Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 73
Filter
1.
Hum Genomics ; 17(1): 71, 2023 07 31.
Article in English | MEDLINE | ID: mdl-37525271

ABSTRACT

BACKGROUND: Marine seaweeds are considered as a rich source of health-promoting compounds by the food and pharmaceutical industry. Hypnea musciformis is a marine red macroalga (seaweed) that is widely distributed throughout the world, including the Mediterranean Sea. It is known to contain various bioactive compounds, including sulfated polysaccharides, flavonoids, and phlorotannins. Recent studies have investigated the potential anticancer effects of extracts from H. musciformis demonstrating their cytotoxic effects on various cancer cell lines. The anticancer effects of these extracts are thought to be due to the presence of bioactive compounds, particularly sulfated polysaccharides, which have been shown to have anticancer and immunomodulatory effects. However, further studies are needed to fully understand the molecular mechanisms that underlie their anticancer effects and to determine their potential as therapeutic agents for cancer treatment. METHODS: H. musciformis was collected from the Aegean Sea (Greece) and used for extract preparation. Transcriptome and proteome analysis was performed in liver and colon cancer human cell lines following treatment with H. musciformis seaweed extracts to characterize its anticancer effect in detail at the molecular level and to link transcriptome and proteome responses to the observed phenotypes in cancer cells. RESULTS: We have identified that treatment with the seaweed extract triggers a p53-mediated response at the transcriptional and protein level in liver cancer cells, in contrast to colon cancer cells in which the effects are more associated with metabolic changes. Furthermore, we show that in treated HepG2 liver cancer cells, p53 interacts with the chromatin of several target genes and facilitates their upregulation possibly through the recruitment of the p300 co-activator. CONCLUSIONS: Overall, the available evidence suggests that extracts from H. musciformis have the potential to serve as a source of anticancer agents in liver cancer cells mainly through activation of a p53-mediated anti-tumor response that is linked to inhibition of cellular proliferation and induction of cell death.


Subject(s)
Antineoplastic Agents , Colonic Neoplasms , Intestinal Neoplasms , Liver Neoplasms , Seaweed , Humans , Proteome , Transcriptome , Tumor Suppressor Protein p53/genetics , Antineoplastic Agents/pharmacology , Polysaccharides , Plant Extracts/pharmacology , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics
2.
Mar Drugs ; 22(3)2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38535471

ABSTRACT

The aim of the present study was to investigate the use of Posidonia oceanica for making products beneficial for human health. Firstly, we demonstrated that the antioxidant defense (i.e., SOD and APX activity) of P. oceanica's living leaves (LP) has low efficacy, as they partly neutralize the produced H2O2. However, high H2O2 levels led LP to produce, as a response to oxidative stress, high phenolic content, including chicoric acid, p-coumaric acid, caftaric acid, trans-cinnamic and rutin hydrate, as shown by UHPLC-DAD analysis. In addition, LP extracts inhibited intestinal cancer cell proliferation. Moreover, P. oceanica's beach casts consisting of either Wet 'Necromass' (WNP) or Dry 'Necromass' (DNP) were used for preparing extracts. Both DNP and WNP exhibited antioxidant and antiproliferative activities, although lower as compared to those of LP extracts. Although both P. oceanica's meadows and beach casts are considered priority habitats in the Mediterranean Sea due to their high ecological value, legislation framework for beach casts forbidding their removal is still missing. Our results suggested that both LP and DNP could be utilized for the production of high-added value products promoting human health, provided that a sustainability management strategy would be applied for P. oceanica's meadows and beach casts.


Subject(s)
Alismatales , Antioxidants , Humans , Hydrogen Peroxide , Oxidative Stress , Intestines , Cell Transformation, Neoplastic
3.
Int J Mol Sci ; 24(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36834967

ABSTRACT

Athletes often consume functional beverages in order to improve performance and reduce oxidative stress caused by high-intensity exercise. The present study aimed to evaluate the antioxidant and antibacterial properties of a functional sports beverage formulation. The beverage's antioxidant effects were assessed on human mesenchymal stem cells (MSCs) by determining thiobarbituric acid reactive substances (TBARS; TBARS levels decreased significantly by 52.67% at 2.0 mg/mL), total antioxidant capacity (TAC; TAC levels increased significantly by 80.82% at 2.0 mg/mL) and reduced glutathione (GSH; GSH levels increased significantly by 24.13% at 2.0 mg/mL) levels. Furthermore, the beverage underwent simulated digestion following the INFOGEST protocol to assess its oxidative stability. The analysis of the total phenolic content (TPC) using the Folin-Ciocalteu assay revealed that the beverage contained a TPC of 7.58 ± 0.066 mg GAE/mL, while the phenolics identified by HPLC were catechin (2.149 mg/mL), epicatechin (0.024 mg/mL), protocatechuic acid (0.012 mg/mL), luteolin 7-glucoside (0.001 mg/mL), and kaempferol-3-O-ß-rutinoside (0.001 mg/mL). The beverage's TPC was strongly correlated with TAC (R2 = 896). Moreover, the beverage showcased inhibitory and bacteriostatic effects against Staphylococcus aureus and Pseudomonas aeruginosa. Lastly, the sensory acceptance test demonstrated that the functional sports beverage was well accepted by the assessors.


Subject(s)
Antioxidants , Phenols , Humans , Antioxidants/pharmacology , Thiobarbituric Acid Reactive Substances/analysis , Phenols/analysis , Beverages/analysis , Anti-Bacterial Agents/pharmacology
4.
Mar Drugs ; 19(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34822512

ABSTRACT

Angiogenesis, including the growth of new capillary blood vessels from existing ones and the malignant tumors cells formed vasculogenic mimicry, is quite important for the tumor metastasis. Anti-angiogenesis is one of the significant therapies in tumor treatment, while the clinical angiogenesis inhibitors usually exhibit endothelial cells dysfunction and drug resistance. Bis(2,3,6-tribromo-4,5-dihydroxybenzyl)ether (BTDE), a marine algae-derived bromophenol compound, has shown various biological activities, however, its anti-angiogenesis function remains unknown. The present study illustrated that BTDE had anti-angiogenesis effect in vitro through inhibiting human umbilical vein endothelial cells migration, invasion, tube formation, and the activity of matrix metalloproteinases 9 (MMP9), and in vivo BTDE also blocked intersegmental vessel formation in zebrafish embryos. Moreover, BTDE inhibited the migration, invasion, and vasculogenic mimicry formation of lung cancer cell A549. All these results indicated that BTDE could be used as a potential candidate in anti-angiogenesis for the treatment of cancer.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Microalgae , Phenols/pharmacology , A549 Cells/drug effects , Angiogenesis Inhibitors/chemistry , Animals , Aquatic Organisms , Cell Proliferation/drug effects , Human Umbilical Vein Endothelial Cells/drug effects , Humans , Neovascularization, Physiologic/drug effects , Phenols/chemistry
5.
Mar Drugs ; 18(8)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759739

ABSTRACT

Marine algae contain various bromophenols that have been shown to possess a variety of biological activities, including antiradical, antimicrobial, anticancer, antidiabetic, anti-inflammatory effects, and so on. Here, we briefly review the recent progress of these marine algae biomaterials and their derivatives from 2011 to 2020, with respect to structure, bioactivities, and their potential application as pharmaceuticals.


Subject(s)
Chlorophyta , Cyanobacteria , Hydrocarbons, Brominated/pharmacology , Phaeophyceae , Phenols/pharmacology , Rhodophyta , Animals , Chlorophyta/chemistry , Cyanobacteria/chemistry , Humans , Hydrocarbons, Brominated/chemistry , Hydrocarbons, Brominated/isolation & purification , Molecular Structure , Phaeophyceae/chemistry , Phenols/chemistry , Phenols/isolation & purification , Rhodophyta/chemistry , Structure-Activity Relationship
6.
Toxicol Appl Pharmacol ; 353: 1-14, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29885332

ABSTRACT

Cardiovascular diseases are among the most significant causes of mortality in humans. Pesticides toxicity and risk for human health are controlled at a European level through a well-developed regulatory network, but cardiotoxicity is not described as a separate hazard class. Specific classification criteria should be developed within the frame of Regulation (EC) No 1272/2008 in order to classify chemicals as cardiotoxic, if applicable to avoid long-term cardiovascular complications. The aim of this study was to review the cardiac pathology and function impairment due to exposure to pesticides (i.e. organophosphates, organothiophisphates, organochlorines, carbamates, pyrethroids, dipyridyl herbicides, triazoles, triazines) based on both animal and human data. The majority of human data on cardiotoxicity of pesticides come from poisoning cases and epidemiological data. Several cardiovascular complications have been reported in animal models including electrocardiogram abnormalities, myocardial infarction, impaired systolic and diastolic performance, functional remodeling and histopathological findings, such as haemorrhage, vacuolisation, signs of apoptosis and degeneration.


Subject(s)
Cardiotoxicity/epidemiology , Cardiotoxins/toxicity , Heart Diseases/chemically induced , Heart Diseases/epidemiology , Pesticides/toxicity , Animals , Cardiotoxicity/prevention & control , Cardiotoxicity/therapy , Cardiotoxins/poisoning , Heart Diseases/prevention & control , Heart Diseases/therapy , Humans , Pesticides/adverse effects , Pesticides/poisoning
7.
Int J Mol Sci ; 19(10)2018 Oct 07.
Article in English | MEDLINE | ID: mdl-30301274

ABSTRACT

Cisplatin is one of the most potent chemotherapy drugs widely used for cancer treatment. However, due to resistance and toxicity, the application of cisplatin for the treatment of hepatocellular carcinoma (HCC) is limited. Our previous study has shown that granulin A (GRN A), an anticancer peptide, is able to interact with enolase1 (ENO1) and inhibit the growth of HCC in vitro. In the present study, we studied the synergistic effect of the combination of cisplatin and GRN A for the inhibitory effect on HCC. An 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and Chou-Talalay approaches revealed that the combination of GRN A and cisplatin displayed potent synergistic effect. The colony formation and cell viability of HCC cells were inhibited significantly in cells treated with the combination of cisplatin and GRN A, compared with cells treated with cisplatin or GRN A alone. Overexpression of ENO1 diminished the synergistic effect of GRN A and cisplatin in HCC cells. The combination of the two drugs exhibited a more obvious inhibitory effect on cancer cell apoptosis, as analyzed by the cytometry flow, mitochondrial membrane potential (MMP) and western blot analysis. An in vivo study confirmed that the combined use of the two drugs displayed more potent antitumor activity compared to mice treated with cisplatin and GRN A alone; the inhibitory rate of tumor growth was 65.46% and 68.94%, respectively, in mice treated with GRN A and cisplatin. However, the inhibitory rate increased to 86.63% in mice treated with the combination of the two drugs. This study provides evidence that the combination of GRN A and cisplatin is able to sensitize the liver cancer to cisplatin, and that targeting ENO1 is a promising approach for enhancing the antitumor activity of cisplatin.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , Cisplatin/therapeutic use , Granulins/therapeutic use , Liver Neoplasms/drug therapy , Animals , Antineoplastic Agents/administration & dosage , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Cisplatin/administration & dosage , Cisplatin/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Drug Synergism , Female , Granulins/administration & dosage , Granulins/pharmacology , Hep G2 Cells , Humans , Mice, Inbred BALB C , Mice, Nude , Phosphopyruvate Hydratase/genetics , Phosphopyruvate Hydratase/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
8.
J Strength Cond Res ; 31(3): 582-594, 2017 Mar.
Article in English | MEDLINE | ID: mdl-28212265

ABSTRACT

Spanidis, Y, Stagos, D, Orfanou, M, Goutzourelas, N, Bar-or, D, Spandidos, D, and Kouretas, D. Variations in oxidative stress levels in 3 days follow-up in ultramarathon mountain race athletes. J Strength Cond Res 31(3): 582-594, 2017-The aim of the present study was the monitoring of the redox status of runners participating in a mountain ultramarathon race of 103 km. Blood samples from 12 runners were collected prerace and 24, 48, and 72 hours postrace. The samples were analyzed by using conventional oxidative stress markers, such as protein carbonyls (CARB), thiobarbituric acid reactive substances (TBARS), total antioxidant capacity (TAC) in plasma, as well as glutathione (GSH) levels and catalase (CAT) activity in erythrocytes. In addition, 2 novel markers, the static oxidation-reduction potential marker (sORP) and the capacity oxidation-reduction potential (cORP), were measured in plasma. The results showed significant increase in sORP levels and significant decrease in cORP and GSH levels postrace compared with prerace. The other markers did not exhibit significant changes postrace compared with prerace. Furthermore, an interindividual analysis showed that in all athletes but one sORP was increased, whereas cORP was decreased. Moreover, GSH levels were decreased in all athletes at least at 2 time points postrace compared with prerace. The other markers exhibited great variations between different athletes. In conclusion, ORP and GSH markers suggested that oxidative stress has existed even 3 days post ultramarathon race. The practical applications from these results would be that the most effective markers for short-term monitoring of ultramarathon mountain race-induced oxidative stress were sORP, cORP, and GSH. Also, administration of supplements enhancing especially GSH is recommended during ultramarathon mountain races to prevent manifestation of pathological conditions.


Subject(s)
Athletes , Oxidation-Reduction , Oxidative Stress/physiology , Running/physiology , Adult , Antioxidants/metabolism , Biomarkers , Catalase/blood , Glutathione/blood , Humans , Male , Middle Aged , Protein Carbonylation/physiology , Thiobarbituric Acid Reactive Substances/metabolism
9.
Molecules ; 21(9)2016 Aug 30.
Article in English | MEDLINE | ID: mdl-27589706

ABSTRACT

Measuring the antioxidant capacity of foods is essential, as a means of quality control to ensure that the final product reaching the consumer will be of high standards. Despite the already existing assays with which the antioxidant activity is estimated, new, faster and low cost methods are always sought. Therefore, we have developed a novel colorimeter and combined it with a slightly modified DPPH assay, thus creating a kit that can assess the antioxidant capacity of liquids (e.g., different types of coffee, beer, wine, juices) in a quite fast and low cost manner. The accuracy of the colorimeter was ensured by comparing it to a fully validated Hitachi U-1900 spectrophotometer, and a coefficient was calculated to eliminate the observed differences. In addition, a new, user friendly software was developed, in order to render the procedure as easy as possible, while allowing a central monitoring of the obtained results. Overall, a novel kit was developed, with which the antioxidant activity of liquids can be measured, firstly to ensure their quality and secondly to assess the amount of antioxidants consumed with the respective food.


Subject(s)
Antioxidants/analysis , Beverages/analysis , Reagent Kits, Diagnostic , Colorimetry/methods , Humans
10.
Foods ; 12(6)2023 Mar 19.
Article in English | MEDLINE | ID: mdl-36981236

ABSTRACT

Macroalgae exhibit beneficial bioactivities for human health. Thus, the aim of the present study was to examine the antioxidant and anticancer potential of 14 macroalgae species' extracts, namely, Gigartina pistillata, Gigartina teedei, Gracilaria gracilis, Gracilaria sp., Gracilaria bursa pastoris, Colpomenia sinuosa, Cystoseira amentacea, Cystoseira barbata, Cystoseira compressa, Sargassum vulgare, Padina pavonica, Codium fragile, Ulva intestinalis, and Ulva rigida, from the Aegean Sea, Greece. The antioxidant activity was assessed using DPPH, ABTS•+, •OH, and O2•- radicals' scavenging assays, reducing power (RP), and protection from ROO•-induced DNA plasmid damage assays. Moreover, macroalgae extracts' total polyphenol contents (TPCs) were assessed. Extracts' inhibition against liver HepG2 cancer cell growth was assessed using the XTT assay. The results showed that G. teedei extract's IC50 was the lowest in DPPH (0.31 ± 0.006 mg/mL), ABTS•+ (0.02 ± 0.001 mg/mL), •OH (0.10 ± 0.007 mg/mL), O2•- (0.05 ± 0.003 mg/mL), and DNA plasmid breakage (0.038 ± 0.002 mg/mL) and exhibited the highest RP (RP0.5AU 0.24 ± 0.019 mg/mL) and TPC (12.53 ± 0.88 mg GAE/g dw). There was also a significant correlation between antioxidant activity and TPC. P. pavonica (IC50 0.93 ± 0.006 mg/mL) exhibited the highest inhibition against HepG2 cell growth. Conclusively, some of the tested extracts exhibited significant chemopreventive properties, and so they may be used for food products.

11.
Food Chem Toxicol ; 160: 112813, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34999176

ABSTRACT

Diabetic skin ulcer is one of the most common complications in patients suffering diabetes mellitus. Xanthohumol (XN), a hop-derived prenylated dietary flavonoid, has multiple health beneficial bioactivities. In the present study, we reported XN alleviates oxidative damage and accelerates diabetic wound healing via Nrf2 activation. In vitro, XN attenuated hydrogen peroxide (H2O2)-induced cytotoxicity, ROS production, cell apoptosis, as well as high glucose-induced cell damage. Mechanistic studies further demonstrated that XN could stabilize nuclear factor erythroid 2-related factor 2 (Nrf2) and promote its nuclear translocation, which was associated with AMPKα activation and covalent modification of Keap1 by XN. In vivo, XN increased Nrf2 expression and accelerated diabetic wound healing. Our study revealed a novel function of XN in diabetic wound healing as well as the underlying molecular mechanisms, suggesting XN is a promising lead compound and a potential food and/or drug candidate for the treatment of diabetic skin ulcers.


Subject(s)
Diabetes Complications/drug therapy , Diabetes Complications/physiopathology , Flavonoids/administration & dosage , Oxidative Stress/drug effects , Propiophenones/administration & dosage , Skin Ulcer/drug therapy , Skin Ulcer/physiopathology , Animals , Diabetes Complications/genetics , Diabetes Complications/metabolism , Flavonoids/chemistry , Humans , Kelch-Like ECH-Associated Protein 1/genetics , Kelch-Like ECH-Associated Protein 1/metabolism , Male , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Prenylation , Propiophenones/chemistry , Rats , Rats, Sprague-Dawley , Skin Ulcer/genetics , Skin Ulcer/metabolism , Wound Healing/drug effects
12.
Antioxidants (Basel) ; 11(4)2022 Apr 15.
Article in English | MEDLINE | ID: mdl-35453471

ABSTRACT

Natural bromophenols are important secondary metabolites in marine algae. Derivatives of these bromophenol are potential candidates for the drug development due to their biological activities, such as antioxidant, anticancer, anti-diabetic and anti-inflammatory activity. In our present study, we have designed and synthesized a series of new methylated and acetylated bromophenol derivatives from easily available materials using simple operation procedures and evaluated their antioxidant and anticancer activities on the cellular level. The results showed that 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene))bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) compounds ameliorated H2O2-induced oxidative damage and ROS generation in HaCaT keratinocytes. Compounds 2.,3-dibromo-1-(((2-bromo-4,5-dimethoxybenzyl)oxy)methyl)-4,5-dimethoxybenzene (3b-9) and (oxybis(methylene) )bis(4-bromo-6-methoxy-3,1-phenylene) diacetate (4b-3) also increased the TrxR1 and HO-1 expression while not affecting Nrf2 expression in HaCaT. In addition, compounds (oxybis(methylene)bis(2-bromo-6-methoxy-4,1-phenylene) diacetate (4b-4) inhibited the viability and induced apoptosis of leukemia K562 cells while not affecting the cell cycle distribution. The present work indicated that some of these bromophenol derivatives possess significant antioxidant and anticancer potential, which merits further investigation.

13.
Foods ; 11(3)2022 Jan 20.
Article in English | MEDLINE | ID: mdl-35159423

ABSTRACT

Mastic gum is a resinous sap produced by Pistacia lentiscus growing in the island of Chios (Greece) and has been recognized since Antiquity for its distinctive aroma as well as medical properties (antimicrobial, antioxidant, anti-inflammatory ones). The oral absorption of Chios Mastic gum (an insoluble polymer of poly-ß-myrcene is among the most abundant contents) is poor due to its low water-solubility. We report in this study, two different Chios mastic gum extracts, the acidic mastic gum extract-AMGE-and the neutral one-NMGE, both prepared after removal of the contained polymer in order to ameliorate solubility and enhance in vivo activity. Liposomes are presented as a promising delivery system due to their physicochemical and biophysical properties to increase stability and absorption efficiency of the mastic gum extracts within the gastrointestinal (GI) tract. The aim of this study was to evaluate the stability in GI simulated conditions together with cytotoxic and antimicrobial activity of the two extracts (AMGE and NMGE) after encapsulation in a well characterized liposome formulation. Liposomes-AMGE complex showed an improved stability behavior in GI simulated conditions. Both assayed extracts showed significant dose dependent inhibition against the growth of liver cancer HepG2 cells and an interesting antimicrobial activity against several microorganisms. Conclusively, encapsulation could be evaluated as a beneficial procedure for further applications of mastic resin.

14.
Antioxidants (Basel) ; 10(9)2021 Sep 09.
Article in English | MEDLINE | ID: mdl-34573068

ABSTRACT

Excessive reactive oxygen species (ROS) promotes the oxidative stress of keratinocytes, eventually causing cell damage. The natural bromophenol bis (2,3,6-tribromo-4,5-dihydroxybenzyl) ether (BTDE) from marine red algae has been reported to have a varied bioactivity; however, its antioxidant effect has yet to be investigated systemically. Our present work aimed to explore the antioxidant effect of BTDE both on the molecular and cellular models and also to illustrate the antioxidant mechanisms. Our results showed that BTDE could effectively scavenge ABTS free radicals and protect HaCaT cells from damage induced by H2O2. Mechanism studies in HaCaT cells demonstrated that BTDE attenuated hydrogen peroxide (H2O2)-induced ROS production, reduced the malondialdehyde (MDA) level, decreased the oxidized glutathione (GSSG)/glutathione (GSH) ratio, and increased the antioxidant enzyme superoxide dismutase (SOD). Moreover, BTDE could inhibit the expression of Kelch-like epichlorohydrin-associated protein 1 (Keap1) and increase the expression of both nuclear factor erythroid 2-related factor 2 (Nrf2) and its downstream proteins TrXR1, HO-1, and NQO1. BTDE also activated the upstream signaling pathway of Nrf2 such as AKT pathway, while not activating the ERK or AMPKα pathways. In general, BTDE is a promising antioxidant to protect HaCaT cells against oxidative damage via Nrf2-mediated pathways.

15.
Drug Metab Dispos ; 38(10): 1679-87, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20616185

ABSTRACT

Ethanol-induced damage is largely attributed to its toxic metabolite, acetaldehyde. Clearance of acetaldehyde is achieved by its oxidation, primarily catalyzed by the mitochondrial class II aldehyde dehydrogenase (ALDH2). ALDH1B1 is another mitochondrial aldehyde dehydrogenase (ALDH) that shares 75% peptide sequence homology with ALDH2. Recent population studies in whites suggest a role for ALDH1B1 in ethanol metabolism. However, to date, no formal documentation of the biochemical properties of ALDH1B1 has been forthcoming. In this current study, we cloned and expressed human recombinant ALDH1B1 in Sf9 insect cells. The resultant enzyme was purified by affinity chromatography to homogeneity. The kinetic properties of purified human ALDH1B1 were assessed using a wide range of aldehyde substrates. Human ALDH1B1 had an exclusive preference for NAD(+) as the cofactor and was catalytically active toward short- and medium-chain aliphatic aldehydes, aromatic aldehydes, and the products of lipid peroxidation, 4-hydroxynonenal and malondialdehyde. Most importantly, human ALDH1B1 exhibited an apparent K(m) of 55 µM for acetaldehyde, making it the second low K(m) ALDH for metabolism of this substrate. The dehydrogenase activity of ALDH1B1 was sensitive to disulfiram inhibition, a feature also shared with ALDH2. The tissue distribution of ALDH1B1 in C57BL/6J mice and humans was examined by quantitative polymerase chain reaction, Western blotting, and immunohistochemical analysis. The highest expression occurred in the liver, followed by the intestinal tract, implying a potential physiological role for ALDH1B1 in these tissues. The current study is the first report on the expression, purification, and biochemical characterization of human ALDH1B1 protein.


Subject(s)
Acetaldehyde/metabolism , Aldehyde Dehydrogenase , Mitochondria/enzymology , Recombinant Proteins , Aldehyde Dehydrogenase/chemistry , Aldehyde Dehydrogenase/genetics , Aldehyde Dehydrogenase/metabolism , Aldehyde Dehydrogenase 1 Family , Aldehyde Dehydrogenase, Mitochondrial , Amino Acid Sequence , Animals , Baculoviridae/genetics , Blotting, Western , Cell Line , Cloning, Molecular , Ethanol/pharmacokinetics , Genetic Vectors , Humans , Immunohistochemistry , Insecta , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Molecular Sequence Data , NAD/metabolism , Organ Specificity , Oxidation-Reduction , Plasmids , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
16.
Oncol Rep ; 44(4): 1772, 2020 10.
Article in English | MEDLINE | ID: mdl-32945511

ABSTRACT

Subsequently to the publication of this paper, the authors have realized that the name of the seventh listed author, Dimitrios Stagos, was spelt incorrectly (it appeared as 'Stagkos' in print). The corrected author list is shown above. The authors regret that the name of the seventh author on the paper was spelt incorrectly, and apologize to the readers for any inconvenience caused.[the original article was published in Oncology Reports 44: 798-818, 2020; DOI: 10.3892/or.2020.7688].

17.
Pharmacogenet Genomics ; 19(11): 893-902, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19823103

ABSTRACT

OBJECTIVE: The human aldehyde dehydrogenase (ALDH) gene superfamily consists of 19 genes encoding enzymes critical for NAD(P)-dependent oxidation of endogenous and exogenous aldehydes, including drugs and environmental toxicants. Mutations in ALDH genes are the molecular basis of several disease states (e.g. Sjögren-Larsson syndrome, pyridoxine-dependent seizures, and type II hyperprolinemia) and may contribute to the etiology of complex diseases such as cancer and Alzheimer's disease. The aim of this nomenclature update was to identify splice transcriptional variants principally for the human ALDH genes. METHODS: Data-mining methods were used to retrieve all human ALDH sequences. Alternatively spliced transcriptional variants were determined based on (i) criteria for sequence integrity and genomic alignment; (ii) evidence of multiple independent cDNA sequences corresponding to a variant sequence; and (iii) if available, empirical evidence of variants from the literature. RESULTS AND CONCLUSION: Alternatively spliced transcriptional variants and their encoded proteins exist for most of the human ALDH genes; however, their function and significance remain to be established. When compared with the human genome, rat and mouse include an additional gene, Aldh1a7, in the ALDH1A subfamily. To avoid confusion when identifying splice variants in various genomes, nomenclature guidelines for the naming of such alternative transcriptional variants and proteins are recommended herein. In addition, a web database (www.aldh.org) has been developed to provide up-to-date information and nomenclature guidelines for the ALDH superfamily.


Subject(s)
Aldehyde Dehydrogenase/genetics , Alternative Splicing/genetics , Terminology as Topic , Transcription, Genetic , Animals , Exons/genetics , Humans , Mice , Multigene Family/genetics , Phylogeny , Rats
18.
Biochem Biophys Res Commun ; 379(3): 654-8, 2009 Feb 13.
Article in English | MEDLINE | ID: mdl-19056352

ABSTRACT

The aim of the present study was to investigate the effects of 4-hydroxy-2-nonenal (4-HNE) on tube formation by human bone marrow endothelial cells (HBMEC). We found that 4-HNE at physiologically achievable concentrations (5 and 10 microM) inhibited the formation of tubes. Western blot analysis revealed that inhibition of tube formation by 4-HNE was associated with increased expression of chondromodulin-I (CHM-I), a protein with well-known anti-angiogenic properties. Cell viability assays showed that 4-HNE at concentrations of 10 microM or less did not cause HBMEC cell death. Luciferase reporter assays did not show any inducing effect of 4-HNE on the promoter activity of human CHM-I gene indicating that post-transcriptional or post-translational modifications may account for the up-regulation of CHM-I. Collectively, the results of the present study show for the first time that 4-HNE inhibits tube formation by HBMECs indicating a potential anti-angiogenic activity of 4-HNE. This inhibition occurs at least in part via 4-HNE-induced CHM-I protein expression.


Subject(s)
Aldehydes/pharmacology , Bone Marrow Cells/drug effects , Cysteine Proteinase Inhibitors/pharmacology , Endothelial Cells/drug effects , Intercellular Signaling Peptides and Proteins/biosynthesis , Membrane Proteins/biosynthesis , Neovascularization, Physiologic/drug effects , Bone Marrow Cells/metabolism , Cells, Cultured , Endothelial Cells/metabolism , Humans , Intercellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Promoter Regions, Genetic/drug effects , Up-Regulation
19.
Antioxidants (Basel) ; 9(1)2019 Dec 24.
Article in English | MEDLINE | ID: mdl-31878236

ABSTRACT

Plant polyphenols are secondary metabolites characterized by one or more hydroxyl groups binding to one or more aromatic rings [...].

20.
Antioxidants (Basel) ; 8(8)2019 Aug 05.
Article in English | MEDLINE | ID: mdl-31387273

ABSTRACT

The aim of the present study was to compare maltodextrin and whey protein as encapsulation carriers for olive mill wastewater (OMWW) phenolic extract for producing antioxidant powder, by using spray drying under 17 different conditions. In some samples, gelatin was also added in the encapsulation mixture. The antioxidant activity was assessed in vitro by using the DPPH•, ABTS•+, reducing power and DNA plasmid strand breakage assays. The results showed that both materials were equally effective for producing antioxidant powder, although by using different conditions. For example, inlet/outlet temperature of the spray drying did not seem to affect the maltodextrin samples' antioxidant activity, but whey protein samples showed better antioxidant activity at lower temperatures. Gelatin use decreased antioxidant activity, especially in whey protein samples. The two most potent samples, one encapsulated in maltodextrin and the other in whey protein, were examined for their antioxidant effects in human endothelial cells by assessing glutathione (GSH) and reactive oxygen species (ROS) levels. Both samples significantly enhanced the antioxidant molecule of GSH, while maltodextrin sample also decreased ROS. The present findings suggested both materials for encapsulation of OMWW extract for producing antioxidant powder which may be used in food products, especially for the protection from ROS-induced endothelium pathologies.

SELECTION OF CITATIONS
SEARCH DETAIL