Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 162
Filter
1.
Cell ; 175(2): 400-415.e13, 2018 10 04.
Article in English | MEDLINE | ID: mdl-30173915

ABSTRACT

Macrophages are highly heterogeneous tissue-resident immune cells that perform a variety of tissue-supportive functions. The current paradigm dictates that intestinal macrophages are continuously replaced by incoming monocytes that acquire a pro-inflammatory or tissue-protective signature. Here, we identify a self-maintaining population of macrophages that arise from both embryonic precursors and adult bone marrow-derived monocytes and persists throughout adulthood. Gene expression and imaging studies of self-maintaining macrophages revealed distinct transcriptional profiles that reflect their unique localization (i.e., closely positioned to blood vessels, submucosal and myenteric plexus, Paneth cells, and Peyer's patches). Depletion of self-maintaining macrophages resulted in morphological abnormalities in the submucosal vasculature and loss of enteric neurons, leading to vascular leakage, impaired secretion, and reduced intestinal motility. These results provide critical insights in intestinal macrophage heterogeneity and demonstrate the strategic role of self-maintaining macrophages in gut homeostasis and intestinal physiology.


Subject(s)
Intestines/immunology , Macrophages/immunology , Animals , Body Patterning/physiology , Cell Differentiation/genetics , Cell Differentiation/immunology , Gastrointestinal Motility/immunology , Gastrointestinal Motility/physiology , Homeostasis , Inflammation/immunology , Intestinal Mucosa/immunology , Intestine, Small/metabolism , Mice , Monocytes/metabolism , Neurons/metabolism , Phagocytes/immunology , Transcriptome
3.
Kidney Int ; 105(1): 189-199, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37914086

ABSTRACT

Targeting the alternative complement pathway is an attractive therapeutic strategy given its role in the pathogenesis of immunoglobulin A nephropathy (IgAN). Iptacopan (LNP023) is an oral, proximal alternative complement inhibitor that specifically binds to Factor B. Our randomized, double-blind, parallel-group adaptive Phase 2 study (NCT03373461) enrolled patients with biopsy-confirmed IgAN (within previous three years) with estimated glomerular filtration rates of 30 mL/min/1.73 m2 and over and urine protein 0.75 g/24 hours and over on stable doses of renin angiotensin system inhibitors. Patients were randomized to four iptacopan doses (10, 50, 100, or 200 mg bid) or placebo for either a three-month (Part 1; 46 patients) or a six-month (Part 2; 66 patients) treatment period. The primary analysis evaluated the dose-response relationship of iptacopan versus placebo on 24-hour urine protein-to-creatinine ratio (UPCR) at three months. Other efficacy, safety and biomarker parameters were assessed. Baseline characteristics were generally well-balanced across treatment arms. There was a statistically significant dose-response effect, with 23% reduction in UPCR achieved with iptacopan 200 mg bid (80% confidence interval 8-34%) at three months. UPCR decreased further through six months in iptacopan 100 and 200 mg arms (from a mean of 1.3 g/g at baseline to 0.8 g/g at six months in the 200 mg arm). A sustained reduction in complement biomarker levels including plasma Bb, serum Wieslab, and urinary C5b-9 was observed. Iptacopan was well-tolerated, with no reports of deaths, treatment-related serious adverse events or bacterial infections, and led to strong inhibition of alternative complement pathway activity and persistent proteinuria reduction in patients with IgAN. Thus, our findings support further evaluation of iptacopan in the ongoing Phase 3 trial (APPLAUSE-IgAN; NCT04578834).


Subject(s)
Glomerulonephritis, IGA , Humans , Glomerulonephritis, IGA/pathology , Treatment Outcome , Complement Pathway, Alternative , Immunologic Factors/therapeutic use , Biomarkers , Double-Blind Method
4.
Am J Kidney Dis ; 83(4): 467-476, 2024 Apr.
Article in English | MEDLINE | ID: mdl-37777058

ABSTRACT

RATIONALE & OBJECTIVE: Prior studies have demonstrated the diagnostic potential of urinary chemokines C-X-C motif ligand 9 (CXCL9) and CXCL10 for kidney transplant rejection. However, their benefit in addition to clinical information has not been demonstrated. We evaluated the diagnostic performance for detecting acute rejection of urinary CXCL9 and CXCL10 when integrated with clinical information. STUDY DESIGN: Single-center prospective cohort study. SETTING & PARTICIPANTS: We analyzed 1,559 biopsy-paired urinary samples from 622 kidney transplants performed between April 2013 and July 2019 at a single transplant center in Belgium. External validation was performed in 986 biopsy-paired urinary samples. TESTS COMPARED: We quantified urinary CXCL9 (uCXCL9) and CXCL10 (uCXCL10) using an automated immunoassay platform and normalized the values to urinary creatinine. Urinary chemokines were incorporated into a multivariable model with routine clinical markers (estimated glomerular filtration rate, donor-specific antibodies, and polyoma viremia) (integrated model). This model was then compared with the tissue diagnosis according to the Banff classification for acute rejection. OUTCOME: Acute rejection detected on kidney biopsy using the Banff classification. RESULTS: Chemokines integrated with routine clinical markers had high diagnostic value for detection of acute rejection (n=150) (receiver operating characteristic area under the curve 81.3% [95% CI, 77.6-85.0]). The integrated model would help avoid 59 protocol biopsies per 100 patients when the risk for rejection is predicted to be below 10%. The performance of the integrated model was similar in the external validation cohort. LIMITATIONS: The cross-sectional nature obviates investigating the evolution over time and prediction of future rejection. CONCLUSIONS: The use of an integrated model of urinary chemokines and clinical markers for noninvasive monitoring of rejection could enable a reduction in the number of biopsies. Urinary chemokines may be useful noninvasive biomarkers whose use should be further studied in prospective randomized trials to clarify their role in guiding clinical care and the use of biopsies to detect rejection after kidney transplantation. PLAIN-LANGUAGE SUMMARY: Urinary chemokines CXCL9 and CXCL10 have been suggested to be good noninvasive biomarkers of kidney transplant rejection. However, defining a context of use and integration with clinical information is necessary before clinical implementation can begin. In this study, we demonstrated that urinary chemokines CXCL9 and CXCL10, together with clinical information, have substantial diagnostic accuracy for the detection of acute kidney transplant rejection. Application of urinary chemokines together with clinical information may guide biopsy practices following kidney transplantation and potentially reduce the need for kidney transplant biopsies.


Subject(s)
Kidney Diseases , Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Prospective Studies , Cross-Sectional Studies , Chemokine CXCL10/urine , Graft Rejection/diagnosis , Kidney Diseases/etiology , Biomarkers/urine
5.
Article in English | MEDLINE | ID: mdl-38914465

ABSTRACT

Chronic Kidney Disease (CKD) and cancer constitute two major public health burdens and are on the rise. Moreover, the number of patients affected simultaneously by both conditions is growing. Potential nephrotoxic effect of cancer therapies is particularly important for patients with CKD, as they are also affected by several comorbidities. Therefore, administering the right therapy at the right dose for patients with decreased kidney function can represent a daunting challenge. We review in detail the renal toxicities of anti-cancer therapies i.e. conventional chemotherapy, targeted therapy, immune checkpoint inhibitors, and radioligand therapies, issue recommendations for patient monitoring along with guidance on when to withdraw treatment and suggest dosage guidelines for select agents in advanced stage CKD. Various electrolytes disturbances can occur as the result of the administration of anti-cancer agents in the patient with decreased kidney function. These patients are prone to developing hyponatremia, hyperkalemia, and other metabolic abnormalities because of a decreased GFR. Therefore, all electrolytes, minerals and acid base status should be checked at baseline and before each administration of chemotherapeutic agents. Moreover, studies on patients on kidney replacement therapy (KRT) are very limited and only single cases or small case series are published. Therefore, clinical therapeutical decisions in cancer patients with decreased function should be made by multidisciplinary teams constituted of medical oncologists, nephrologists, and other specialists. Onconephrology is an evolving and expanding subspecialty. It is crucial to consider anticancer drug treatment in these patients and offer them a chance to be treated effectively.

6.
Kidney Int ; 104(5): 1018-1034, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37598855

ABSTRACT

Systematic screening for BKPyV-DNAemia has been advocated to aid prevention and treatment of polyomavirus associated nephropathy (PyVAN), an important cause of kidney graft failure. The added value of performing a biopsy at time of BKPyV-DNAemia, to distinguish presumptive PyVAN (negative SV40 immunohistochemistry) and proven PyVAN (positive SV40) has not been established. Therefore, we studied an unselected cohort of 950 transplantations, performed between 2008-2017. BKPyV-DNAemia was detected in 250 (26.3%) transplant recipients, and positive SV40 in 91 cases (9.6%). Among 209 patients with a concurrent biopsy at time of first BKPyV-DNAemia, 60 (28.7%) biopsies were SV40 positive. Plasma viral load showed high diagnostic value for concurrent SV40 positivity (ROC-AUC 0.950, 95% confidence interval 0.916-0.978) and the semiquantitatively scored percentage of tubules with evidence of polyomavirus replication (pvl score) (0.979, 0.968-0.988). SV40 positivity was highly unlikely when plasma viral load is below 4 log10 copies/ml (negative predictive value 0.989, 0.979-0.994). In SV40 positive patients, higher plasma BKPyV-DNA load and higher pvl scores were associated with slower viral clearance from the blood (hazard ratio 0.712, 95% confidence interval 0.604-0.839, and 0.327, 0.161-0.668, respectively), whereas the dichotomy positivity/negativity of SV40 immunohistochemistry did not predict viral clearance. Although the pvl score offers some prognostic value for viral clearance on top of plasma viral load, the latter provided good guidance for when a biopsy was unnecessary to exclude PyVAN. Thus, the distinction between presumptive and proven PyVAN, based on SV40 immunohistochemistry, has limited clinical value. Hence, management of BKPyV-DNAemia and immunosuppression reduction should be weighed against the risk of occurrence of rejection, or exacerbation of rejection observed concomitantly.

7.
Pediatr Nephrol ; 38(5): 1533-1545, 2023 05.
Article in English | MEDLINE | ID: mdl-36227435

ABSTRACT

BACKGROUND: The Flemish Collaborative Glomerulonephritis Group (FCGG) registry is a population-based kidney biopsy registry that has been including all native kidney biopsies performed in children in Flanders (Belgium), since 2017. METHODS: From 2017 to 2020, 148 pediatric (< 18 years) native kidney biopsies were included. Each biopsy received a histopathological and final nephrological diagnosis, and concordance between both was assessed. Disease chronicity, summarized by the Mayo Clinic Chronicity Score, was determined on 122 biopsies with > 5 glomeruli. RESULTS: Kidney biopsy rate was high (29.0 biopsies per million children per year), median age was 10.0 years (IQR 5.8-14.7), and boys predominated (56.1% males). A total of 140 biopsies (94.6%) showed a representative pathology result. Glomerular disease was most prevalent, with IgA nephropathy/IgA vasculitis (43 biopsies, 29.1%) and minimal change disease (MCD) (29 biopsies, 19.6%) being the overall most frequent diagnoses. In general, diagnostic concordance was high (80.7%). In Alport syndrome and focal segmental glomerulosclerosis (FSGS), concordance was lower, as the nephrological diagnosis was often determined by results of genetic analysis. Nephrotic syndrome was the most frequent indication for kidney biopsy (31.8%) and was mainly caused by MCD and FSGS. The degree of disease chronicity on kidney biopsies was generally low, although 27.3% of biopsies with a diagnosis of FSGS showed moderate-to-severe chronic damage. CONCLUSIONS: The presented epidemiological findings validate data from previous European registry studies and may inspire kidney biopsy registries worldwide to implement novel features such as clinicopathological concordance and chronicity grading. A higher resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Glomerulonephritis, IGA , Glomerulonephritis , Glomerulosclerosis, Focal Segmental , Nephrosis, Lipoid , Male , Child , Humans , Female , Kidney/pathology , Glomerulosclerosis, Focal Segmental/epidemiology , Glomerulosclerosis, Focal Segmental/pathology , Belgium/epidemiology , Glomerulonephritis/pathology , Nephrosis, Lipoid/pathology , Glomerulonephritis, IGA/pathology , Biopsy
8.
J Am Soc Nephrol ; 33(3): 638-652, 2022 03.
Article in English | MEDLINE | ID: mdl-35046132

ABSTRACT

BACKGROUND: Knowledge of the effect of kidney transplantation on bone is limited and fragmentary. The aim of this study was to characterize the evolution of bone disease in the first post-transplant year. METHODS: We performed a prospective, observational cohort study in patients referred for kidney transplantation under a steroid-sparing immunosuppressive protocol. Bone phenotyping was done before, or at the time of, kidney transplantation, and repeated at 12 months post-transplant. The phenotyping included bone histomorphometry, bone densitometry by dual-energy x-ray absorptiometry, and biochemical parameters of bone and mineral metabolism. RESULTS: Paired data were obtained for 97 patients (median age 55 years; 72% male; 21% of patients had diabetes). Bone turnover remained normal or improved in the majority of patients (65%). Bone histomorphometry revealed decreases in bone resorption (eroded perimeter, mean 4.6% pre- to 2.3% post-transplant; P<0.001) and disordered bone formation (fibrosis, 27% pre- versus 2% post-transplant; P<0.001). Whereas bone mineralization was normal in all but one patient pretransplant, delayed mineralization was seen in 15% of patients at 1 year post-transplant. Hypophosphatemia was associated with deterioration in histomorphometric parameters of bone mineralization. Changes in bone mineral density were highly variable, ranging from -18% to +17% per year. Cumulative steroid dose was related to bone loss at the hip, whereas resolution of hyperparathyroidism was related to bone gain at both spine and hip. CONCLUSIONS: Changes in bone turnover, mineralization, and volume post-transplant are related both to steroid exposure and ongoing disturbances of mineral metabolism. Optimal control of mineral metabolism may be key to improving bone quality in kidney transplant recipients. CLINICAL TRIAL REGISTRY NAME AND REGISTRATION NUMBER: Evolution of Bone Histomorphometry and Vascular Calcification Before and After Renal Transplantation, NCT01886950.


Subject(s)
Bone Diseases , Kidney Transplantation , Bone Density , Female , Humans , Kidney Transplantation/adverse effects , Male , Middle Aged , Minerals , Prospective Studies , Steroids
9.
J Am Soc Nephrol ; 33(11): 2026-2039, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36316096

ABSTRACT

BACKGROUND: No validated system currently exists to realistically characterize the chronic pathology of kidney transplants that represents the dynamic disease process and spectrum of disease severity. We sought to develop and validate a tool to describe chronicity and severity of renal allograft disease and integrate it with the evaluation of disease activity. METHODS: The training cohort included 3549 kidney transplant biopsies from an observational cohort of 937 recipients. We reweighted the chronic histologic lesions according to their time-dependent association with graft failure, and performed consensus k-means clustering analysis. Total chronicity was calculated as the sum of the weighted chronic lesion scores, scaled to the unit interval. RESULTS: We identified four chronic clusters associated with graft outcome, based on the proportion of ambiguous clustering. The two clusters with the worst survival outcome were determined by interstitial fibrosis and tubular atrophy (IFTA) and by transplant glomerulopathy. The chronic clusters partially overlapped with the existing Banff IFTA classification (adjusted Rand index, 0.35) and were distributed independently of the acute lesions. Total chronicity strongly associated with graft failure (hazard ratio [HR], 8.33; 95% confidence interval [CI], 5.94 to 10.88; P<0.001), independent of the total activity scores (HR, 5.01; 95% CI, 2.83 to 7.00; P<0.001). These results were validated on an external cohort of 4031 biopsies from 2054 kidney transplant recipients. CONCLUSIONS: The evaluation of total chronicity provides information on kidney transplant pathology that complements the estimation of disease activity from acute lesion scores. Use of the data-driven algorithm used in this study, called RejectClass, may provide a holistic and quantitative assessment of kidney transplant injury phenotypes and severity.


Subject(s)
Kidney Diseases , Kidney Transplantation , Humans , Kidney Transplantation/methods , Graft Survival , Graft Rejection/pathology , Kidney/pathology , Biopsy , Kidney Diseases/pathology , Complement System Proteins , Allografts/pathology , Phenotype
10.
Kidney Int ; 102(1): 183-195, 2022 07.
Article in English | MEDLINE | ID: mdl-35526671

ABSTRACT

Kidney transplant injury processes are associated with molecular changes in kidney tissue, primarily related to immune cell activation and infiltration. How these processes are reflected in the circulating immune cells, whose activation is targeted by strong immunosuppressants, is poorly understood. To study this, we analyzed the molecular alterations in 384 peripheral blood samples from four European transplant centers, taken at the time of a kidney allograft biopsy, selected for their phenotype, using RNA-sequencing. In peripheral blood, differentially expressed genes in 136 rejection and 248 no rejection samples demonstrated upregulation of glucocorticoid receptor and nucleotide oligomerization domain-like receptor signaling pathways. Pathways enriched in antibody-mediated rejection (ABMR) were strongly immune-specific, whereas pathways enriched in T cell-mediated rejection were less immune related. In polyomavirus infection, upregulation of mitochondrial dysfunction and interferon signaling pathways was seen. Next, we integrated the blood results with transcriptomics of 224 kidney allograft biopsies which showed consistently upregulated genes per phenotype in both blood and biopsy. In single-cell RNASeq (scRNASeq) analysis of seven kidney allograft biopsies, the consistently overexpressed genes in ABMR were mostly expressed by infiltrating leukocytes in the allograft. Similarly, in peripheral blood scRNASeq analysis, these genes were overexpressed in ABMR in immune cell subtypes. Furthermore, overexpression of these genes in ABMR was confirmed in independent cohorts in blood and biopsy. Thus, our results highlight the immune activation pathways in peripheral blood leukocytes at the time of kidney allograft pathology, despite the use of current strong immunosuppressants, and provide a framework for future therapeutic interventions.


Subject(s)
Graft Rejection , Kidney Transplantation , Allografts , Antibodies , Biopsy , Immunosuppressive Agents , Kidney/pathology , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Transcriptome
11.
Am J Transplant ; 22(12): 2791-2803, 2022 12.
Article in English | MEDLINE | ID: mdl-35913414

ABSTRACT

During development, nephron structures are derived from a SIX2+ stem cell population. After 36 weeks of gestation, these cells are exhausted, and no new nephrons are formed. We have previously described a non-invasive strategy to isolate and expand the native SIX2+ kidney stem cells from the urine of preterm neonates, named neonatal kidney stem/progenitor cells (nKSPC). Here, we investigated the safety and feasibility of administering nKSPC into human kidneys discarded for transplantation during normothermic machine perfusion (NMP) and evaluated the regenerative and immunomodulatory potential of nKSPC treatment. We found that nKSPC administration during NMP is safe and feasible. Interestingly, nKSPC induced the de novo expression of SIX2 in proximal tubular cells of the donor kidneys and upregulated regenerative markers such as SOX9 and VEGF. This is the first time that SIX2 re-expression is observed in adult human kidneys. Moreover, nKSPC administration significantly lowered levels of kidney injury biomarkers and reduced inflammatory cytokine levels via the tryptophan-IDO-kynurenine pathway. In conclusion, nKSPC is a novel cell type to be applied in kidney-targeted cell therapy, with the potential to induce an endogenous regenerative process and immunomodulation.


Subject(s)
Homeodomain Proteins , Kidney , Infant, Newborn , Humans , Kidney/metabolism , Nephrons , Stem Cells/metabolism , Perfusion , Nerve Tissue Proteins/metabolism
12.
Am J Kidney Dis ; 79(5): 667-676.e1, 2022 05.
Article in English | MEDLINE | ID: mdl-34710517

ABSTRACT

RATIONALE & OBJECTIVE: Bone biopsy remains the gold standard for diagnosing renal osteodystrophy as comparable noninvasive alternatives have yet to be established. This study investigated the diagnostic accuracy of biochemical markers of skeletal remodeling to predict bone turnover. STUDY DESIGN: Cross-sectional retrospective diagnostic test study. SETTING & PARTICIPANTS: Patients with chronic kidney disease glomerular filtration rate categories 4-5, including patients treated with dialysis (G4-G5D) and kidney transplant recipients with successful transiliac bone biopsies. TESTS COMPARED: Bone turnover as determined by bone histomorphometry was compared with the following biochemical markers: full-length (amino acids 1-84) "biointact" parathyroid hormone (PTH), bone-specific alkaline phosphatase (BsAP), intact procollagen type I N-terminal propeptide (PINP), and tartrate-resistant acid phosphatase isoform 5b (TRAP5b). OUTCOME: Diagnostic performance was evaluated by area under the receiver operator characteristics curve (AUC), sensitivity, specificity, and negative and positive predictive values. Optimal diagnostic cutoffs were determined in an exploration cohort (n = 100) and validated in a separate cohort (n = 99). RESULTS: All biomarkers differed across categories of low 33 (17%), normal 109 (55%), and high 57 (29%) bone turnover. AUC values were in the range of 0.75-0.85. High negative predictive values (≥90%) were found for both high and low bone turnover, indicating the ability to rule out both conditions using the suggested biomarker cutoffs. The highest diagnostic performances were seen with combinations of biomarkers, with overall diagnostic accuracies of 90% for high turnover, and 78% for low turnover. Results were comparable for kidney transplant candidates and recipients in a sensitivity analysis. LIMITATIONS: The single-center approach and heterogeneity of the study cohort are main limitations of this study. CONCLUSIONS: We conclude that the diagnostic performance of biochemical markers of bone turnover is acceptable, with clinical utility in ruling out both high and low turnover bone disease.


Subject(s)
Chronic Kidney Disease-Mineral and Bone Disorder , Alkaline Phosphatase , Biomarkers , Bone Remodeling , Chronic Kidney Disease-Mineral and Bone Disorder/diagnosis , Cross-Sectional Studies , Female , Humans , Male , Parathyroid Hormone , Renal Dialysis , Retrospective Studies
13.
Am J Kidney Dis ; 80(6): 718-729.e1, 2022 12.
Article in English | MEDLINE | ID: mdl-35690154

ABSTRACT

RATIONALE & OBJECTIVE: The relationship between human leukocyte antigen (HLA) molecular mismatches and T-cell-mediated rejection (TCMR) is unknown. We investigated the associations between the different donor HLA-derived T-cell targets and the occurrence of TCMR and borderline histologic changes suggestive of TCMR after kidney transplantation. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: All kidney transplant recipients at a single center between 2004 and 2013 with available biopsy data and a DNA sample for high-resolution HLA donor/recipient typing (N = 893). EXPOSURE: Scores calculated by the HLA matching algorithm PIRCHE-II and HLA eplet mismatches. OUTCOME: TCMR, borderline changes suggestive of TCMR, and allograft failure. ANALYTICAL APPROACH: Multivariable cause-specific hazards models were fit to characterize the association between HLA epitopes targets and study outcomes. RESULTS: We found 277 patients developed TCMR, and 134 developed only borderline changes suggestive of TCMR on at least 1 biopsy. In multivariable analyses, only the PIRCHE-II scores for HLA-DRB1 and HLA-DQB1 were independently associated with the occurrence of TCMR and with allograft failure; this was not the case for HLA class I molecules. If restricted to rejection episodes within the first 3 months after transplantation, only the T-cell epitope targets originating from the donor's HLA-DRB1 and HLA-DQB1, but not class I molecules, were associated with the early acute TCMR. Also, the median PIRCHE-II score for HLA class II was statistically different between the patients with TCMR compared to the patients without TCMR (129 [IQR, 60-240] vs 201 [IQR, 96-298], respectively; P < 0.0001). These differences were not observed for class I PIRCHE-II scores. LIMITATIONS: Observational clinical data and residual confounding. CONCLUSIONS: In the absence of HLA-DSA, HLA class II but not class I mismatches are associated with early episodes of acute TCMR and allograft failure. This suggests that current immunosuppressive therapies are largely able to abort the most deleterious HLA class I-directed alloimmune processes; however, alloresponses against HLA-DRB1 and HLA-DQB1 molecular mismatches remain insufficiently suppressed. PLAIN-LANGUAGE SUMMARY: Genetic differences in the human leukocyte antigen (HLA) complex between kidney transplant donors and recipients play a central role in T-cell-mediated rejection (TCMR), which can lead to failure of the transplanted kidney. Evaluating this genetic disparity (mismatch) in the HLA complex at the molecular (epitope) level could contribute to better prediction of the immune response to the donor organ posttransplantation. We investigated the associations of the different donor HLA-derived T-cell epitope targets and scores obtained from virtual crossmatch algorithms with the occurrence of TCMR, borderline TCMR, and graft failure after kidney transplantation after taking into account the influence of donor-specific anti-HLA antibodies. This study illustrates the greater importance of the molecular mismatches in class II molecules compared to class I HLA molecules.


Subject(s)
Kidney Transplantation , Humans , Kidney Transplantation/adverse effects , Epitopes, T-Lymphocyte , Graft Rejection/epidemiology , Graft Survival , Retrospective Studies , HLA-DRB1 Chains , T-Lymphocytes , HLA Antigens/genetics , Histocompatibility Testing
14.
Nephrol Dial Transplant ; 37(3): 409-420, 2022 02 25.
Article in English | MEDLINE | ID: mdl-33150431

ABSTRACT

Transplantation offers cure for some haematological cancers, end-stage organ failure, but at the cost of long-term complications. Renal transplantation is the best-known kidney replacement therapy and it can prolong end-stage renal disease patient lives for decades. However, patients after renal transplantation are at a higher risk of developing different complications connected not only with surgical procedure but also with immunosuppressive treatment, chronic kidney disease progression and rejection processes. Various blood disorders can develop in post-transplant patients ranging from relatively benign anaemia through cytopenias to therapy-related myelodysplasia and acute myeloid leukaemia (AML) and post-transplant lymphoproliferative disorders followed by a rare and fatal condition of thrombotic microangiopathy and haemophagocytic syndrome. So far literature mainly focused on the post-transplant lymphoproliferative disease. In this review, a variety of haematological problems after transplantation ranging from rare disorders such as myelodysplasia and AML to relatively common conditions such as anaemia and iron deficiency are presented with up-to-date diagnosis and management.


Subject(s)
Kidney Failure, Chronic , Kidney Transplantation , Lymphoproliferative Disorders , Thrombotic Microangiopathies , Humans , Immunosuppressive Agents/adverse effects , Kidney Failure, Chronic/complications , Kidney Failure, Chronic/surgery , Kidney Transplantation/adverse effects , Kidney Transplantation/methods , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/etiology , Thrombotic Microangiopathies/diagnosis , Thrombotic Microangiopathies/etiology
15.
Transpl Int ; 35: 10707, 2022.
Article in English | MEDLINE | ID: mdl-36589262

ABSTRACT

Post-transplant lymphoproliferative disorder (PTLD) is a rare but life-threatening complication after transplantation. In this retrospective, monocentric study we aimed to collect real life data regarding PTLD and determine the role of Epstein Barr Virus (EBV) status and year of diagnosis on prognosis. We identified 196 biopsy-proven PTLD after solid organ transplantation (SOT) diagnosed at the University Hospitals Leuven (Belgium) from 1989 to 2019. EBV status was positive in 61% of PTLD. The median overall survival (OS) was 5.7 years (95% CI: 2.99-11.1). Although EBV positivity was not significantly correlated with OS in multivariate analyses (HR: 1.44 (95% CI: 0.93-2.24); p = 0.10), subgroup analysis showed a significantly better median OS for EBV negative post-transplant diffuse large B-cell lymphoma (DLBCL) compared to EBV positive post-transplant DLBCL (8.8 versus 2.5 years respectively; p = 0.0365). There was a significant relation between year of PTLD diagnosis and OS: the more recent the PTLD diagnosis, the lower the risk for death (adjusted HR: 0.962 (95% CI: 0.931-0.933); p = 0.017). In conclusion, the prognosis of PTLD after SOT has improved in the past decades. Our analysis shows a significant relation between EBV status and OS in post-transplant DLBCL.


Subject(s)
Epstein-Barr Virus Infections , Lymphoproliferative Disorders , Organ Transplantation , Humans , Epstein-Barr Virus Infections/complications , Herpesvirus 4, Human , Retrospective Studies , Organ Transplantation/adverse effects , Lymphoproliferative Disorders/diagnosis , Lymphoproliferative Disorders/etiology
16.
J Am Soc Nephrol ; 32(8): 1838-1852, 2021 08.
Article in English | MEDLINE | ID: mdl-34140401

ABSTRACT

Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA-seq (snRNA-seq) allow transcriptomic profiling of thousands of cells from a renal biopsy specimen at a single-cell resolution. Both methods are promising tools to unravel the underlying pathophysiology of glomerular diseases. This review provides an overview of the technical challenges that should be addressed when designing single-cell transcriptomics experiments that focus on glomerulopathies. The isolation of glomerular cells from core needle biopsy specimens for single-cell transcriptomics remains difficult and depends upon five major factors. First, core needle biopsies generate little tissue material, and several samples are required to identify glomerular cells. Second, both fresh and frozen tissue samples may yield glomerular cells, although every experimental pipeline has different (dis)advantages. Third, enrichment for glomerular cells in human tissue before single-cell analysis is challenging because no effective standardized pipelines are available. Fourth, the current warm cell-dissociation protocols may damage glomerular cells and induce transcriptional artifacts, which can be minimized by using cold dissociation techniques at the cost of less efficient cell dissociation. Finally, snRNA-seq methods may be superior to scRNA-seq in isolating glomerular cells; however, the efficacy of snRNA-seq on core needle biopsy specimens remains to be proven. The field of single-cell omics is rapidly evolving, and the integration of these techniques in multiomics assays will undoubtedly create new insights in the complex pathophysiology of glomerular diseases.


Subject(s)
Gene Expression Profiling , Kidney Diseases/genetics , Kidney Diseases/pathology , Kidney Glomerulus/pathology , RNA/analysis , Single-Cell Analysis , Biopsy, Large-Core Needle , Cell Nucleus , Cell Separation/methods , Flow Cytometry , Freezing , Humans , Kidney Glomerulus/metabolism , Mesangial Cells , Podocytes , Sequence Analysis, RNA , Single-Cell Analysis/methods
17.
J Am Soc Nephrol ; 32(8): 2070-2082, 2021 08.
Article in English | MEDLINE | ID: mdl-34301794

ABSTRACT

BACKGROUND: Circulating anti-HLA donor-specific antibodies (HLA-DSA) are often absent in kidney transplant recipients with microvascular inflammation (MVI). Missing self, the inability of donor endothelial cells to provide HLA I-mediated signals to inhibitory killer cell Ig-like receptors (KIRs) on recipient natural killer cells, can cause endothelial damage in vitro, and has been associated with HLA-DSA-negative MVI. However, missing self's clinical importance as a nonhumoral trigger of allograft rejection remains unclear. METHODS: In a population-based study of 924 consecutive kidney transplantations between March 2004 and February 2013, we performed high-resolution donor and recipient HLA typing and recipient KIR genotyping. Missing self was defined as the absence of A3/A11, Bw4, C1, or C2 donor genotype, with the presence of the corresponding educated recipient inhibitory KIR gene. RESULTS: We identified missing self in 399 of 924 transplantations. Co-occurrence of missing self types had an additive effect in increasing MVI risk, with a threshold at two concurrent types (hazard ratio [HR], 1.78; 95% confidence interval [95% CI], 1.26 to 2.53), independent of HLA-DSA (HR, 5.65; 95% CI, 4.01 to 7.96). Missing self and lesions of cellular rejection were not associated. No HLA-DSAs were detectable in 146 of 222 recipients with MVI; 28 of the 146 had at least two missing self types. Missing self associated with transplant glomerulopathy after MVI (HR, 2.51; 95% CI, 1.12 to 5.62), although allograft survival was better than with HLA-DSA-associated MVI. CONCLUSION: Missing self specifically and cumulatively increases MVI risk after kidney transplantation, independent of HLA-DSA. Systematic evaluation of missing self improves understanding of HLA-DSA-negative MVI and might be relevant for improved diagnostic classification and patient risk stratification.


Subject(s)
Graft Rejection/immunology , HLA Antigens/genetics , HLA Antigens/immunology , Killer Cells, Natural/immunology , Receptors, KIR/genetics , Vasculitis/genetics , Adult , Aged , Antibodies/blood , Female , Genotype , Graft Survival , HLA-A11 Antigen/genetics , HLA-A11 Antigen/immunology , HLA-A3 Antigen/genetics , HLA-A3 Antigen/immunology , HLA-B Antigens/genetics , HLA-B Antigens/immunology , HLA-C Antigens/genetics , HLA-C Antigens/immunology , Histocompatibility Testing , Humans , Kidney Transplantation , Male , Microvessels , Middle Aged , Receptors, KIR2DL2/genetics , Receptors, KIR2DL3/genetics , Tissue Donors , Transplant Recipients , Vasculitis/complications
18.
J Am Soc Nephrol ; 32(5): 1084-1096, 2021 05 03.
Article in English | MEDLINE | ID: mdl-33687976

ABSTRACT

BACKGROUND: Over the past decades, an international group of experts iteratively developed a consensus classification of kidney transplant rejection phenotypes, known as the Banff classification. Data-driven clustering of kidney transplant histologic data could simplify the complex and discretionary rules of the Banff classification, while improving the association with graft failure. METHODS: The data consisted of a training set of 3510 kidney-transplant biopsies from an observational cohort of 936 recipients. Independent validation of the results was performed on an external set of 3835 biopsies from 1989 patients. On the basis of acute histologic lesion scores and the presence of donor-specific HLA antibodies, stable clustering was achieved on the basis of a consensus of 400 different clustering partitions. Additional information on kidney-transplant failure was introduced with a weighted Euclidean distance. RESULTS: Based on the proportion of ambiguous clustering, six clinically meaningful cluster phenotypes were identified. There was significant overlap with the existing Banff classification (adjusted rand index, 0.48). However, the data-driven approach eliminated intermediate and mixed phenotypes and created acute rejection clusters that are each significantly associated with graft failure. Finally, a novel visualization tool presents disease phenotypes and severity in a continuous manner, as a complement to the discrete clusters. CONCLUSIONS: A semisupervised clustering approach for the identification of clinically meaningful novel phenotypes of kidney transplant rejection has been developed and validated. The approach has the potential to offer a more quantitative evaluation of rejection subtypes and severity, especially in situations in which the current histologic categorization is ambiguous.


Subject(s)
Graft Rejection/pathology , Kidney Diseases/pathology , Kidney Diseases/surgery , Kidney Transplantation/statistics & numerical data , Acute Disease , Adult , Aged , Cluster Analysis , Cohort Studies , Female , Graft Rejection/epidemiology , Graft Survival , Humans , Kidney Diseases/mortality , Kidney Transplantation/adverse effects , Kidney Transplantation/mortality , Male , Middle Aged , Phenotype , Reproducibility of Results
19.
Kidney Int ; 100(1): 196-205, 2021 07.
Article in English | MEDLINE | ID: mdl-33359528

ABSTRACT

Immune checkpoint inhibitors (ICIs) are widely used for various malignancies. However, their safety and efficacy in patients with a kidney transplant have not been defined. To delineate this, we conducted a multicenter retrospective study of 69 patients with a kidney transplant receiving ICIs between January 2010 and May 2020. For safety, we assessed the incidence, timing, and risk factors of acute graft rejection. For efficacy, objective response rate and overall survival were assessed in cutaneous squamous cell carcinoma and melanoma, the most common cancers in our cohort, and compared with stage-matched 23 patients with squamous cell carcinoma and 14 with melanoma with a kidney transplant not receiving ICIs. Following ICI treatment, 29 out of 69 (42%) patients developed acute rejection, 19 of whom lost their allograft, compared with an acute rejection rate of 5.4% in the non-ICI cohort. Median time from ICI initiation to rejection was 24 days. Factors associated with a lower risk of rejection were mTOR inhibitor use (odds ratio 0.26; 95% confidence interval, 0.09-0.72) and triple-agent immunosuppression (0.67, 0.48-0.92). The objective response ratio was 36.4% and 40% in the squamous cell carcinoma and melanoma subgroups, respectively. In the squamous cell carcinoma subgroup, overall survival was significantly longer in patients treated with ICIs (median overall survival 19.8 months vs. 10.6 months), whereas in the melanoma subgroup, overall survival did not differ between groups. Thus, ICIs were associated with a high risk of rejection in patients with kidney transplants but may lead to improved cancer outcomes. Prospective studies are needed to determine optimal immunosuppression strategies to improve patient outcomes.


Subject(s)
Carcinoma, Squamous Cell , Kidney Transplantation , Skin Neoplasms , Carcinoma, Squamous Cell/drug therapy , Humans , Immune Checkpoint Inhibitors , Kidney Transplantation/adverse effects , Prospective Studies , Retrospective Studies , Skin Neoplasms/drug therapy
20.
Am J Transplant ; 21(1): 60-72, 2021 01.
Article in English | MEDLINE | ID: mdl-32506732

ABSTRACT

Immune checkpoint inhibitors, such as programmed cell death 1 (PD-1) blockades, have revolutionized the field of cancer immunotherapy. However, there is a growing concern whether PD-1 inhibitors can be administered safely to transplant recipients with advanced cancer, as the T cells activated by checkpoint inhibitors may become reactive not only toward tumor antigens but also toward donor alloantigen, thereby resulting in allograft rejection. Here, immunotherapy with anti-PD-1/toll like receptor 9 agonist was administered to C57BL/6 mice bearing a cardiac allograft that were receiving maintenance immunosuppression or a PI4KIIIß inhibitor-based tolerogenic regimen. Intratumoral (i.t.), but not systemic, immunotherapy promoted potent anti-tumor responses, but did not accelerate allograft rejection. This effect was associated with a pro-immunogenic effect induced by i.t. immunotherapy resulting in systemic cellular and humoral immune anti-tumor responses. Furthermore, when the tumor and cardiac allograft shared major histocompatibility complex (MHC) antigens, i.t. immunotherapy promoted immune responses directed against tumor and the cardiac allograft resulting in allograft rejection. The anti-tumor effect was compromised by maintenance immunosuppression with cyclosporin A, indicating that an optimal balance between enhanced anti-tumor immunity and decreased transplant immunoreactivity is critical. A clinically relevant approach could be to temporarily withdraw maintenance immunosuppression and/or replace it with a PI4KIIIß inhibitor-based tolerance-inducing regimen to allow for effective immunotherapy to take place.


Subject(s)
Heart Transplantation , Allografts , Animals , Graft Rejection/prevention & control , Immunotherapy , Mice , Mice, Inbred C57BL , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Toll-Like Receptor 9
SELECTION OF CITATIONS
SEARCH DETAIL