Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 104
Filter
1.
Cell ; 184(10): 2595-2604.e13, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33891875

ABSTRACT

The emergence and spread of SARS-CoV-2 lineage B.1.1.7, first detected in the United Kingdom, has become a global public health concern because of its increased transmissibility. Over 2,500 COVID-19 cases associated with this variant have been detected in the United States (US) since December 2020, but the extent of establishment is relatively unknown. Using travel, genomic, and diagnostic data, we highlight that the primary ports of entry for B.1.1.7 in the US were in New York, California, and Florida. Furthermore, we found evidence for many independent B.1.1.7 establishments starting in early December 2020, followed by interstate spread by the end of the month. Finally, we project that B.1.1.7 will be the dominant lineage in many states by mid- to late March. Thus, genomic surveillance for B.1.1.7 and other variants urgently needs to be enhanced to better inform the public health response.


Subject(s)
COVID-19 Testing , COVID-19 , Models, Biological , SARS-CoV-2 , COVID-19/genetics , COVID-19/mortality , COVID-19/transmission , Female , Humans , Male , SARS-CoV-2/genetics , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , United States/epidemiology
2.
Nature ; 617(7961): 574-580, 2023 May.
Article in English | MEDLINE | ID: mdl-36996871

ABSTRACT

As of August 2022, clusters of acute severe hepatitis of unknown aetiology in children have been reported from 35 countries, including the USA1,2. Previous studies have found human adenoviruses (HAdVs) in the blood from patients in Europe and the USA3-7, although it is unclear whether this virus is causative. Here we used PCR testing, viral enrichment-based sequencing and agnostic metagenomic sequencing to analyse samples from 16 HAdV-positive cases from 1 October 2021 to 22 May 2022, in parallel with 113 controls. In blood from 14 cases, adeno-associated virus type 2 (AAV2) sequences were detected in 93% (13 of 14), compared to 4 (3.5%) of 113 controls (P < 0.001) and to 0 of 30 patients with hepatitis of defined aetiology (P < 0.001). In controls, HAdV type 41 was detected in blood from 9 (39.1%) of the 23 patients with acute gastroenteritis (without hepatitis), including 8 of 9 patients with positive stool HAdV testing, but co-infection with AAV2 was observed in only 3 (13.0%) of these 23 patients versus 93% of cases (P < 0.001). Co-infections by Epstein-Barr virus, human herpesvirus 6 and/or enterovirus A71 were also detected in 12 (85.7%) of 14 cases, with higher herpesvirus detection in cases versus controls (P < 0.001). Our findings suggest that the severity of the disease is related to co-infections involving AAV2 and one or more helper viruses.


Subject(s)
Adenovirus Infections, Human , Coinfection , Dependovirus , Hepatitis , Child , Humans , Acute Disease , Adenovirus Infections, Human/epidemiology , Adenovirus Infections, Human/virology , Coinfection/epidemiology , Coinfection/virology , Dependovirus/genetics , Dependovirus/isolation & purification , Epstein-Barr Virus Infections/epidemiology , Epstein-Barr Virus Infections/virology , Hepatitis/epidemiology , Hepatitis/virology , Herpesvirus 4, Human/isolation & purification , Herpesvirus 6, Human/isolation & purification , Enterovirus A, Human/isolation & purification , Helper Viruses/isolation & purification
3.
N Engl J Med ; 387(7): 620-630, 2022 08 18.
Article in English | MEDLINE | ID: mdl-35830653

ABSTRACT

BACKGROUND: Human adenoviruses typically cause self-limited respiratory, gastrointestinal, and conjunctival infections in healthy children. In late 2021 and early 2022, several previously healthy children were identified with acute hepatitis and human adenovirus viremia. METHODS: We used International Classification of Diseases, 10th Revision, codes to identify all children (<18 years of age) with hepatitis who were admitted to Children's of Alabama hospital between October 1, 2021, and February 28, 2022; those with acute hepatitis who also tested positive for human adenovirus by whole-blood quantitative polymerase chain reaction (PCR) were included in our case series. Demographic, clinical, laboratory, and treatment data were obtained from medical records. Residual blood specimens were sent for diagnostic confirmation and human adenovirus typing. RESULTS: A total of 15 children were identified with acute hepatitis - 6 (40%) who had hepatitis with an identified cause and 9 (60%) who had hepatitis without a known cause. Eight (89%) of the patients with hepatitis of unknown cause tested positive for human adenovirus. These 8 patients plus 1 additional patient referred to this facility for follow-up were included in this case series (median age, 2 years 11 months; age range, 1 year 1 month to 6 years 5 months). Liver biopsies indicated mild-to-moderate active hepatitis in 6 children, some with and some without cholestasis, but did not show evidence of human adenovirus on immunohistochemical examination or electron microscopy. PCR testing of liver tissue for human adenovirus was positive in 3 children (50%). Sequencing of specimens from 5 children showed three distinct human adenovirus type 41 hexon variants. Two children underwent liver transplantation; all the others recovered with supportive care. CONCLUSIONS: Human adenovirus viremia was present in the majority of children with acute hepatitis of unknown cause admitted to Children's of Alabama from October 1, 2021, to February 28, 2022, but whether human adenovirus was causative remains unclear. Sequencing results suggest that if human adenovirus was causative, this was not an outbreak driven by a single strain. (Funded in part by the Centers for Disease Control and Prevention.).


Subject(s)
Adenovirus Infections, Human , Adenoviruses, Human , Hepatitis , Acute Disease , Adenovirus Infections, Human/complications , Adenovirus Infections, Human/diagnosis , Adenovirus Infections, Human/virology , Adenoviruses, Human/genetics , Child , Child, Preschool , Hepatitis/virology , Humans , Infant , Viremia
4.
Emerg Infect Dis ; 30(2): 358-362, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38270142

ABSTRACT

Using multipathogen PCR testing, we identified 195 students with adenovirus type 4 infections on a university campus in South Carolina, USA, during January-May 2022. We co-detected other respiratory viruses in 43 (22%) students. Continued surveillance of circulating viruses is needed to prevent virus infection outbreaks in congregate communities.


Subject(s)
Adenoviridae Infections , Humans , South Carolina/epidemiology , Universities , Disease Outbreaks , Students
5.
Emerg Infect Dis ; 28(3): 650-659, 2022 03.
Article in English | MEDLINE | ID: mdl-35133957

ABSTRACT

The emergence of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants in late 2020 and early 2021 raised alarm worldwide because of their potential for increased transmissibility and immune evasion. Elucidating the evolutionary and epidemiologic dynamics among novel SARS-CoV-2 variants is essential for understanding the trajectory of the coronavirus disease pandemic. We describe the interplay between B.1.1.7 (Alpha) and B.1.526 (Iota) variants in New York State, USA, during December 2020-April 2021 through phylogeographic analyses, space-time scan statistics, and cartographic visualization. Our results indicate that B.1.526 probably evolved in New York City, where it was displaced as the dominant lineage by B.1.1.7 months after its initial appearance. In contrast, B.1.1.7 became dominant earlier in regions with fewer B.1.526 infections. These results suggest that B.1.526 might have delayed the initial spread of B.1.1.7 in New York City. Our combined spatiotemporal methodologies can help disentangle the complexities of shifting SARS-CoV-2 variant landscapes.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/virology , Humans , New York/epidemiology , New York City/epidemiology , Spatio-Temporal Analysis
6.
Emerg Infect Dis ; 28(4): 881-883, 2022 04.
Article in English | MEDLINE | ID: mdl-35130474

ABSTRACT

Of 379 severe acute respiratory syndrome coronavirus 2 samples collected in New York, USA, we detected 86 Omicron variant sequences containing Delta variant mutation P681R. Probable explanations were co-infection with 2 viruses or contamination/amplification artifact. Repeated library preparation with fewer cycles showed the P681R calls were artifactual. Unusual mutations should be interpreted with caution.


Subject(s)
COVID-19 , SARS-CoV-2 , Artifacts , Humans , Mutation , New York/epidemiology , SARS-CoV-2/genetics
7.
Emerg Infect Dis ; 28(10): 1990-1998, 2022 10.
Article in English | MEDLINE | ID: mdl-36048774

ABSTRACT

Recently emerged SARS-CoV-2 variants have greater potential than earlier variants to cause vaccine breakthrough infections. During emergence of the Delta and Omicron variants, a matched case-control analysis used a viral genomic sequence dataset linked with demographic and vaccination information from New York, USA, to examine associations between virus lineage and patient vaccination status, patient age, vaccine type, and time since vaccination. Case-patients were persons infected with the emerging virus lineage, and controls were persons infected with any other virus lineage. Infections in fully vaccinated and boosted persons were significantly associated with the Omicron lineage. Odds of infection with Omicron relative to Delta generally decreased with increasing patient age. A similar pattern was observed with vaccination status during Delta emergence but was not significant. Vaccines offered less protection against Omicron, thereby increasing the number of potential hosts for emerging variants.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Viral , COVID-19/epidemiology , COVID-19/prevention & control , COVID-19 Vaccines , Humans , New York/epidemiology , SARS-CoV-2/genetics
8.
J Clin Microbiol ; 60(1): e0084121, 2022 01 19.
Article in English | MEDLINE | ID: mdl-34757832

ABSTRACT

Since 2015, the United States has experienced a resurgence in the number of mumps cases and outbreaks in fully vaccinated populations. These outbreaks have occurred predominantly in close-quarter settings, such as camps, colleges, and detention centers. Phylogenetic analysis of 758 mumps-positive samples from outbreaks across the United States identified 743 (98%) as genotype G based on sequence analysis of the mumps small hydrophobic (SH) gene. Additionally, SH sequences in the genotype G samples showed almost no sequence diversity, with 675 (91%) of them having identical sequences or only one nucleotide difference. This uniformity of circulating genotype and strain created complications for epidemiologic investigations and necessitated the development of a system for rapidly generating mumps whole-genome sequences for more detailed analysis. In this study, we report a novel and streamlined assay for whole-genome sequencing (WGS) of mumps virus genotype G. The WGS procedure successfully generated 318 high-quality WGS sequences on nucleic acid from genotype G-positive respiratory samples collected during several mumps outbreaks in the United States between 2016 and 2019. Sequencing was performed by a rapid and highly sensitive custom Ion AmpliSeq mumps genotype G panel, with sample preparation performed on an Ion Chef and sequencing on an Ion S5. The WGS data generated by the AmpliSeq panel provided enhanced genomic resolution for epidemiological outbreak investigations. Translation and protein sequence analysis also identified several potentially important epitope changes in the circulating mumps genotype G strains compared to the Jeryl-Lynn strain (JL5) used in vaccines in the United States, which could explain the current level of vaccine escapes.


Subject(s)
Mumps virus , Mumps , Disease Outbreaks , Genotype , Humans , Mumps/epidemiology , Phylogeny , Whole Genome Sequencing
9.
J Clin Microbiol ; 60(4): e0238121, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35321554

ABSTRACT

Since the introduction of the varicella-zoster virus (VZV) vaccine in the United States in 1995, there has been a dramatic decrease in both the number and severity of varicella cases. However, VZV surveillance data and information on the VZV clade distribution in central nervous system (CNS) disease and non-CNS disease in New York State is not available. To investigate this, cerebrospinal fluid (CSF) samples from patients with encephalitis or meningitis and non-CSF samples from patients with non-CNS disease manifestations consistent with VZV, collected from 2004 to 2019, were tested with molecular VZV assays. A total of 341 CSF and 1,398 non-CSF samples that tested positive by a VZV-specific real-time PCR assay were further characterized as wild-type or vaccine strain by 3 biallelic real-time PCR assays targeting single nucleotide polymorphism (SNP) markers in open reading frame (ORF) 62. Genotyping was then performed on wild-type strains by conventional PCR and sequencing of 500-bp regions in ORFs 21, 22, and 50. Sequence analysis identified clades 1 to 5 in both sample types with a virtually identical clade distribution between CSF and non-CSF samples. In addition, 19 clade 6 and 13 clade 9 samples were detected in non-CSF samples after implementation of an expanded genotyping scheme, including ORF 29, 38, and 67. These clades were not detected in any CSF samples. Finally, a total of 28 vaccine strains were detected, 25 in the non-CSF samples and 3 in the CSF samples. All three cases of vaccine strain with CNS involvement experienced relatively minor symptoms of aseptic meningitis and fully recovered. These results support the evidence that while the VZV vaccine is capable of causing CNS disease, it is still a rare event and symptoms are typically less severe than those caused by wild-type infection.


Subject(s)
Encephalitis , Herpes Zoster , Vaccines , Central Nervous System , DNA, Viral , Herpes Zoster/epidemiology , Herpesvirus 3, Human/genetics , Humans , New York/epidemiology , Real-Time Polymerase Chain Reaction
10.
MMWR Morb Mortal Wkly Rep ; 71(18): 638-640, 2022 May 06.
Article in English | MEDLINE | ID: mdl-35511732

ABSTRACT

During October-November 2021, clinicians at a children's hospital in Alabama identified five pediatric patients with severe hepatitis and adenovirus viremia upon admission. In November 2021, hospital clinicians, the Alabama Department of Public Health, the Jefferson County Department of Health, and CDC began an investigation. This activity was reviewed by CDC and conducted consistent with applicable federal law and CDC policy.


Subject(s)
Adenoviridae Infections , Hepatitis , Acute Disease , Alabama/epidemiology , Child , Humans , Public Health
11.
MMWR Morb Mortal Wkly Rep ; 71(33): 1065-1068, 2022 Aug 19.
Article in English | MEDLINE | ID: mdl-35980868

ABSTRACT

On July 18, 2022, the New York State Department of Health (NYSDOH) notified CDC of detection of poliovirus type 2 in stool specimens from an unvaccinated immunocompetent young adult from Rockland County, New York, who was experiencing acute flaccid weakness. The patient initially experienced fever, neck stiffness, gastrointestinal symptoms, and limb weakness. The patient was hospitalized with possible acute flaccid myelitis (AFM). Vaccine-derived poliovirus type 2 (VDPV2) was detected in stool specimens obtained on days 11 and 12 after initial symptom onset. To date, related Sabin-like type 2 polioviruses have been detected in wastewater* in the patient's county of residence and in neighboring Orange County up to 25 days before (from samples originally collected for SARS-CoV-2 wastewater monitoring) and 41 days after the patient's symptom onset. The last U.S. case of polio caused by wild poliovirus occurred in 1979, and the World Health Organization Region of the Americas was declared polio-free in 1994. This report describes the second identification of community transmission of poliovirus in the United States since 1979; the previous instance, in 2005, was a type 1 VDPV (1). The occurrence of this case, combined with the identification of poliovirus in wastewater in neighboring Orange County, underscores the importance of maintaining high vaccination coverage to prevent paralytic polio in persons of all ages.


Subject(s)
COVID-19 , Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Humans , New York/epidemiology , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus Vaccine, Oral/adverse effects , Public Health , SARS-CoV-2 , Wastewater
12.
MMWR Morb Mortal Wkly Rep ; 71(44): 1418-1424, 2022 Nov 04.
Article in English | MEDLINE | ID: mdl-36327157

ABSTRACT

In July 2022, a case of paralytic poliomyelitis resulting from infection with vaccine-derived poliovirus (VDPV) type 2 (VDPV2)§ was confirmed in an unvaccinated adult resident of Rockland County, New York (1). As of August 10, 2022, poliovirus type 2 (PV2)¶ genetically linked to this VDPV2 had been detected in wastewater** in Rockland County and neighboring Orange County (1). This report describes the results of additional poliovirus testing of wastewater samples collected during March 9-October 11, 2022, and tested as of October 20, 2022, from 48 sewersheds (the community area served by a wastewater collection system) serving parts of Rockland County and 12 surrounding counties. Among 1,076 wastewater samples collected, 89 (8.3%) from 10 sewersheds tested positive for PV2. As part of a broad epidemiologic investigation, wastewater testing can provide information about where poliovirus might be circulating in a community in which a paralytic case has been identified; however, the most important public health actions for preventing paralytic poliomyelitis in the United States remain ongoing case detection through national acute flaccid myelitis (AFM) surveillance†† and improving vaccination coverage in undervaccinated communities. Although most persons in the United States are sufficiently immunized, unvaccinated or undervaccinated persons living or working in Kings, Orange, Queens, Rockland, or Sullivan counties, New York should complete the polio vaccination series as soon as possible.


Subject(s)
Poliomyelitis , Poliovirus Vaccine, Oral , Poliovirus , Adult , Humans , New York/epidemiology , Poliomyelitis/diagnosis , Poliomyelitis/epidemiology , Poliomyelitis/prevention & control , Poliovirus/genetics , Poliovirus Vaccine, Oral/adverse effects , United States , Wastewater
13.
Emerg Infect Dis ; 27(7): 1953-1957, 2021 07.
Article in English | MEDLINE | ID: mdl-34152954

ABSTRACT

Four cases of oseltamivir-resistant influenza A(H1N1)pdm09 virus infection were detected among inhabitants of a border detention center in Texas, USA. Hemagglutinin of these viruses belongs to 6B.1A5A-156K subclade, which may enable viral escape from preexisting immunity. Our finding highlights the necessity to monitor both drug resistance and antigenic drift of circulating viruses.


Subject(s)
Influenza A Virus, H1N1 Subtype , Influenza, Human , Antiviral Agents/therapeutic use , Drug Resistance, Viral , Hemagglutinins , Humans , Influenza, Human/drug therapy , Neuraminidase , Oseltamivir/therapeutic use , Texas , Viral Proteins
14.
J Clin Microbiol ; 59(4)2021 03 19.
Article in English | MEDLINE | ID: mdl-33468607

ABSTRACT

Accommodating large increases in sample workloads has presented a major challenge to clinical laboratories during the coronavirus disease 2019 (COVID-19) pandemic. Despite the implementation of automated detection systems and previous efficiencies, including barcoding, electronic data transfer, and extensive robotics, capacities have struggled to meet the demand. Sample pooling has been suggested as an additional strategy to address this need. The greatest concern with this approach in clinical settings is the potential for reduced sensitivity, particularly detection failures with weakly positive samples. To investigate this possibility, detection rates in pooled samples were evaluated, with a focus on pools containing weakly positive specimens. Additionally, the frequencies of occurrence of weakly positive samples during the pandemic were reviewed. Weakly positive specimens, with threshold cycle (CT ) values of 33 or higher, were detected in 95% of 60 five-sample pools but only 87% of 39 nine-sample pools. The proportion of positive samples with very low viral loads rose markedly during the first few months of the pandemic, peaking in June, decreasing thereafter, and remaining level since August. At all times, weakly positive specimens comprised a significant component of the sample population, ranging from 29% to >80% for CT values above 31. In assessing the benefits of pooling strategies, however, other aspects of the testing process must be considered. Accessioning, result data management, electronic data transfer, reporting, and billing are not streamlined and may be complicated by pooling procedures. Therefore, the impact on the entire laboratory process needs to be carefully assessed prior to implementing such a strategy.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19 Testing , Clinical Laboratory Techniques , Humans , Pandemics , Specimen Handling
15.
J Clin Microbiol ; 59(12): e0064921, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34550806

ABSTRACT

Fast and effective methods are needed for sequencing of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genome to track genetic mutations and to identify new and emerging variants during the ongoing pandemic. The objectives were to assess the performance of the SARS-CoV-2 AmpliSeq research panel and S5 plug-in analysis tools for whole-genome sequencing analysis of SARS-CoV-2 and to compare the results with those obtained with the MiSeq-based ARTIC analysis pipeline, using metrics such as depth, coverage, and concordance of single-nucleotide variant (SNV) calls. A total of 191 clinical specimens and a single cultured isolate were extracted and sequenced with AmpliSeq technology and analysis tools. Of the 191 clinical specimens, 83 (with threshold cycle [CT] values of 15.58 to 32.54) were also sequenced using an Illumina MiSeq-based method with the ARTIC analysis pipeline, for direct comparison. A total of 176 of the 191 clinical specimens sequenced on the S5XL system and prepared using the SARS-CoV-2 research panel had nearly complete coverage (>98%) of the viral genome, with an average depth of 5,031×. Similar coverage levels (>98%) were observed for 81/83 primary specimens that were sequenced with both methods tested. The sample with the lowest viral load (CT value of 32.54) achieved 89% coverage using the MiSeq method and failed to sequence with the AmpliSeq method. Consensus sequences produced by each method were identical for 81/82 samples in areas of equal coverage, with a single difference present in one sample. The AmpliSeq approach is as effective as the Illumina-based method using ARTIC v3 amplification for sequencing SARS-CoV-2 directly from patient specimens across a range of viral loads (CT values of 15.56 to 32.54 [median, 22.18]). The AmpliSeq workflow is very easily automated with the Ion Chef and S5 instruments and requires less training and experience with next-generation sequencing sample preparation than the Illumina workflow.


Subject(s)
COVID-19 , SARS-CoV-2 , Genome, Viral/genetics , High-Throughput Nucleotide Sequencing , Humans , Pandemics , Whole Genome Sequencing
16.
J Clin Microbiol ; 59(5)2021 04 20.
Article in English | MEDLINE | ID: mdl-33674284

ABSTRACT

Identifying SARS-CoV-2 infections through aggressive diagnostic testing remains critical to tracking and curbing the spread of the COVID-19 pandemic. Collection of nasopharyngeal swabs (NPS), the preferred sample type for SARS-CoV-2 detection, has become difficult due to the dramatic increase in testing and consequent supply strain. Therefore, alternative specimen types have been investigated that provide similar detection sensitivity with reduced health care exposure and the potential for self-collection. In this study, the detection sensitivity of SARS-CoV-2 in nasal swabs (NS) and saliva was compared to that of NPS using matched specimens from two outpatient cohorts in New York State (total n = 463). The first cohort showed only a 5.4% positivity, but the second cohort (n = 227) had a positivity rate of 41%, with sensitivity in NPS, NS, and saliva of 97.9%, 87.1%, and 87.1%, respectively. Whether the reduced sensitivity of NS or saliva is acceptable must be assessed in the settings where they are used. However, we sought to improve on it by validating a method to mix the two sample types, as the combination of nasal swab and saliva resulted in 94.6% SARS-CoV-2 detection sensitivity. Spiking experiments showed that combining them did not adversely affect the detection sensitivity in either. Virus stability in saliva was also investigated, with and without the addition of commercially available stabilizing solutions. The virus was stable in saliva at both 4°C and room temperature for up to 7 days. The addition of stabilizing solutions did not enhance stability and, in some situations, reduced detectable virus levels.


Subject(s)
COVID-19 Testing , COVID-19/diagnosis , Saliva/virology , Specimen Handling/methods , Humans , Nasopharynx/virology , New York , Pandemics , SARS-CoV-2/isolation & purification , Sensitivity and Specificity , Temperature
17.
Transpl Infect Dis ; 23(3): e13542, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33278052

ABSTRACT

Few treatment options are available for oseltamivir-resistant influenza. It has been proposed that baloxavir can be effective in this setting due to its distinct mechanism of action but clinical experience is lacking for immunocompromised patients. We report two such cases treated with baloxavir after failure of oseltamivir and detection of oseltamivir resistance mutations. Baloxavir/zanamivir combination therapy was effective in one patient, but persistent viral shedding was noted with baloxavir monotherapy in the other patient.


Subject(s)
Dibenzothiepins/therapeutic use , Influenza, Human , Morpholines/therapeutic use , Pyridones/therapeutic use , Triazines/therapeutic use , Antiviral Agents/therapeutic use , Drug Resistance, Viral/drug effects , Humans , Immunocompromised Host , Influenza, Human/drug therapy , Alphainfluenzavirus , Neuraminidase/therapeutic use , Oseltamivir/therapeutic use , Zanamivir/therapeutic use
18.
Clin Infect Dis ; 71(8): 1953-1959, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32382743

ABSTRACT

BACKGROUND: The US' coronavirus disease 2019 (COVID-19) epidemic has grown extensively since February 2020, with substantial associated hospitalizations and mortality; New York State has emerged as the national epicenter. We report on the extent of testing and test results during the month of March in New York State, along with risk factors, outcomes, and household prevalence among initial cases subject to in-depth investigations. METHODS: Specimen collection for COVID-19 testing was conducted in healthcare settings, community-based collection sites, and by home testing teams. Information on demographics, risk factors, and hospital outcomes of cases was obtained through epidemiological investigations and an electronic medical records match, and summarized descriptively. Active testing of initial case's households enabled estimation of household prevalence. RESULTS: During March in New York State, outside of New York City, a total of 47 326 persons tested positive for severe acute respiratory syndrome coronavirus 2, out of 141 495 tests (33% test-positive), with the highest number of cases located in the metropolitan region counties. Among 229 initial cases diagnosed through 12 March, by 30 March 13% were hospitalized and 2% died. Testing conducted among 498 members of these case's households found prevalent infection among 57%, excluding first-reported cases 38%. In these homes, we found a significant age gradient in prevalence, from 23% among those < 5 years to 68% among those ≥ 65 years (P < .0001). CONCLUSIONS: New York State faced a substantial and increasing COVID-19 outbreak during March 2020. The earliest cases had high levels of infection in their households and by the end of the month, the risks of hospitalization and death were high.


Subject(s)
Clinical Laboratory Techniques/statistics & numerical data , Coronavirus Infections/epidemiology , Family Characteristics , Hospitalization/statistics & numerical data , Pneumonia, Viral/epidemiology , Adolescent , Adult , Age Distribution , Aged , COVID-19 , COVID-19 Testing , Child , Child, Preschool , Coronavirus Infections/diagnosis , Female , Humans , Infant , Infant, Newborn , Male , Middle Aged , New York/epidemiology , Pandemics , Prevalence , Risk Factors , Spatial Analysis , Young Adult
19.
Emerg Infect Dis ; 26(5): 1047-1049, 2020 05.
Article in English | MEDLINE | ID: mdl-32310076

ABSTRACT

Human adenovirus 7d is a respiratory pathogen capable of causing acute respiratory disease of variable severity. Phylogenetic analysis of whole-genome sequences of 15 strains isolated from cases of influenza-like-illness during 2017-2019 demonstrated the circulation of 2 distinct clades of genomic variant 7d in colleges in New York, USA.


Subject(s)
Adenoviruses, Human , Influenza, Human , Virus Diseases , Adenoviruses, Human/genetics , Humans , Influenza, Human/epidemiology , New York/epidemiology , Phylogeny
20.
J Clin Microbiol ; 58(8)2020 Jul 23.
Article in English | MEDLINE | ID: mdl-32381642

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has brought a new wave of challenges to health care, particularly in the area of rapid diagnostic test development and implementation. The diagnosis of acute coronavirus disease 2019 (COVID-19) is critically dependent on the detection of SARS-CoV-2 RNA from clinical specimens (e.g., nasopharyngeal swabs). While laboratory-developed testing for SARS-CoV-2 is an essential component of diagnostic testing for this virus, the majority of clinical microbiology laboratories are dependent on commercially available SARS-CoV-2 molecular assays. In contrast to assays approved or cleared by the U.S. Food and Drug Administration (FDA) for in vitro diagnostic use, assays for the detection of SARS-CoV-2 nucleic acids have emergency use authorization (EUA) from the FDA. Outside of highly specialized academic and commercial laboratory settings, clinical microbiology laboratories are likely unfamiliar with the EUA classification, and thus, assay verification can be daunting. Further compounding anxiety for laboratories are major issues with the supply chain that are dramatically affecting the availability of test reagents and requiring laboratories to implement multiple commercial EUA tests. Here, we describe guidance for the verification of assays with EUA for the detection of SARS-CoV-2 nucleic acid from clinical specimens.


Subject(s)
Betacoronavirus/isolation & purification , Clinical Laboratory Techniques/methods , Coronavirus Infections/diagnosis , Diagnostic Test Approval , Pneumonia, Viral/diagnosis , RNA, Viral/isolation & purification , Betacoronavirus/genetics , COVID-19 , COVID-19 Testing , Clinical Laboratory Techniques/standards , Humans , Pandemics , RNA, Viral/genetics , SARS-CoV-2 , United States , United States Food and Drug Administration
SELECTION OF CITATIONS
SEARCH DETAIL