Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Nature ; 554(7692): 392, 2018 02 15.
Article in English | MEDLINE | ID: mdl-29258299

ABSTRACT

This corrects the article DOI: 10.1038/39062.

2.
FASEB J ; 36(3): e22208, 2022 03.
Article in English | MEDLINE | ID: mdl-35192204

ABSTRACT

The blood-brain barrier (BBB) prevents the majority of drugs from crossing into the brain and reaching neurons. To overcome this challenge, safe and non-invasive technologies targeting receptor-mediated pathways have been developed. In this study, three single-domain antibodies (sdAbs; IGF1R3, IGF1R4, and IGF1R5) targeting the extracellular domain of the human insulin-like growth factor-1 receptor (IGF1R), generated by llama immunization, showed enhanced transmigration across the rat BBB model (SV-ARBEC) in vitro. The rate of brain uptake of these sdAbs fused to mouse Fc (sdAb-mFc) in vivo was estimated using the fluorescent in situ brain perfusion (ISBP) technique followed by optical brain imaging and distribution volume evaluation. Compared to the brains perfused with the negative control A20.1-mFc, the brains perfused with anti-IGF1R sdAbs showed a significant increase of the total fluorescence intensity (~2-fold, p < .01) and the distribution volume (~4-fold, p < .01). The concentration curve for IGF1R4-mFc demonstrated a linear accumulation plateauing at approximately 400 µg (~1 µM), suggesting a saturable mechanism of transport. Capillary depletion and mass spectrometry analyses of brain parenchyma post-ISBP confirmed the IGF1R4-mFc brain uptake with ~25% of the total amount being accumulated in the parenchymal fraction in contrast to undetectable levels of A20.1-mFc after a 5-min perfusion protocol. Systemic administration of IGF1R4-mFc fused with the non-BBB crossing analgesic peptide galanin (2 and 5 mg/kg) induced a dose-dependent suppression of thermal hyperalgesia in the Hargreaves pain model. In conclusion, novel anti-IGF1R sdAbs showed receptor-mediated brain uptake with pharmacologically effective parenchymal delivery of non-permeable neuroactive peptides.


Subject(s)
Blood-Brain Barrier/metabolism , Receptor, IGF Type 1/immunology , Single-Chain Antibodies/pharmacokinetics , Animals , Capillary Permeability , Cell Line , Cells, Cultured , Male , Mice , Mice, Inbred BALB C , Rats , Rats, Sprague-Dawley , Single-Chain Antibodies/immunology
3.
Pharm Res ; 39(7): 1497-1507, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35704250

ABSTRACT

PURPOSE: We have recently demonstrated the brain-delivery of an Amyloid-ß oligomer (Aßo)-binding peptide-therapeutic fused to the BBB-crossing single domain antibody FC5. The bi-functional fusion protein, FC5-mFc-ABP (KG207-M) lowered both CSF and brain Aß levels after systemic dosing in transgenic mouse and rat models of Alzheimer's disease (AD). For development as a human therapeutic, we have humanized and further engineered the fusion protein named KG207-H. The purpose of the present study was to carry out comparative PK/PD studies of KG207-H in wild type rat and beagle dogs (middle-aged and older) to determine comparability of systemic PK and CSF exposure between rodent species and larger animals with more complex brain structure such as dogs. METHOD: Beagle dogs were used in this study as they accumulate cerebral Aß with age, as seen in human AD patients, and can serve as a model of sporadic AD. KG207-H (5 to 50 mg/kg) was administered intravenously and serum and CSF samples were serially collected for PK studies and to assess target engagement. KG207-H and Aß levels were quantified using multiplexed selected reaction monitoring mass spectrometry. RESULTS: After systemic dosing, KG207-H demonstrated similar serum pharmacokinetics in rats and dogs. KG207-H appeared in the CSF in a time- and dose-dependent manner with similar kinetics, indicating CNS exposure. Further analyses revealed a dose-dependent inverse relationship between CSF KG207-H and Aß levels in both species indicating target engagement. CONCLUSION: This study demonstrates translational attributes of BBB-crossing Aß-targeting biotherapeutic KG207-H in eliciting a pharmacodynamic response, from rodents to larger animal species.


Subject(s)
Alzheimer Disease , Alzheimer Disease/drug therapy , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Animals , Blood-Brain Barrier/metabolism , Brain/metabolism , Dogs , Mice , Mice, Transgenic , Rats
4.
Nat Immunol ; 9(2): 137-45, 2008 Feb.
Article in English | MEDLINE | ID: mdl-18157132

ABSTRACT

Adhesion molecules of the immunoglobulin superfamily are crucial effectors of leukocyte trafficking into the central nervous system. Using a lipid raft-based proteomic approach, we identified ALCAM as an adhesion molecule involved in leukocyte migration across the blood-brain barrier (BBB). ALCAM expressed on BBB endothelium localized together with CD6 on leukocytes and with BBB endothelium transmigratory cups. ALCAM expression on BBB cells was upregulated in active multiple sclerosis and experimental autoimmune encephalomyelitis lesions. Moreover, ALCAM blockade restricted the transmigration of CD4+ lymphocytes and monocytes across BBB endothelium in vitro and in vivo and reduced the severity and delayed the time of onset of experimental autoimmune encephalomyelitis. Our findings indicate an important function for ALCAM in the recruitment of leukocytes into the brain and identify ALCAM as a potential target for the therapeutic dampening of neuroinflammation.


Subject(s)
Activated-Leukocyte Cell Adhesion Molecule/metabolism , Blood-Brain Barrier/metabolism , Brain/immunology , CD4-Positive T-Lymphocytes/immunology , Cell Movement , Encephalomyelitis, Autoimmune, Experimental/immunology , Activated-Leukocyte Cell Adhesion Molecule/analysis , Activated-Leukocyte Cell Adhesion Molecule/drug effects , Blood-Brain Barrier/chemistry , Cell Movement/drug effects , Cells, Cultured , Humans , Membrane Microdomains/chemistry , Membrane Microdomains/metabolism , Proteomics
5.
J Physiol ; 596(3): 445-475, 2018 02 01.
Article in English | MEDLINE | ID: mdl-29023798

ABSTRACT

KEY POINTS: It is unclear precisely how macromolecules (e.g. endogenous proteins and exogenous immunotherapeutics) access brain tissue from the cerebrospinal fluid (CSF). We show that transport at the brain-CSF interface involves a balance between Fickian diffusion in the extracellular spaces at the brain surface and convective transport in perivascular spaces of cerebral blood vessels. Intrathecally-infused antibodies exhibited size-dependent access to the perivascular spaces and tunica media basement membranes of leptomeningeal arteries. Perivascular access and distribution of full-length IgG could be enhanced by intrathecal co-infusion of hyperosmolar mannitol. Pores or stomata present on CSF-facing leptomeningeal cells ensheathing blood vessels in the subarachnoid space may provide unique entry sites into the perivascular spaces from the CSF. These results illuminate new mechanisms likely to govern antibody trafficking at the brain-CSF interface with relevance for immune surveillance in the healthy brain and insights into the distribution of therapeutic antibodies. ABSTRACT: The precise mechanisms governing the central distribution of macromolecules from the cerebrospinal fluid (CSF) to the brain and spinal cord remain poorly understood, despite their importance for physiological processes such as antibody trafficking for central immune surveillance, as well as several ongoing intrathecal clinical trials. In the present study, we clarify how IgG and smaller single-domain antibodies (sdAb) distribute throughout the whole brain in a size-dependent manner after intrathecal infusion in rats using ex vivo fluorescence and in vivo three-dimensional magnetic resonance imaging. Antibody distribution was characterized by diffusion at the brain surface and widespread distribution to deep brain regions along the perivascular spaces of all vessel types, with sdAb accessing a four- to seven-fold greater brain area than IgG. Perivascular transport involved blood vessels of all caliber and putative smooth muscle and astroglial basement membrane compartments. Perivascular access to smooth muscle basement membrane compartments also exhibited size-dependence. Electron microscopy was used to show stomata on leptomeningeal coverings of blood vessels in the subarachnoid space as potential access points allowing substances in the CSF to enter the perivascular space. Osmolyte co-infusion significantly enhanced perivascular access of the larger antibody from the CSF, with intrathecal 0.75 m mannitol increasing the number of perivascular profiles per slice area accessed by IgG by ∼50%. The results of the present study reveal potential distribution mechanisms for endogenous IgG, which is one of the most abundant proteins in the CSF, as well as provide new insights with respect to understanding and improving the drug delivery of macromolecules to the central nervous system via the intrathecal route.


Subject(s)
Brain/physiology , Drug Delivery Systems , Extracellular Space/metabolism , Immunoglobulin G/metabolism , Osmosis , Single-Chain Antibodies/pharmacokinetics , Animals , Biological Transport , Biological Transport, Active , Blood-Brain Barrier/metabolism , Brain/blood supply , Diffusion , Female , Injections, Spinal , Optical Imaging , Rats , Rats, Sprague-Dawley , Single-Chain Antibodies/administration & dosage , Single-Chain Antibodies/cerebrospinal fluid , Tissue Distribution
6.
J Neurochem ; 146(6): 735-752, 2018 09.
Article in English | MEDLINE | ID: mdl-29877588

ABSTRACT

The blood-brain barrier (BBB) is a formidable obstacle to the delivery of therapeutics to the brain. Antibodies that bind transferrin receptor (TfR), which is enriched in brain endothelial cells, have been shown to cross the BBB and are being developed as fusion proteins to deliver therapeutic cargos to brain targets. Various antibodies have been developed for this purpose and their in vivo evaluation demonstrated that either low affinity or monovalent receptor binding re-directs their transcellular trafficking away from lysosomal degradation and toward improved exocytosis on the abluminal side of the BBB. However, these studies have been performed with antibodies that recognize different TfR epitopes and have different binding characteristics, preventing inter-study comparisons. In this study, the efficiency of transcytosis in vitro and intracellular trafficking in endosomal compartments were evaluated in an in vitro BBB model for affinity variants (Kd from 5 to174 nM) of the rat TfR-binding antibody, OX26. Distribution in subcellular fractions of the rat brain endothelial cells was determined using both targeted quantitative proteomics-selected reaction monitoring and fluorescent imaging with markers of early- and late endosomes. The OX26 variants with affinities of 76 and 108 nM showed improved trancytosis (Papp values) across the in vitro BBB model compared with a 5 nM OX26. Although ~40% of the 5 nM OX26 and ~35% of TfR co-localized with late-endosome/lysosome compartment, 76 and 108 nM affinity variants showed lower amounts in lysosomes and a predominant co-localization with early endosome markers. The study links bivalent TfR antibody affinity to mechanisms of sorting and trafficking away from late endosomes and lysosomes, resulting in improvement in their transcytosis efficiency. OPEN PRACTICES: Open Science: This manuscript was awarded with the Open Materials Badge. For more information see: https://cos.io/our-services/open-science-badges/ Cover Image for this issue: doi: 10.1111/jnc.14193.


Subject(s)
Antibodies/metabolism , Blood-Brain Barrier/metabolism , Receptors, Transferrin/immunology , Receptors, Transferrin/metabolism , Transcytosis/physiology , Animals , Antibodies/pharmacology , Antibody Affinity/physiology , Brain/cytology , Endosomes/drug effects , Endosomes/physiology , Endothelial Cells/drug effects , Endothelial Cells/metabolism , In Vitro Techniques , Luminescent Proteins/genetics , Luminescent Proteins/metabolism , Lysosomal-Associated Membrane Protein 1/metabolism , Mass Spectrometry , Protein Binding/physiology , Rats , Subcellular Fractions/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , Red Fluorescent Protein
7.
Mol Pharm ; 15(4): 1420-1431, 2018 04 02.
Article in English | MEDLINE | ID: mdl-29485883

ABSTRACT

The blood-brain barrier (BBB) is a formidable obstacle for brain delivery of therapeutic antibodies. However, antibodies against the transferrin receptor (TfR), enriched in brain endothelial cells, have been developed as delivery carriers of therapeutic cargoes into the brain via a receptor-mediated transcytosis pathway. In vitro and in vivo studies demonstrated that either a low-affinity or monovalent binding of these antibodies to the TfR improves their release on the abluminal side of the BBB and target engagement in brain parenchyma. However, these studies have been performed with mouse-selective TfR antibodies that recognize different TfR epitopes and have varied binding characteristics. In this study, we evaluated serum pharmacokinetics and brain and CSF exposure of the rat TfR-binding antibody OX26 affinity variants, having KDs of 5 nM, 76 nM, 108 nM, and 174 nM, all binding the same epitope in bivalent format. Pharmacodynamic responses were tested in the Hargreaves chronic pain model after conjugation of OX26 affinity variants with the analgesic and antiepileptic peptide, galanin. OX26 variants with affinities of 76 nM and 108 nM showed enhanced brain and cerebrospinal fluid (CSF) exposure and higher potency in the Hargreaves model, compared to a 5 nM affinity variant; lowering affinity to 174 nM resulted in prolonged serum pharmacokinetics, but reduced brain and CSF exposure. The study demonstrates that binding affinity optimization of TfR-binding antibodies could improve their brain and CSF exposure even in the absence of monovalent TfR engagement.


Subject(s)
Antibodies, Monoclonal/chemistry , Brain/drug effects , Galanin/chemistry , Receptors, Transferrin/chemistry , Receptors, Transferrin/metabolism , Animals , Antibodies, Monoclonal/metabolism , Antibody Affinity/physiology , Bioengineering/methods , Blood-Brain Barrier/metabolism , Brain/metabolism , Cerebrospinal Fluid/metabolism , Galanin/metabolism , Male , Protein Transport/physiology , Rats , Rats, Sprague-Dawley
8.
FASEB J ; 30(5): 1927-40, 2016 05.
Article in English | MEDLINE | ID: mdl-26839377

ABSTRACT

Receptor mediated transcytosis harnessing the cellular uptake and transport of natural ligands across the blood-brain barrier (BBB) has been identified as a means for antibody delivery to the CNS. In this study, we characterized bispecific antibodies in which a BBB-crossing antibody fragment FC5 was used as a BBB carrier. Cargo antibodies were either a high-affinity, selective antibody antagonist of the metabotropic glutamate receptor-1 (BBB-mGluR1), a widely abundant CNS target, or an IgG that does not bind the CNS target (BBB-NiP). Both BBB-NiP and BBB-mGluR1 demonstrated a similar 20-fold enhanced rate of transcytosis across an in vitro BBB model compared with mGluR1 IgG fused to a control antibody fragment. All 3 bispecific antibodies exhibited identical pharmacokinetics in vivo Comparative assessment of BBB-NiP and BBB-mGluR1 revealed that, whereas their serum pharmacokinetics and BBB penetration were identical, their central disposition (brain levels) and elimination (cerebrospinal fluid levels) were widely different, due to central target-mediated removal of the mGluR1-engaging antibody. Central mGluR1 target engagement after systemic administration was demonstrated by a dose-dependent inhibition of mGluR-1-mediated thermal hyperalgesia and by colocalization of the antibody with thalamic neurons involved in mGluR1-mediated pain processing. We demonstrate the feasibility of targeting central G-protein-coupled receptors using a BBB-crossing bispecific antibody approach and emerging principles that govern brain distribution and disposition of these antibodies. These data will be important for designing safe and selective CNS antibody therapeutics.-Webster, C. I., Caram-Salas, N., Haqqani, A. S., Thom, G., Brown, L., Rennie, K., Yogi, A., Costain, W., Brunette, E., Stanimirovic, D. B. Brain penetration, target engagement, and disposition of the blood-brain barrier-crossing bispecific antibody antagonist of metabotropic glutamate receptor type 1.


Subject(s)
Antibodies, Bispecific/pharmacology , Brain/metabolism , Pain/drug therapy , Receptors, Metabotropic Glutamate/antagonists & inhibitors , Analgesics , Animals , Biological Products/metabolism , Biological Transport , Blood-Brain Barrier/metabolism , Brain/drug effects , Camelidae , Cell Membrane , HEK293 Cells , Hot Temperature/adverse effects , Humans , Immunoconjugates/metabolism , Immunoglobulin G/immunology , Pain/etiology , Protein Engineering/methods , Rats , Receptors, Metabotropic Glutamate/metabolism
9.
Crit Care Med ; 44(9): e846-53, 2016 09.
Article in English | MEDLINE | ID: mdl-27071071

ABSTRACT

OBJECTIVE: Diabetic ketoacidosis in children is associated with vasogenic cerebral edema, possibly due to the release of destructive polymorphonuclear neutrophil azurophilic enzymes. Our objectives were to measure plasma azurophilic enzyme levels in children with diabetic ketoacidosis, to correlate plasma azurophilic enzyme levels with diabetic ketoacidosis severity, and to determine whether azurophilic enzymes disrupt the blood-brain barrier in vitro. DESIGN: Prospective clinical and laboratory study. SETTING: The Children's Hospital, London Health Sciences Centre. SUBJECTS: Pediatric type 1 diabetes patients; acute diabetic ketoacidosis or age-/sex-matched insulin-controlled. MEASUREMENTS AND MAIN RESULTS: Acute diabetic ketoacidosis in children was associated with elevated polymorphonuclear neutrophils. Plasma azurophilic enzymes were elevated in diabetic ketoacidosis patients, including human leukocyte elastase (p < 0.001), proteinase-3 (p < 0.01), and myeloperoxidase (p < 0.001). A leukocyte origin of human leukocyte elastase and proteinase-3 in diabetic ketoacidosis was confirmed with buffy coat quantitative real-time polymerase chain reaction (p < 0.01). Of the three azurophilic enzymes elevated, only proteinase-3 levels correlated with diabetic ketoacidosis severity (p = 0.002). Recombinant proteinase-3 applied to human brain microvascular endothelial cells degraded both the tight junction protein occludin (p < 0.05) and the adherens junction protein VE-cadherin (p < 0.05). Permeability of human brain microvascular endothelial cell monolayers was increased by recombinant proteinase-3 application (p = 0.010). CONCLUSIONS: Our results indicate that diabetic ketoacidosis is associated with systemic polymorphonuclear neutrophil activation and degranulation. Of all the polymorphonuclear neutrophil azurophilic enzymes examined, only proteinase-3 correlated with diabetic ketoacidosis severity and potently degraded the blood-brain barrier in vitro. Proteinase-3 might mediate vasogenic edema during diabetic ketoacidosis, and selective proteinase-3 antagonists may offer future vascular- and neuroprotection.


Subject(s)
Blood-Brain Barrier/metabolism , Brain Edema/enzymology , Diabetic Ketoacidosis/enzymology , Leukocyte Elastase/blood , Myeloblastin/blood , Peroxidase/blood , Brain Edema/etiology , Case-Control Studies , Cathepsin G/blood , Cell Culture Techniques , Child , Diabetes Mellitus, Type 1/complications , Diabetes Mellitus, Type 1/enzymology , Diabetic Ketoacidosis/complications , Endothelial Cells/physiology , Female , Humans , Male
10.
Nat Rev Neurosci ; 12(3): 169-82, 2011 Mar.
Article in English | MEDLINE | ID: mdl-21331083

ABSTRACT

The delivery of many potentially therapeutic and diagnostic compounds to specific areas of the brain is restricted by brain barriers, of which the most well known are the blood-brain barrier (BBB) and the blood-cerebrospinal fluid (CSF) barrier. Recent studies have shown numerous additional roles of these barriers, including an involvement in neurodevelopment, in the control of cerebral blood flow, and--when barrier integrity is impaired--in the pathology of many common CNS disorders such as Alzheimer's disease, Parkinson's disease and stroke.


Subject(s)
Blood-Brain Barrier/metabolism , Nervous System Diseases/metabolism , Neurosciences/trends , Translational Research, Biomedical/trends , Animals , Biological Transport/physiology , Blood-Brain Barrier/drug effects , Brain/drug effects , Brain/metabolism , Cerebrovascular Circulation/drug effects , Cerebrovascular Circulation/physiology , Humans , Nervous System Diseases/drug therapy , Neuroprotective Agents/metabolism , Neuroprotective Agents/therapeutic use , Neurosciences/methods , Translational Research, Biomedical/methods
11.
FASEB J ; 28(11): 4764-78, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25070367

ABSTRACT

The blood-brain barrier (BBB) prevents the access of therapeutic antibodies to central nervous system (CNS) targets. The engineering of bispecific antibodies in which a therapeutic "arm" is combined with a BBB-transcytosing arm can significantly enhance their brain delivery. The BBB-permeable single-domain antibody FC5 was previously isolated by phenotypic panning of a naive llama single-domain antibody phage display library. In this study, FC5 was engineered as a mono- and bivalent fusion with the human Fc domain to optimize it as a modular brain delivery platform. In vitro studies demonstrated that the bivalent fusion of FC5 with Fc increased the rate of transcytosis (Papp) across brain endothelial monolayer by 25% compared with monovalent fusion. Up to a 30-fold enhanced apparent brain exposure (derived from serum and cerebrospinal fluid pharmacokinetic profiles) of FC5- compared with control domain antibody-Fc fusions after systemic dosing in rats was observed. Systemic pharmacological potency was evaluated in the Hargreaves model of inflammatory pain using the BBB-impermeable neuropeptides dalargin and neuropeptide Y chemically conjugated with FC5-Fc fusion proteins. Improved serum pharmacokinetics of Fc-fused FC5 contributed to a 60-fold increase in pharmacological potency compared with the single-domain version of FC5; bivalent and monovalent FC5 fusions with Fc exhibited similar systemic pharmacological potency. The study demonstrates that modular incorporation of FC5 as the BBB-carrier arm in bispecific antibodies or antibody-drug conjugates offers an avenue to develop pharmacologically active biotherapeutics for CNS indications.


Subject(s)
Antibodies, Bispecific/metabolism , Biological Products/metabolism , Blood-Brain Barrier/metabolism , Animals , Antibodies, Bispecific/immunology , Biological Transport/physiology , Brain/metabolism , Humans , Immunoconjugates/metabolism , Male , Protein Engineering/methods , Rats, Wistar , Recombinant Fusion Proteins/metabolism
12.
Indian J Med Res ; 139(6): 864-72, 2014 Jun.
Article in English | MEDLINE | ID: mdl-25109721

ABSTRACT

BACKGROUND & OBJECTIVES: Aluminum (Al) toxicity is closely linked to the pathogenesis of Alzheimer's disease (AD). This experimental study was aimed to investigate the active avoidance behaviour of rats after intrahippocampal injection of Al, and biochemical and immunohistochemical changes in three bilateral brain structures namely, forebrain cortex (FBCx), hippocampus and basal forebrain (BF). METHODS: Seven days after intra-hippocampal (CA1 sector) injection of AlCl3 into adult male Wistar rats they were subjected to two-way active avoidance (AA) tests over five consecutive days. Control rats were treated with 0.9% w/v saline. The animals were decapitated on the day 12 post-injection. The activities of acetylcholinesterase (AChE) and glucose-6-phosphate dehydrogenase (G6PDH) were measured in the FBCx, hippocampus and BF. Immunohistochemical staining was performed for transferrin receptors, amyloid ß and tau protein. RESULTS: The activities of both AChE and G6PDH were found to be decreased bilaterally in the FBCx, hippocampus and basal forebrain compared to those of control rats. The number of correct AA responses was reduced by AlCl3 treatment. G6PDH administered prior to AlCl 3 resulted in a reversal of the effects of AlCl3 on both biochemical and behavioural parameters. Strong immunohistochemical staining of transferrin receptors was found bilaterally in the FBCx and the hippocampus in all three study groups. In addition, very strong amyloid ß staining was detected bilaterally in all structures in AlCl3-treated rats but was moderate in G6PDH/AlCl3-treated rats. Strong tau staining was noted bilaterally in AlCl3-treated rats. In contrast, tau staining was only moderate in G6PDH/AlCl3-treated rats. INTERPRETATION & CONCLUSIONS: Our findings indicated that the G6PDH alleviated the signs of behavioural and biochemical effects of AlCl3-treatment suggesting its involvement in the pathogenesis of Al neurotoxicity and its potential therapeutic benefit. The present model could serve as a useful tool in AD investigations.


Subject(s)
Acetylcholinesterase/pharmacology , Aluminum/toxicity , CA1 Region, Hippocampal/cytology , Glucosephosphate Dehydrogenase/pharmacology , Neurons/drug effects , Neuroprotective Agents/pharmacology , Aluminum/administration & dosage , Aluminum/metabolism , Amyloid beta-Peptides/metabolism , Animals , Avoidance Learning/drug effects , Glucosephosphate Dehydrogenase/metabolism , Immunohistochemistry , Male , Neuroprotective Agents/metabolism , Rats , Rats, Wistar , Receptors, Transferrin/metabolism
13.
Fluids Barriers CNS ; 21(1): 23, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38433215

ABSTRACT

BACKGROUND: The active transport of molecules into the brain from blood is regulated by receptors, transporters, and other cell surface proteins that are present on the luminal surface of endothelial cells at the blood-brain barrier (BBB). However, proteomic profiling of proteins present on the luminal endothelial cell surface of the BBB has proven challenging due to difficulty in labelling these proteins in a way that allows efficient purification of these relatively low abundance cell surface proteins. METHODS: Here we describe a novel perfusion-based labelling workflow: in vivo glycocapture. This workflow relies on the oxidation of glycans present on the luminal vessel surface via perfusion of a mild oxidizing agent, followed by subsequent isolation of glycoproteins by covalent linkage of their oxidized glycans to hydrazide beads. Mass spectrometry-based identification of the isolated proteins enables high-confidence identification of endothelial cell surface proteins in rats and mice. RESULTS: Using the developed workflow, 347 proteins were identified from the BBB in rat and 224 proteins in mouse, for a total of 395 proteins in both species combined. These proteins included many proteins with transporter activity (73 proteins), cell adhesion proteins (47 proteins), and transmembrane signal receptors (31 proteins). To identify proteins that are enriched in vessels relative to the entire brain, we established a vessel-enrichment score and showed that proteins with a high vessel-enrichment score are involved in vascular development functions, binding to integrins, and cell adhesion. Using publicly-available single-cell RNAseq data, we show that the proteins identified by in vivo glycocapture were more likely to be detected by scRNAseq in endothelial cells than in any other cell type. Furthermore, nearly 50% of the genes encoding cell-surface proteins that were detected by scRNAseq in endothelial cells were also identified by in vivo glycocapture. CONCLUSIONS: The proteins identified by in vivo glycocapture in this work represent the most complete and specific profiling of proteins on the luminal BBB surface to date. The identified proteins reflect possible targets for the development of antibodies to improve the crossing of therapeutic proteins into the brain and will contribute to our further understanding of BBB transport mechanisms.


Subject(s)
Blood-Brain Barrier , Proteome , Rats , Mice , Animals , Endothelial Cells , Proteomics , Brain , Microvessels , Membrane Proteins , Polysaccharides
14.
J Control Release ; 367: 27-44, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38215984

ABSTRACT

Efficient delivery of therapeutics to the central nervous system (CNS) remains a major challenge for the treatment of neurological diseases. Huntington disease (HD) is a dominantly inherited neurodegenerative disorder caused by a CAG trinucleotide expansion mutation in the HTT gene which codes for a toxic mutant huntingtin (mHTT) protein. Pharmacological reduction of mHTT in the CNS using antisense oligonucleotides (ASO) ameliorates HD-like phenotypes in rodent models of HD, with such therapies being investigated in clinical trials for HD. In this study, we report the optimization of apolipoprotein A-I nanodisks (apoA-I NDs) as vehicles for delivery of a HTT-targeted ASO (HTT ASO) to the brain and peripheral organs for HD. We demonstrate that apoA-I wild type (WT) and the apoA-I K133C mutant incubated with a synthetic lipid, 1,2-dimyristoyl-sn-glycero-3-phosphocholine, can self-assemble into monodisperse discoidal particles with diameters <20 nm that transmigrate across an in vitro blood-brain barrier model of HD. We demonstrate that apoA-I NDs are well tolerated in vivo, and that apoA-I K133C NDs show enhanced distribution to the CNS and peripheral organs compared to apoA-I WT NDs following systemic administration. ApoA-I K133C conjugated with HTT ASO forms NDs (HTT ASO NDs) that induce significant mHTT lowering in the liver, skeletal muscle and heart as well as in the brain when delivered intravenously in the BACHD mouse model of HD. Furthermore, HTT ASO NDs increase the magnitude of mHTT lowering in the striatum and cortex compared to HTT ASO alone following intracerebroventricular administration. These findings demonstrate the potential utility of apoA-I NDs as biocompatible vehicles for enhancing delivery of mutant HTT lowering ASOs to the CNS and peripheral organs for HD.


Subject(s)
Huntington Disease , Oligonucleotides, Antisense , Mice , Animals , Oligonucleotides, Antisense/therapeutic use , Apolipoprotein A-I/genetics , Huntington Disease/drug therapy , Huntington Disease/genetics , Oligonucleotides/therapeutic use , Brain/metabolism , Huntingtin Protein/genetics , Huntingtin Protein/metabolism , Huntingtin Protein/therapeutic use , Disease Models, Animal
15.
Mol Pharm ; 10(5): 1542-56, 2013 May 06.
Article in English | MEDLINE | ID: mdl-23150993

ABSTRACT

FC5 and FC44 are single-domain antibodies (VHHs), selected by functional panning of phage-display llama VHH library for their ability to internalize human brain endothelial cells (BEC) and to transmigrate the in vitro BBB model. Quantification of brain delivery of FC5 and FC44 in vivo was challenging using classical methods because of their short plasma half-life and their loss of functionality with radioactive labeling. A highly sensitive (detection limit <2 ng/mL) and specific SRM-ILIS method to detect and quantify unlabeled VHHs in multiplexed assays was developed and applied to comparatively evaluate brain delivery of FC5 and FC44, and two control VHHs, EG2 and A20.1. FC5 and FC44 compared to control VHHs demonstrated significantly (p < 0.01) enhanced transport (50-100-fold) across rat in vitro BBB model as well as in vivo brain targeting assessed by optical imaging. The multiplexed SRM-ILIS analyses of plasma and CSF levels of codosed VHHs demonstrated that while all 4 VHHs have similar blood pharmacokinetics, only FC5 and FC44 show elevated CSF levels, suggesting that they are potential novel carriers for delivery of drugs and macromolecules across the BBB.


Subject(s)
Single-Domain Antibodies/blood , Single-Domain Antibodies/cerebrospinal fluid , Animals , Blood-Brain Barrier/immunology , Brain/immunology , Brain/metabolism , Cells, Cultured , Chromatography, High Pressure Liquid/methods , Drug Delivery Systems , Endothelial Cells/immunology , Endothelial Cells/metabolism , Humans , Immunoassay/methods , Male , Mass Spectrometry/methods , Nanotechnology , Protein Transport , Rats , Rats, Wistar , Single-Domain Antibodies/administration & dosage , Tissue Distribution
16.
J Biochem ; 173(2): 95-105, 2023 Feb 03.
Article in English | MEDLINE | ID: mdl-36346120

ABSTRACT

Pathologies of the central nervous system impact a significant portion of our population, and the delivery of therapeutics for effective treatment is challenging. The insulin-like growth factor-1 receptor (IGF1R) has emerged as a target for receptor-mediated transcytosis, a process by which antibodies are shuttled across the blood-brain barrier (BBB). Here, we describe the biophysical characterization of VHH-IR4, a BBB-crossing single-domain antibody (sdAb). Binding was confirmed by isothermal titration calorimetry and an epitope was highlighted by surface plasmon resonance that does not overlap with the IGF-1 binding site or other known BBB-crossing sdAbs. The epitope was mapped with a combination of linear peptide scanning and hydrogen-deuterium exchange mass spectrometry (HDX-MS). IGF1R is large and heavily disulphide bonded, and comprehensive HDX analysis was achieved only through the use of online electrochemical reduction coupled with a multiprotease approach, which identified an epitope for VHH-IR4 within the cysteine-rich region (CRR) of IGF1R spanning residues W244-G265. This is the first report of an sdAb binding the CRR. We show that VHH-IR4 inhibits ligand induced auto-phosphorylation of IGF1R and that this effect is mediated by downstream conformational effects. Our results will guide the selection of antibodies with improved trafficking and optimized IGF1R binding characteristics.


Subject(s)
Cysteine , Hydrogen , Epitope Mapping/methods , Blood-Brain Barrier/metabolism , Antibodies, Monoclonal , Epitopes , Mass Spectrometry/methods
17.
Pharmaceutics ; 15(5)2023 May 22.
Article in English | MEDLINE | ID: mdl-37242805

ABSTRACT

BACKGROUND: ATP-binding cassette (ABC) transporters comprise a superfamily of genes encoding membrane proteins with nucleotide-binding domains (NBD). These transporters, including drug efflux across the blood-brain barrier (BBB), carry a variety of substrates through plasma membranes against substrate gradients, fueled by hydrolyzing ATP. The expression patterns/enrichment of ABC transporter genes in brain microvessels compared to peripheral vessels and tissues are largely uncharacterized. METHODS: In this study, the expression patterns of ABC transporter genes in brain microvessels, peripheral tissues (lung, liver and spleen) and lung vessels were investigated using RNA-seq and WesTM analyses in three species: human, mouse and rat. RESULTS: The study demonstrated that ABC drug efflux transporter genes (including ABCB1, ABCG2, ABCC4 and ABCC5) were highly expressed in isolated brain microvessels in all three species studied; the expression of ABCB1, ABCG2, ABCC1, ABCC4 and ABCC5 was generally higher in rodent brain microvessels compared to those of humans. In contrast, ABCC2 and ABCC3 expression was low in brain microvessels, but high in rodent liver and lung vessels. Overall, most ABC transporters (with the exception of drug efflux transporters) were enriched in peripheral tissues compared to brain microvessels in humans, while in rodent species, additional ABC transporters were found to be enriched in brain microvessels. CONCLUSIONS: This study furthers the understanding of species similarities and differences in the expression patterns of ABC transporter genes; this is important for translational studies in drug development. In particular, CNS drug delivery and toxicity may vary among species depending on their unique profiles of ABC transporter expression in brain microvessels and BBB.

18.
Biology (Basel) ; 12(12)2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38132326

ABSTRACT

Cerebrovascular pathology that involves altered protein levels (or signaling) of the transforming growth factor beta (TGFß) family has been associated with various forms of age-related dementias, including Alzheimer disease (AD) and vascular cognitive impairment and dementia (VCID). Transgenic mice overexpressing TGFß1 in the brain (TGF mice) recapitulate VCID-associated cerebrovascular pathology and develop cognitive deficits in old age or when submitted to comorbid cardiovascular risk factors for dementia. We characterized the cerebrovascular proteome of TGF mice using mass spectrometry (MS)-based quantitative proteomics. Cerebral arteries were surgically removed from 6-month-old-TGF and wild-type mice, and proteins were extracted and analyzed by gel-free nanoLC-MS/MS. We identified 3602 proteins in brain vessels, with 20 demonstrating significantly altered levels in TGF mice. For total and/or differentially expressed proteins (p ≤ 0.01, ≥ 2-fold change), using multiple databases, we (a) performed protein characterization, (b) demonstrated the presence of their RNA transcripts in both mouse and human cerebrovascular cells, and (c) demonstrated that several of these proteins were present in human extracellular vesicles (EVs) circulating in blood. Finally, using human plasma, we demonstrated the presence of several of these proteins in plasma and plasma EVs. Dysregulated proteins point to perturbed brain vessel vasomotricity, remodeling, and inflammation. Given that blood-isolated EVs are novel, attractive, and a minimally invasive biomarker discovery platform for age-related dementias, several proteins identified in this study can potentially serve as VCID markers in humans.

19.
Fluids Barriers CNS ; 20(1): 36, 2023 May 26.
Article in English | MEDLINE | ID: mdl-37237379

ABSTRACT

Blood brain barrier (BBB) models in vitro are an important tool to aid in the pre-clinical evaluation and selection of BBB-crossing therapeutics. Stem cell derived BBB models have recently demonstrated a substantial advantage over primary and immortalized brain endothelial cells (BECs) for BBB modeling. Coupled with recent discoveries highlighting significant species differences in the expression and function of key BBB transporters, the field is in need of robust, species-specific BBB models for improved translational predictability. We have developed a mouse BBB model, composed of mouse embryonic stem cell (mESC-D3)-derived brain endothelial-like cells (mBECs), employing a directed monolayer differentiation strategy. Although the mBECs showed a mixed endothelial-epithelial phenotype, they exhibited high transendothelial electrical resistance, inducible by retinoic acid treatment up to 400 Ω cm2. This tight cell barrier resulted in restricted sodium fluorescein permeability (1.7 × 10-5 cm/min), significantly lower than that of bEnd.3 cells (1.02 × 10-3 cm/min) and comparable to human induced pluripotent stem cell (iPSC)-derived BECs (2.0 × 10-5 cm/min). The mBECs expressed tight junction proteins, polarized and functional P-gp efflux transporter and receptor mediated transcytosis (RMT) receptors; collectively important criteria for studying barrier regulation and drug delivery applications in the CNS. In this study, we compared transport of a panel of antibodies binding species selective or cross-reactive epitopes on BBB RMT receptors in both the mBEC and human iPSC-derived BEC model, to demonstrate discrimination of species-specific BBB transport mechanisms.


Subject(s)
Blood-Brain Barrier , Induced Pluripotent Stem Cells , Humans , Animals , Mice , Blood-Brain Barrier/metabolism , Endothelial Cells/metabolism , Mouse Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/physiology , Antibodies/metabolism , Transcytosis
20.
Hum Gene Ther ; 34(17-18): 927-946, 2023 09.
Article in English | MEDLINE | ID: mdl-37597209

ABSTRACT

Lipoprotein lipase deficiency (LPLD) results from mutations within the lipoprotein lipase (LPL) gene that lead to a complete lack of catalytically active LPL protein. Glybera was one of the first adeno-associated virus (AAV) gene replacement therapy to receive European Medicines Agency regulatory approval for the treatment of LPLD. However, Glybera is no longer marketed potentially due to a combination of economical, manufacturing, and vector-related issues. The aim of this study was to develop a more efficacious AAV gene therapy vector for LPLD. Following preclinical biodistribution, efficacy and non-Good Laboratory Practice toxicity studies with novel AAV1 and AAV8-based vectors in mice, we identified AAV8 pVR59. AAV8 pVR59 delivered a codon-optimized, human gain-of-function hLPLS447X transgene driven by a CAG promoter in an AAV8 capsid. AAV8 pVR59 was significantly more efficacious, at 10- to 100-fold lower doses, compared with an AAV1 vector based on Glybera, when delivered intramuscularly or intravenously, respectively, in mice with LPLD. Efficient gene transfer was observed within the injected skeletal muscle and liver following delivery of AAV8 pVR59, with long-term correction of LPLD phenotypes, including normalization of plasma triglycerides and lipid tolerance, for up to 6 months post-treatment. While intramuscular delivery of AAV8 pVR59 was well tolerated, intravenous administration augmented liver pathology. These results highlight the feasibility of developing a superior AAV vector for the treatment of LPLD and provide critical insight for initiating studies in larger animal models. The identification of an AAV gene therapy vector that is more efficacious at lower doses, when paired with recent advances in production and manufacturing technologies, will ultimately translate to increased safety and accessibility for patients.


Subject(s)
Hyperlipoproteinemia Type I , Humans , Animals , Mice , Hyperlipoproteinemia Type I/genetics , Hyperlipoproteinemia Type I/therapy , Tissue Distribution , Transgenes , Administration, Intravenous
SELECTION OF CITATIONS
SEARCH DETAIL