to pain. Most of these disorders are rare but often have distinctive clinical or radiographic findings to assist in the diagnosis. Gene sequencing is available, albeit connective tissue and skeletal dysplasia panels and biochemical studies are only helpful in a minority of cases. This article presents the clinical, radiographic, and molecular profiles of the most common heritable disorders other than osteogenesis imperfecta with increased bone fragility. In addition, the clinicians must consider non-heritable influences such as extreme prematurity, prenatal viral infection and neoplasia in the diagnostic process.


Subject(s)
Bone Diseases, Developmental/diagnostic imaging , Bone Diseases, Developmental/pathology , Bone and Bones/injuries , Fractures, Bone/etiology , Musculoskeletal Abnormalities/diagnostic imaging , Musculoskeletal Abnormalities/pathology , Bone Diseases, Developmental/genetics , Child , Child, Preschool , Diagnosis, Differential , Humans , Infant , Musculoskeletal Abnormalities/genetics , Radiography
11.
Am J Med Genet A ; 167A(12): 2869-92, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26394607

ABSTRACT

The purpose of the nosology is to serve as a "master" list of the genetic disorders of the skeleton to facilitate diagnosis and to help delineate variant or newly recognized conditions. This is the 9th edition of the nosology and in comparison with its predecessor there are fewer conditions but many new genes. In previous editions, diagnoses that were phenotypically indistinguishable but genetically heterogenous were listed separately but we felt this was an unnecessary distinction. Thus the overall number of disorders has decreased from 456 to 436 but the number of groups has increased to 42 and the number of genes to 364. The nosology may become increasingly important today and tomorrow in the era of big data when the question for the geneticist is often whether a mutation identified by next generation sequencing technology in a particular gene can explain the clinical and radiological phenotype of their patient. This can be particularly difficult to answer conclusively in the prenatal setting. Personalized medicine emphasizes the importance of tailoring diagnosis and therapy to the individual but for our patients with rare skeletal disorders, the importance of tapping into a resource where genetic data can be centralized and made available should not be forgotten or underestimated. The nosology can also serve as a reference for the creation of locus-specific databases that are expected to help in delineating genotype-phenotype correlations and to harbor the information that will be gained by combining clinical observations and next generation sequencing results.


Subject(s)
Bone Diseases/classification , Bone Diseases/genetics , Genetic Diseases, Inborn/classification , Humans
12.
Am J Hum Genet ; 88(5): 608-15, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21549340

ABSTRACT

We used whole-exome sequencing to study three individuals with a distinct condition characterized by short stature, chondrodysplasia with brachydactyly, congenital joint dislocations, cleft palate, and facial dysmorphism. Affected individuals carried homozygous missense mutations in IMPAD1, the gene coding for gPAPP, a Golgi-resident nucleotide phosphatase that hydrolyzes phosphoadenosine phosphate (PAP), the byproduct of sulfotransferase reactions, to AMP. The mutations affected residues in or adjacent to the phosphatase active site and are predicted to impair enzyme activity. A fourth unrelated patient was subsequently found to be homozygous for a premature termination codon in IMPAD1. Impad1 inactivation in mice has previously been shown to produce chondrodysplasia with abnormal joint formation and impaired proteoglycan sulfation. The human chondrodysplasia associated with gPAPP deficiency joins a growing number of skeletoarticular conditions associated with defective synthesis of sulfated proteoglycans, highlighting the importance of proteoglycans in the development of skeletal elements and joints.


Subject(s)
Bone Diseases, Developmental/pathology , Joint Diseases/pathology , Mutation , Phosphoric Monoester Hydrolases/genetics , Amino Acid Sequence , Bone Diseases, Developmental/enzymology , Female , Golgi Apparatus/enzymology , Homozygote , Humans , Infant , Infant, Newborn , Joint Diseases/enzymology , Limb Deformities, Congenital/pathology , Male , Molecular Sequence Data , Nucleotides/metabolism , Phenotype , Protein Structure, Quaternary , Proteoglycans/metabolism , Sulfotransferases/metabolism , Young Adult
14.
Nat Genet ; 30(2): 215-20, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11799392

ABSTRACT

Schimke immuno-osseous dysplasia (SIOD, MIM 242900) is an autosomal-recessive pleiotropic disorder with the diagnostic features of spondyloepiphyseal dysplasia, renal dysfunction and T-cell immunodeficiency. Using genome-wide linkage mapping and a positional candidate approach, we determined that mutations in SMARCAL1 (SWI/SNF2-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a-like 1), are responsible for SIOD. Through analysis of data from persons with SIOD in 26 unrelated families, we observed that affected individuals from 13 of 23 families with severe disease had two alleles with nonsense, frameshift or splicing mutations, whereas affected individuals from 3 of 3 families with milder disease had a missense mutation on each allele. These observations indicate that some missense mutations allow retention of partial SMARCAL1 function and thus cause milder disease.


Subject(s)
DNA Helicases/genetics , Immunologic Deficiency Syndromes/genetics , Mutation , Osteochondrodysplasias/genetics , Adolescent , Adult , Alleles , Amino Acid Sequence , Animals , Base Sequence , Child , Child, Preschool , Consanguinity , Conserved Sequence , DNA/genetics , DNA Mutational Analysis , Female , Genes, Recessive , Humans , Male , Molecular Sequence Data , Mutation, Missense , Pedigree , Phenotype , Renal Insufficiency/genetics , Sequence Homology, Amino Acid , Species Specificity , T-Lymphocytes/immunology
15.
Am J Med Genet C Semin Med Genet ; 160C(3): 154-64, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22791316

ABSTRACT

The so-called "enchondromatoses" are skeletal disorders defined by the presence of ectopic cartilaginous tissue within bone tissue. The clinical and radiographic features of the different enchondromatoses are distinct, and grouping them does not reflect a common pathogenesis but simply a similar radiographic appearance and thus the need for a differential diagnosis. Recent advances in the understanding of their molecular and cellular bases confirm the heterogeneous nature of the different enchondromatoses. Some, like Ollier disease, Maffucci disease, metaphyseal chondromatosis with hydroxyglutaric aciduria, and metachondromatosis are produced by a dysregulation of chondrocyte proliferation, while others (such as spondyloenchondrodysplasia or dysspondyloenchondromatosis) are caused by defects in structure or metabolism of cartilage or bone matrix. In other forms (e.g., the dominantly inherited genochondromatoses), the basic defect remains to be determined. The classification, proposed by Spranger and associates in 1978 and tentatively revised twice, was based on the radiographic appearance, the anatomic sites involved, and the mode of inheritance. The new classification proposed here integrates the molecular genetic advances and delineates phenotypic families based on the molecular defects. Reference radiographs are provided to help in the diagnosis of the well-defined forms. In spite of advances, many cases remain difficult to diagnose and classify, implying that more variants remain to be defined at both the clinical and molecular levels.


Subject(s)
Enchondromatosis/classification , Enchondromatosis/genetics , Enchondromatosis/diagnostic imaging , Enchondromatosis/pathology , Humans , Radiography
16.
Am J Hum Genet ; 85(2): 168-78, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19615667

ABSTRACT

The matrix metalloproteinases MMP9 and MMP13 catalyze the degradation of extracellular matrix (ECM) components in the growth plate and at the same time cleave and release biologically active molecules stored in the ECM, such as VEGFA. In mice, ablation of Mmp9, Mmp13, or both Mmp9 and Mmp13 causes severe distortion of the metaphyseal growth plate. We report that mutations in either MMP9 or MMP13 are responsible for the human disease metaphyseal anadysplasia (MAD), a heterogeneous group of disorders for which a milder recessive variant and a more severe dominant variant are known. We found that recessive MAD is caused by homozygous loss of function of either MMP9 or MMP13, whereas dominant MAD is associated with missense mutations in the prodomain of MMP13 that determine autoactivation of MMP13 and intracellular degradation of both MMP13 and MMP9, resulting in a double enzymatic deficiency.


Subject(s)
Matrix Metalloproteinase 13/genetics , Matrix Metalloproteinase 9/genetics , Mutation , Osteochondrodysplasias/genetics , Adolescent , Adult , Amino Acid Sequence , Animals , Asian People/genetics , Asian People/statistics & numerical data , Base Sequence , Case-Control Studies , Child , Child, Preschool , Collagenases/metabolism , Female , Gene Frequency , Heterozygote , Homozygote , Humans , Infant , Matrix Metalloproteinase 13/metabolism , Matrix Metalloproteinase 9/blood , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Models, Molecular , Molecular Sequence Data , NIH 3T3 Cells , Osteochondrodysplasias/diagnostic imaging , Pedigree , Radiography , Skin/cytology , Young Adult
18.
Am J Hum Genet ; 83(5): 649-55, 2008 Nov.
Article in English | MEDLINE | ID: mdl-19068278

ABSTRACT

Members of the evolutionarily conserved T-box family of transcription factors are important players in developmental processes that include mesoderm formation and patterning and organogenesis both in vertebrates and invertebrates. The importance of T-box genes for human development is illustrated by the association between mutations in several of the 17 human family members and congenital errors of morphogenesis that include cardiac, craniofacial, and limb malformations. We identified two unrelated individuals with a complex cranial, cervical, auricular, and skeletal malformation syndrome with scapular and pelvic hypoplasia (Cousin syndrome) that recapitulates the dysmorphic phenotype seen in the Tbx15-deficient mice, droopy ear. Both affected individuals were homozygous for genomic TBX15 mutations that resulted in truncation of the protein and addition of a stretch of missense amino acids. Although the mutant proteins had an intact T-box and were able to bind to their target DNA sequence in vitro, the missense amino acid sequence directed them to early degradation, and cellular levels were markedly reduced. We conclude that Cousin syndrome is caused by TBX15 insufficiency and is thus the human counterpart of the droopy ear mouse.


Subject(s)
Body Height/genetics , Craniofacial Abnormalities/genetics , Mutation , Pelvis/pathology , Scapula/pathology , T-Box Domain Proteins/genetics , Child , Craniofacial Abnormalities/diagnostic imaging , Female , Humans , Mutation, Missense , Pelvis/diagnostic imaging , Radiography , Scapula/diagnostic imaging , Syndrome , T-Box Domain Proteins/metabolism , Young Adult
19.
Am J Hum Genet ; 82(6): 1368-74, 2008 Jun.
Article in English | MEDLINE | ID: mdl-18513679

ABSTRACT

Deficiency of carbohydrate sulfotransferase 3 (CHST3; also known as chondroitin-6-sulfotransferase) has been reported in a single kindred so far and in association with a phenotype of severe chondrodysplasia with progressive spinal involvement. We report eight CHST3 mutations in six unrelated individuals who presented at birth with congenital joint dislocations. These patients had been given a diagnosis of either Larsen syndrome (three individuals) or humero-spinal dysostosis (three individuals), and their clinical features included congenital dislocation of the knees, elbow joint dysplasia with subluxation and limited extension, hip dysplasia or dislocation, clubfoot, short stature, and kyphoscoliosis developing in late childhood. Analysis of chondroitin sulfate proteoglycans in dermal fibroblasts showed markedly decreased 6-O-sulfation but enhanced 4-O-sulfation, confirming functional impairment of CHST3 and distinguishing them from diastrophic dysplasia sulphate transporter (DTDST)-deficient cells. These observations provide a molecular basis for recessive Larsen syndrome and indicate that recessive Larsen syndrome, humero-spinal dysostosis, and spondyloepiphyseal dysplasia Omani type form a phenotypic spectrum.


Subject(s)
Bone Diseases, Developmental/enzymology , Bone Diseases, Developmental/genetics , Dysostoses/enzymology , Dysostoses/genetics , Joint Dislocations/congenital , Joint Dislocations/genetics , Mutation , Sulfotransferases/deficiency , Sulfotransferases/genetics , Adolescent , Adult , Child , Child, Preschool , Chondroitin Sulfate Proteoglycans/chemistry , Chondroitin Sulfate Proteoglycans/metabolism , Female , Genes, Recessive , Humans , Humerus/abnormalities , Infant, Newborn , Joint Dislocations/enzymology , Male , Osteochondrodysplasias/enzymology , Osteochondrodysplasias/genetics , Phenotype , Spine/abnormalities , Syndrome , Carbohydrate Sulfotransferases
20.
Am J Med Genet A ; 155A(9): 2269-73, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21834035

ABSTRACT

Osteogenesis imperfecta type IIC (OI IIC) is a rare variant of lethal OI that has been considered to be an autosomal recessive trait. Twisted, slender long bones with dense metaphyseal margins and normal vertebral bodies in OI IIC contrast with crumpled, thick long bones and multiple vertebral compression fractures in OI IIA. Here, we report on two sporadic patients with classical OI IIC and a pair of siblings, with features of OI IIC but less distortion of the tubular bones (OI dense bone variant). One case with OI IIC and the sibs had novel heterozygous mutations in the C-propeptide region of COL1A1, while the second patient with clear-cut OI IIC had no mutation in this region. Histological examination in the two sporadic cases showed a network of broad, interconnected cartilaginous trabeculae with thin osseous seams in the metaphyses. These changes differed from the narrow and short metaphyseal trabeculae found in other lethal or severe cases of OI. Our experience sheds light on the genetics and etiology of OI IIC and on its phenotypic spectrum.


Subject(s)
Bone and Bones , Collagen Type I/genetics , Mutation , Osteogenesis Imperfecta/genetics , Osteogenesis Imperfecta/pathology , Base Sequence , Bone Density/genetics , Bone and Bones/abnormalities , Bone and Bones/pathology , Child , Collagen Type I, alpha 1 Chain , Female , Heterozygote , Humans , Infant , Infant, Newborn , Japan , Male , Phenotype , Protein Precursors/genetics , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL