Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters

Database
Language
Publication year range
1.
Plant J ; 110(2): 389-406, 2022 04.
Article in English | MEDLINE | ID: mdl-35061308

ABSTRACT

Plant nuclear genomes harbor sequence elements derived from the organelles (mitochondrion and plastid) through intracellular gene transfer (IGT). Nuclear genomes also show a dramatic range of repeat content, suggesting that any sequence can be readily amplified. These two aspects of plant nuclear genomes are well recognized but have rarely been linked. Through investigation of 31 Medicago taxa we detected exceptionally high post-IGT amplification of mitochondrial (mt) DNA sequences containing rps10 in the nuclear genome of Medicago polymorpha and closely related species. The amplified sequences were characterized as tandem arrays of five distinct repeat motifs (2157, 1064, 987, 971, and 587 bp) that have diverged from the mt genome (mitogenome) in the M. polymorpha nuclear genome. The mt rps10-like arrays were identified in seven loci (six intergenic and one telomeric) of the nuclear chromosome assemblies and were the most abundant tandem repeat family, representing 1.6-3.0% of total genomic DNA, a value approximately three-fold greater than the entire mitogenome in M. polymorpha. Compared to a typical mt gene, the mt rps10-like sequence coverage level was 691.5-7198-fold higher in M. polymorpha and closely related species. In addition to the post-IGT amplification, our analysis identified the canonical telomeric repeat and the species-specific satellite arrays that are likely attributable to an ancestral chromosomal fusion in M. polymorpha. A possible relationship between chromosomal instability and the mt rps10-like tandem repeat family in the M. polymorpha clade is discussed.


Subject(s)
Genome, Mitochondrial , Medicago , Genome, Mitochondrial/genetics , Genome, Plant/genetics , Medicago/genetics , Mitochondria/genetics , Tandem Repeat Sequences/genetics
2.
BMC Genomics ; 18(1): 261, 2017 03 27.
Article in English | MEDLINE | ID: mdl-28347275

ABSTRACT

BACKGROUND: Previous studies exploring sequence variation in the model legume, Medicago truncatula, relied on mapping short reads to a single reference. However, read-mapping approaches are inadequate to examine large, diverse gene families or to probe variation in repeat-rich or highly divergent genome regions. De novo sequencing and assembly of M. truncatula genomes enables near-comprehensive discovery of structural variants (SVs), analysis of rapidly evolving gene families, and ultimately, construction of a pan-genome. RESULTS: Genome-wide synteny based on 15 de novo M. truncatula assemblies effectively detected different types of SVs indicating that as much as 22% of the genome is involved in large structural changes, altogether affecting 28% of gene models. A total of 63 million base pairs (Mbp) of novel sequence was discovered, expanding the reference genome space for Medicago by 16%. Pan-genome analysis revealed that 42% (180 Mbp) of genomic sequences is missing in one or more accession, while examination of de novo annotated genes identified 67% (50,700) of all ortholog groups as dispensable - estimates comparable to recent studies in rice, maize and soybean. Rapidly evolving gene families typically associated with biotic interactions and stress response were found to be enriched in the accession-specific gene pool. The nucleotide-binding site leucine-rich repeat (NBS-LRR) family, in particular, harbors the highest level of nucleotide diversity, large effect single nucleotide change, protein diversity, and presence/absence variation. However, the leucine-rich repeat (LRR) and heat shock gene families are disproportionately affected by large effect single nucleotide changes and even higher levels of copy number variation. CONCLUSIONS: Analysis of multiple M. truncatula genomes illustrates the value of de novo assemblies to discover and describe structural variation, something that is often under-estimated when using read-mapping approaches. Comparisons among the de novo assemblies also indicate that different large gene families differ in the architecture of their structural variation.


Subject(s)
DNA Copy Number Variations/genetics , Genome, Plant , Medicago truncatula/genetics , Comparative Genomic Hybridization , Heat-Shock Proteins/genetics , High-Throughput Nucleotide Sequencing , Leucine-Rich Repeat Proteins , Plant Proteins/genetics , Proteins/genetics , RNA, Plant/chemistry , RNA, Plant/isolation & purification , RNA, Plant/metabolism , Sequence Alignment , Sequence Analysis, DNA
3.
Sci Rep ; 12(1): 21172, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36477422

ABSTRACT

Medicago truncatula is a model legume that has been extensively investigated in diverse subdisciplines of plant science. Medicago littoralis can interbreed with M. truncatula and M. italica; these three closely related species form a clade, i.e. TLI clade. Genetic studies have indicated that M. truncatula accessions are heterogeneous but their taxonomic identities have not been verified. To elucidate the phylogenetic position of diverse M. truncatula accessions within the genus, we assembled 54 plastid genomes (plastomes) using publicly available next-generation sequencing data and conducted phylogenetic analyses using maximum likelihood. Five accessions showed high levels of plastid DNA polymorphism. Three of these highly polymorphic accessions contained sequences from both M. truncatula and M. littoralis. Phylogenetic analyses of sequences placed some accessions closer to distantly related species suggesting misidentification of source material. Most accessions were placed within the TLI clade and maximally supported the interrelationships of three subclades. Two Medicago accessions were placed within a M. italica subclade of the TLI clade. Plastomes with a 45-kb (rpl20-ycf1) inversion were placed within the M. littoralis subclade. Our results suggest that the M. truncatula accession genome pool represents more than one species due to possible mistaken identities and gene flow among closely related species.


Subject(s)
Medicago truncatula , Medicago truncatula/genetics , Phylogeny
4.
Am J Bot ; 97(7): 1142-55, 2010 Jul.
Article in English | MEDLINE | ID: mdl-21616866

ABSTRACT

PREMISE OF THE STUDY: The genus Medicago, with about 87 species, includes the model legume species M. truncatula, and a number of important forage species such as M. sativa (alfalfa), M. scutellata (snail medic), and M. lupulina (black medic). Relationships within the genus are not yet sufficiently resolved, contributing to difficulty in understanding the evolution of a number of distinguishing characteristics such as aneuploidy and polyploidy, life history, structure of cotyledons, and number of seeds per fruit. • METHODS: Phylogenetic relationships of 70-73 species of Medicago and its sister genus Trigonella (including Melilotus) were reconstructed from nucleotide sequences of the plastid trnK/matK region and the nuclear-encoded GA3ox1 gene (gibberellin 3-ß-hydroxylase) using maximum parsimony and Bayesian inference methods. • KEY RESULTS: Our results support certain currently recognized taxonomic groups, e.g., sect. Medicago (with M. sativa) and sect. Buceras. However, other strongly supported clades-the "reduced subsection Leptospireae clade" that includes M. lupulina, the "polymorpha clade" that includes M. murex and M. polymorpha and the "subsection Pachyspireae clade" that includes M. truncatula-each of which includes species presently in different subsections of sect. Spirocarpos, contradict the current classification. • CONCLUSIONS: These results support the hypothesis that some characters considered important in existing taxonomies, for example, single-seeded fruits that have arisen more than once in both Medicago and Trigonella, are indeed homoplastic. Others, such as the 2n = 14 chromosome number, have also arisen independently within the genus. In addition, we demonstrate support for the utility of GA3ox1 sequences for phylogenetic analysis among and within closely related genera of legumes.

SELECTION OF CITATIONS
SEARCH DETAIL