Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 128
Filter
1.
Blood ; 142(25): 2175-2191, 2023 12 21.
Article in English | MEDLINE | ID: mdl-37756525

ABSTRACT

ABSTRACT: Growth factor independence 1 (GFI1) is a DNA-binding transcription factor and a key regulator of hematopoiesis. GFI1-36N is a germ line variant, causing a change of serine (S) to asparagine (N) at position 36. We previously reported that the GFI1-36N allele has a prevalence of 10% to 15% among patients with acute myeloid leukemia (AML) and 5% to 7% among healthy Caucasians and promotes the development of this disease. Using a multiomics approach, we show here that GFI1-36N expression is associated with increased frequencies of chromosomal aberrations, mutational burden, and mutational signatures in both murine and human AML and impedes homologous recombination (HR)-directed DNA repair in leukemic cells. GFI1-36N exhibits impaired binding to N-Myc downstream-regulated gene 1 (Ndrg1) regulatory elements, causing decreased NDRG1 levels, which leads to a reduction of O6-methylguanine-DNA-methyltransferase (MGMT) expression levels, as illustrated by both transcriptome and proteome analyses. Targeting MGMT via temozolomide, a DNA alkylating drug, and HR via olaparib, a poly-ADP ribose polymerase 1 inhibitor, caused synthetic lethality in human and murine AML samples expressing GFI1-36N, whereas the effects were insignificant in nonmalignant GFI1-36S or GFI1-36N cells. In addition, mice that received transplantation with GFI1-36N leukemic cells treated with a combination of temozolomide and olaparib had significantly longer AML-free survival than mice that received transplantation with GFI1-36S leukemic cells. This suggests that reduced MGMT expression leaves GFI1-36N leukemic cells particularly vulnerable to DNA damage initiating chemotherapeutics. Our data provide critical insights into novel options to treat patients with AML carrying the GFI1-36N variant.


Subject(s)
DNA-Binding Proteins , Leukemia, Myeloid, Acute , Humans , Mice , Animals , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Temozolomide , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , DNA Damage , DNA Repair , Germ Cells/metabolism , DNA , Transcription Factors/genetics
2.
Neuropediatrics ; 2024 Jul 31.
Article in English | MEDLINE | ID: mdl-39084244

ABSTRACT

PURPOSE: Hamartomas of tuber cinereum present as ectopic tissue in the hypothalamic region. Clinically, the usual hypothalamic hamartomas manifest themself by gelastic seizures and pubertas praecox. We observed an increased coincidence of the presence of X-linked recessive deafness DFNX2 (DFN3) and a hamartoma of the tuber cinereum. Initially five patients presented with hearing loss in childhood, two additional were already adults, not showing any characteristic symptoms for a hamartoma but signs of delayed puberty. METHODS: Seven patients who underwent computed tomography imaging due to a sensorineural hearing loss and had a hamartoma of the tuber cinereum in addition to X-linked deafness DFNX2 (DFN3) were included in a retrospective study. Patients underwent initial neurologic, endocrinologic, and genetic evaluation. Long-term follow-up was performed after 10 to 12 years. RESULTS: The average age at the initial exam was 12.9 years (range 4-29). All patients genetically proven nonsyndromic, X-linked deafness associated with the POU3F4 gene. Three out of six patients presented signs of delayed puberty. None of all seven showed any evidence of pubertas praecox or gelastic seizures at mean age of 17 years (range 17-29 years) at any time. CONCLUSION: Hamartomas of tuber cinereum are often coincident with DFNX2. Clinically, half of the cases are-in contrary to the usual pubertas praecox-associated with growth hormone deficiency and delayed puberty, in the sense of pubertas tarda, when coincident. Clinicians' and radiologists' knowledge and awareness of this rare combination are crucial to identify children early enough for hormone-sensitive treatment.

3.
Blood ; 137(19): 2657-2661, 2021 05 13.
Article in English | MEDLINE | ID: mdl-33512436

ABSTRACT

Adult patients with relapsed B-cell precursor acute lymphoblastic leukemia (BCP-ALL) have a dismal prognosis. To improve pharmacotherapy, we analyzed induction of apoptosis by venetoclax and inotuzumab ozogamicin in terms of cytotoxicity and mode of action. Flow cytometry-based analyses of mitochondrial outer membrane permeabilization (MOMP) and ataxia telangiectasia mutated activation demonstrate rapid induction of MOMP by venetoclax and DNA damage signaling by inotuzumab ozogamicin, respectively. In primary ALL samples and patient-derived xenograft (PDX) models, venetoclax and inotuzumab ozogamicin cooperated and synergized in combination with dexamethasone in vitro in all tested samples of ALL. In murine PDX models, inotuzumab ozogamicin, but not venetoclax, induced complete remission in a dose-dependent manner but constantly failed to achieve relapse-free survival. In contrast, combination therapy with venetoclax, dexamethasone, and inotuzumab ozogamicin induced long-term leukemia-free survival and treatment-free survival in all 3 ALL-PDX models tested. These data demonstrate synergistic and highly efficient pharmacotherapy in preclinical models that qualify for evaluation in clinical trials.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , DNA Damage , DNA, Neoplasm/drug effects , Dexamethasone/pharmacology , Inotuzumab Ozogamicin/pharmacology , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Sulfonamides/pharmacology , Adolescent , Adult , Aged , Animals , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Apoptosis/drug effects , Bridged Bicyclo Compounds, Heterocyclic/administration & dosage , Calicheamicins/pharmacology , DNA Breaks, Double-Stranded , Dexamethasone/administration & dosage , Drug Synergism , Female , Humans , Inotuzumab Ozogamicin/administration & dosage , Male , Mice , Mice, Inbred NOD , Mice, SCID , Middle Aged , Mitochondrial Membranes/drug effects , Recurrence , Sulfonamides/administration & dosage , Xenograft Model Antitumor Assays
5.
Am J Med Genet A ; 191(7): 1849-1857, 2023 07.
Article in English | MEDLINE | ID: mdl-37081310

ABSTRACT

Partial deletions at chromosome 7q11.23 are causative for the autosomal-dominant Williams-Beuren syndrome (WBS), whereas the partial duplication of this region leads to the 7q11.23 duplication syndrome. Both syndromes are highly penetrant and occur with a frequency of 1:7500-10,000 (WBS) and 1:13,000-20,000 (7q11.23 duplication syndrome). They are associated with multiple organ defects, intellectual disability, and typical facial dysmorphisms showing broad phenotypic variability. The 7q11.23 region is susceptible to chromosomal rearrangements due to flanking segmental duplications and regions of long repetitive DNA segments. Here, we report on a family with two children affected by WBS and clinically unaffected parents. Interestingly, metaphase fluorescence in situ hybridization (FISH) revealed a deletion on 7q11.23 in the father. Intensive genetic testing, using interphase FISH, whole genome sequencing and optical genome mapping led to the confirmation of a 1.5 Mb deletion at one 7q11.23 allele and the identification of a reciprocal 1.8 Mb duplication at the other allele. This finding is highly important regarding genetic counseling in this family. The father is a silent carrier for two syndromic disorders, thus his risk to transmit a disease-causing allele is 100%. To the best of our knowledge we, here, report on the first case in which the phenotype of a microdeletion/microduplication syndrome was compensated by its reciprocal counterpart.


Subject(s)
Williams Syndrome , Humans , In Situ Hybridization, Fluorescence , Williams Syndrome/genetics , Genetic Testing , Phenotype , Chromosome Aberrations , Chromosomes, Human, Pair 7/genetics , Chromosome Deletion
6.
Genes Chromosomes Cancer ; 61(1): 22-26, 2022 01.
Article in English | MEDLINE | ID: mdl-34460133

ABSTRACT

Acute lymphoblastic leukemia (ALL) is the most frequent malignancy in childhood and adolescence. In more than 60% of cases of this heterogeneous disease, a genetic marker is identified via cytogenetic or molecular analyses. TCF3 gene fusions occur in 5%-11% of ALL patients. In < 1%, the TCF3 alteration in ALL leads to a TCF3-HLF fusion gene. Even though this is a very rare event, the detection of a TCF3-HLF fusion gene is associated with a very poor prognosis with incurable relapses in almost all patients. The frequent TCF3-PBX1 fusion gene, which is detectable in 5%-10% of childhood B-cell precursor ALLs and ~3.8% of adult B-cell precursor ALLs, is associated with a rather good prognosis, that is, an observed event-free 5-year survival of approximately 85%. Thus, the distinction of the different partner genes fused to TCF3 is essential for risk assessment. To verify RNA sequencing as a tool for detection of known and unknown fusion genes, we screened 200 cases of pediatric B-cell precursor ALL with "targeted" RNA sequencing in a pilot project in comparison to classical cytogenetic analyses (chromosome R-banding analysis), fluorescence in situ hybridization, and PCR. We observed a TCF3 fusion gene in 6.5% (13/200) of the patients. Ten (5%) patients displayed a TCF3-PBX1 fusion gene, two (1%) patients a TCF3-FLI1 fusion gene, and one (0.5%) patient a TCF3-HLF fusion gene. For the TCF3 fusions, we obtained discrepant results with the different methods, which are described in the article. Taken together, translocations leading to TCF3 fusion genes might appear cryptic and may remain undetected by a single method.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Oncogene Proteins, Fusion/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Sequence Analysis, RNA , Child , Chromosome Banding , Humans , In Situ Hybridization, Fluorescence , Pilot Projects , Polymerase Chain Reaction , Prognosis , Proto-Oncogene Protein c-fli-1/genetics , Translocation, Genetic
7.
J Clin Immunol ; 42(5): 1083-1092, 2022 07.
Article in English | MEDLINE | ID: mdl-35486341

ABSTRACT

Inborn errors of immunity (IEI) are genetically driven disorders. With the advancement of sequencing technologies, a rapidly increasing number of gene defects has been identified, thereby mirroring the high heterogeneity in immunological and clinical presentations observed in patients. However, for a large majority of patients, no causative single nucleotide variant (SNV) or small indel can be identified using next-generation sequencing. First studies have shown that also copy number variants (CNVs) can cause IEI. Unfortunately, CNVs are not well examined in many routine diagnostic settings and the aim of this study was to assess the number of clinically relevant chromosomal losses and gains in a large cohort. We identified a total of 20 CNVs using whole exome sequencing data of a cohort of 191 patients with a suspected IEI. A definite molecular diagnosis could be made in five patients (2.6%), including pathogenic deletions affecting ICOS, TNFAIP3, and 22q11.2. CNVs of uncertain significance were observed in fifteen patients (7.9%), including deletions of 11q22.1q22.3 and 16p11.2 but also duplications affecting entire or parts of genes previously associated with IEI. Importantly, five patients carrying a CNV of uncertain significance also carried pathogenic or likely pathogenic SNVs (PIK3R1, NFKB1, NLRC4, DOCK2), or SNVs of unknown significance (NFKB2). This cooccurrence of SNVs and CNVs suggests modifying effects in some patients, and functional follow-up is warranted now in order to better understand phenotypic heterogeneity. In summary, the diagnostic yield of IEI can be increased substantially by evaluating CNVs, which allows an improved therapeutic management in those patients.


Subject(s)
Chromosome Aberrations , DNA Copy Number Variations , Immune System Diseases , Cohort Studies , Genetic Diseases, Inborn , High-Throughput Nucleotide Sequencing , Humans , Immune System Diseases/genetics , Exome Sequencing
8.
Genes Chromosomes Cancer ; 60(6): 452-457, 2021 06.
Article in English | MEDLINE | ID: mdl-33486841

ABSTRACT

A complex karyotype, detected in myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML), is associated with a reduced median survival. The most frequent chromosomal aberrations in complex karyotypes are deletions of 5q and 17p harboring the tumor suppressor gene TP53. The unbalanced translocation der(5;17) involving chromosome 5q and 17p is a recurrent aberration in MDS/AML, resulting in TP53 loss. We analyzed the karyotypes of 178 patients with an unbalanced translocation der(5;17) using fluorescence R-/G-banding analysis. Whenever possible, fluorescence in situ hybridization (FISH) (n = 138/141), multicolor FISH (n = 8), telomere length measurement (n = 9), targeted DNA sequencing (n = 13), array-CGH (n = 7) and targeted RNA sequencing (n = 2) were conducted. The der(5;17) aberration was accompanied with loss of genetic material in 7q (53%), -7 (27%), gain of 21q (29%), +8 (17%) and - 18 (16%) and all analyzed patients (n = 13) showed a (likely) pathogenic variant inTP53. The der(5;17) cohort showed significantly shortened telomeres in comparison to the healthy age-matched controls (P < .05), but there was no significant telomere shortening in comparison to MDS/AML patients with a complex karyotype without der(5;17). No fusion genes resulted from the unbalanced translocation. This study demonstrates that the unbalanced translocation der(5;17) is associated with a biallelic inactivation of TP53 due to a deletion of TP53 in one allele and a pathogenic variant of the second TP53 allele. Since the breakpoints are located within (near-) heterochromatic regions, alterations of DNA methylation or histone modifications may be involved in the generation of der(5;17).


Subject(s)
Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 5/genetics , Leukemia, Myeloid, Acute/genetics , Myelodysplastic Syndromes/genetics , Translocation, Genetic , Tumor Suppressor Protein p53/genetics , Abnormal Karyotype , Adolescent , Adult , Aged , Aged, 80 and over , Child , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Middle Aged , Myelodysplastic Syndromes/pathology
9.
Blood ; 133(16): 1766-1777, 2019 04 18.
Article in English | MEDLINE | ID: mdl-30755419

ABSTRACT

In acute myeloid leukemia (AML), acquired genetic aberrations carry prognostic implications and guide therapeutic decisions. Clinical algorithms have been improved by the incorporation of novel aberrations. Here, we report the presence and functional characterization of mutations in the transcription factor NFE2 in patients with AML and in a patient with myelosarcoma. We previously described NFE2 mutations in patients with myeloproliferative neoplasms and demonstrated that expression of mutant NFE2 in mice causes a myeloproliferative phenotype. Now, we show that, during follow-up, 34% of these mice transform to leukemia presenting with or without concomitant myelosarcomas, or develop isolated myelosarcomas. These myelosarcomas and leukemias acquired AML-specific alterations, including the murine equivalent of trisomy 8, loss of the AML commonly deleted region on chromosome 5q, and mutations in the tumor suppressor Trp53 Our data show that mutations in NFE2 predispose to the acquisition of secondary changes promoting the development of myelosarcoma and/or AML.


Subject(s)
Cell Transformation, Neoplastic/genetics , Leukemia, Myeloid, Acute/genetics , NF-E2 Transcription Factor, p45 Subunit/genetics , NF-E2 Transcription Factor, p45 Subunit/metabolism , Sarcoma, Myeloid/genetics , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Chromosome Aberrations , Female , Humans , Leukemia, Myeloid, Acute/pathology , Male , Mice , Middle Aged , Mutation , Sarcoma, Myeloid/etiology , Tumor Suppressor Protein p53/genetics , Young Adult
10.
Genes Chromosomes Cancer ; 59(11): 667-671, 2020 11.
Article in English | MEDLINE | ID: mdl-32592278

ABSTRACT

PAX5 is a member of the paired box (PAX) family of transcription factors involved in B-cell development. PAX5P80R has recently been described as a distinct genetic B-cell precursor (BCP) acute lymphoblastic leukemia (ALL) subtype with a favorable prognosis in adults. In contrast, an unfavorable outcome has been observed in children. Our aim was to determine the frequency of PAX5P80R in childhood BCP-ALL treated according to the Associazione Italiana Ematologia ed Oncologia Pediatrica-Berlin-Frankfurt-Muenster (AIEOP-BFM) ALL 2000 protocol and to evaluate its clinical significance within this study cohort. The analyses included 1237 patients with ALL treated in the AIEOP-BFM ALL 2000 trial with complete information for copy number variations (CNVs) of IKZF1, PAX5, ETV6, RB1, BTG1, EBF1, CDKN2A, CDKN2B, and ERG. A customized TaqMan genotyping assay was used to screen for PAX5P80R . Sanger sequencing was used to confirm PAX5P80R -positive results as well as to screen for second variants in PAX5. Agilent CGH + SNP arrays (e-Array design 85 320; Agilent Technologies) were performed in PAX5P80R -positive patients to verify additional CNVs. Almost 2% (20/1028) of our BCP-ALL cohort were PAX5P80R -positive. White blood cell counts higher than 50 000/µl as well as male sex were significantly (P < .05) associated with PAX5P80R . Most of the PAX5P80R -positive cases were 10 years of age or older. PAX5P80R -positive samples were enriched for deletions affecting PAX5, IKZF1, CDKN2A, and CDKN2B. Compared to PAX5P80R -wildtype BCP-ALL, PAX5P80R -positive patients showed a significantly reduced 5-year overall survival (P = .042). Further studies should evaluate the interaction of PAX5P80R with other genetic aberrations to further stratify intermediate risk pediatric BCP-ALL.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Biomarkers, Tumor/genetics , PAX5 Transcription Factor/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Asparaginase/therapeutic use , Cyclophosphamide/therapeutic use , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Gene Frequency , Humans , Mercaptopurine/therapeutic use , Methotrexate/therapeutic use , Mutation, Missense , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/pathology , Prednisone/therapeutic use , Vincristine/therapeutic use
11.
Gene Ther ; 27(6): 297-306, 2020 06.
Article in English | MEDLINE | ID: mdl-32051561

ABSTRACT

Induced pluripotent stem cells (iPSCs) from patients with genetic disorders are a valuable source for in vitro disease models, which enable drug testing and validation of gene and cell therapies. We generated iPSCs from a severe congenital neutropenia (SCN) patient, who presented with a nonsense mutation in the glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene causing profound defects in granulopoiesis, associated with increased susceptibility of neutrophils to apoptosis. Generated SCN iPSC clones exhibited the capacity to differentiate into hematopoietic cells of the myeloid lineage and we identified two cytokine conditions, i.e., using granulocyte-colony stimulating factor or granulocyte-macrophage colony stimulating factor in combination with interleukin-3, to model the SCN phenotype in vitro. Reduced numbers of granulocytes were produced by SCN iPSCs compared with control iPSCs in both settings, which reflected the phenotype in patients. Interestingly, our model showed increased monocyte/macrophage production from the SCN iPSCs. Most importantly, lentiviral genetic correction of SCN iPSCs with a codon-optimized G6PC3 transgene restored granulopoiesis and reduced apoptosis of in vitro differentiated myeloid cells. Moreover, addition of vitamin B3 clearly induced granulocytic differentiation of SCN iPSCs and increased the number of neutrophils to levels comparable with those obtained from healthy control iPSCs. In summary, we established an iPSC-derived in vitro disease model, which will serve as a tool to test the potency of alternative treatment options for SCN patients, such as small molecules and gene therapeutic vectors.


Subject(s)
Induced Pluripotent Stem Cells , Cell Differentiation , Genetic Therapy , Glucose-6-Phosphatase , Granulocyte Colony-Stimulating Factor , Humans , Niacinamide
12.
Mod Pathol ; 33(12): 2483-2498, 2020 12.
Article in English | MEDLINE | ID: mdl-32572153

ABSTRACT

Loss of E-cadherin expression due to mutation of the CDH1 gene is a characteristic feature of invasive lobular breast cancer (ILBC). Beta-catenin, which binds to the cytoplasmic domain of E-cadherin, is simultaneously downregulated, reflecting disassembly of adherens junctions (AJs) and loss of cell adhesion. E-cadherin to P-cadherin expression switching can rescue AJs and cell adhesion. However, P-cadherin has not been implicated in ILBC, so far. We aimed to characterize 13 ILBCs with exceptional histomorphology, which we termed ILBCs with tubular elements. The CDH1 mutational status was determined by next generation sequencing and whole-genome copy number (CN) profiling. Expression of cadherins was assessed by immunohistochemistry. ILBCs with tubular elements were ER-positive (13/13) and HER2-negative (13/13) and harbored deleterious CDH1 mutations (11/13) accompanied by loss of heterozygosity due to deletion of chromosome 16q22.1 (9/11). E-cadherin expression was lost or reduced in noncohesive tumor cells and in admixed tubular elements (13/13). Beta-catenin expression was lost in noncohesive tumor cells, but was retained in tubular elements (11/13), indicating focal rescue of AJ formation. N-cadherin and R-cadherin were always negative (0/13). Strikingly, P-cadherin was commonly positive (12/13) and immunoreactivity was accentuated in tubular elements. Adjacent lobular carcinoma in situ (LCIS) was always P-cadherin-negative (0/7). In a reference cohort of LCIS specimens, P-cadherin was constantly not expressed (0/25). In a reference cohort of invasive mammary carcinomas, P-cadherin-positive cases (36/268, 13%) were associated with triple-negative nonlobular breast cancer (P < 0.001). Compared with ILBCs from the reference cohort, P-cadherin expression was more common in ILBCs with tubular elements (12/13 versus 7/84, P < 0.001). In summary, E-cadherin to P-cadherin switching occurs in a subset of ILBCs. P-cadherin is the molecular determinant of a mixed-appearing histomorphology in ILBCs with tubular elements.


Subject(s)
Antigens, CD/analysis , Biomarkers, Tumor/analysis , Breast Neoplasms/chemistry , Cadherins/analysis , Carcinoma, Lobular/chemistry , Adult , Aged , Antigens, CD/genetics , Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Carcinoma, Lobular/genetics , Carcinoma, Lobular/pathology , DNA Copy Number Variations , DNA Mutational Analysis , Female , Gene Dosage , Gene Expression Regulation, Neoplastic , Humans , Immunohistochemistry , Loss of Heterozygosity , Middle Aged , Mutation , RNA-Seq
13.
Clin Genet ; 98(4): 374-378, 2020 10.
Article in English | MEDLINE | ID: mdl-32627184

ABSTRACT

We present two independent cases of syndromic thrombocytopenia with multiple malformations, microcephaly, learning difficulties, dysmorphism and other features. Exome sequencing identified two novel de novo heterozygous variants in these patients, c.35G>T p.(Gly12Val) and c.178G>C p.(Gly60Arg), in the RAP1B gene (NM_001010942.2). These variants have not been described previously as germline variants, however functional studies in literature strongly suggest a clinical implication of these two activating hot spot positions. We hypothesize that pathogenic missense variants in the RAP1B gene cause congenital syndromic thrombocytopenia with a spectrum of associated malformations and dysmorphism, possibly through a gain of function mechanism.


Subject(s)
Intellectual Disability/genetics , Microcephaly/genetics , Thrombocytopenia/genetics , rap GTP-Binding Proteins/genetics , Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Abnormalities, Multiple/pathology , Adolescent , Adult , Child , Child, Preschool , Exome/genetics , Female , Heterozygote , Humans , Intellectual Disability/diagnosis , Intellectual Disability/pathology , Male , Microcephaly/diagnosis , Microcephaly/pathology , Mutation, Missense/genetics , Pedigree , Phenotype , Thrombocytopenia/diagnosis , Thrombocytopenia/pathology , Exome Sequencing
14.
Haematologica ; 105(7): 1887-1894, 2020 07.
Article in English | MEDLINE | ID: mdl-31601692

ABSTRACT

ABL-class fusions other than BCR-ABL1 characterize around 2-3% of precursor B-cell acute lymphoblastic leukemia. Case series indicated that patients suffering from these subtypes have a dismal outcome and may benefit from the introduction of tyrosine kinase inhibitors. We analyzed clinical characteristics and outcome of 46 ABL-class fusion positive cases other than BCR-ABL1 treated according to AIEOP-BFM (Associazione Italiana di Ematologia-Oncologia Pediatrica-Berlin-Frankfurt-Münster) ALL 2000 and 2009 protocols; 13 of them received a tyrosine kinase inhibitor (TKI) during different phases of treatment. ABL-class fusion positive cases had a poor early treatment response: minimal residual disease levels of ≥5×10-4 were observed in 71.4% of patients after induction treatment and in 51.2% after consolidation phase. For the entire cohort of 46 cases, the 5-year probability of event-free survival was 49.1+8.9% and that of overall survival 69.6+7.8%; the cumulative incidence of relapse was 25.6+8.2% and treatment-related mortality (TRM) 20.8+6.8%. One out of 13 cases with TKI added to chemotherapy relapsed while eight of 33 cases without TKI treatment suffered from relapse, including six in 17 patients who had not received hematopoietic stem cell transplantation. Stem cell transplantation seems to be effective in preventing relapses (only three relapses in 25 patients), but was associated with a very high TRM (6 patients). These data indicate a major need for an early identification of ABL-class fusion positive acute lymphoblastic leukemia cases and to establish a properly designed, controlled study aimed at investigating the use of TKI, the appropriate chemotherapy backbone and the role of hematopoietic stem cell transplantation. (Registered at: clinicaltrials.gov identifier: NTC00430118, NCT00613457, NCT01117441).


Subject(s)
Precursor B-Cell Lymphoblastic Leukemia-Lymphoma , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , B-Lymphocytes , Child , Humans , Neoplasm, Residual , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor B-Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Prognosis , Recurrence
15.
Ann Hematol ; 99(4): 809-818, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32078009

ABSTRACT

Risk-adapted therapy has significantly contributed to improved survival rates in pediatric acute lymphoblastic leukemia (ALL) and reliable detection of chromosomal aberrations is mandatory for risk group stratification. This study evaluated the applicability of panel-based RNA sequencing and array CGH within the diagnostic workflow of the German study group of the international AIEOP-BFM ALL 2017 trial. In a consecutive cohort of 117 children with B cell precursor (BCP) ALL, array analysis identified twelve cases with an IKZF1plus profile of gene deletions and one case of masked hypodiploidy. Genetic markers BCR-ABL1 (n = 1), ETV6-RUNX1 (n = 25), and rearrangements involving KMT2A (n = 3) or TCF3 (n = 3) were assessed by established conventional techniques such as karyotyping, FISH, and RT-PCR. Comparison of these results with RNA sequencing analysis revealed overall consistency in n=115/117 cases, albeit with one undetected AFF1-KMT2A fusion in RNA sequencing and one undetected ETV6-RUNX1 fusion in conventional analyses. The combined application of RNA sequencing, FISH, and CGH+SNP array reliably detected all genetic markers necessary for risk stratification and will be used as the diagnostic standard workflow for BCP-ALL patients enrolled in the AIEOP-BFM ALL 2017 study. Prospectively, consistent collection of genome-wide CGH+SNP array as well as RNA sequencing data will be a valuable source to elucidate new prognostic lesions beyond established markers of pediatric ALL. In this respect, RNA sequencing identified various gene fusions in up to half of the IKZF1plus (n = 6/12) and B-other (n = 19/36) cases but not in cases with hyperdiploid karyotypes (n = 35). Among these fusions, this study reports several previously undescribed in frame PAX5 fusions, including PAX5-MYO1G and PAX5-NCOA6.


Subject(s)
Comparative Genomic Hybridization , Precursor Cell Lymphoblastic Leukemia-Lymphoma/diagnosis , RNA, Messenger/analysis , RNA, Neoplasm/analysis , Sequence Analysis, RNA , Abnormal Karyotype , Antineoplastic Combined Chemotherapy Protocols/administration & dosage , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Asparaginase/administration & dosage , Cyclophosphamide/administration & dosage , Cytarabine/administration & dosage , Daunorubicin/administration & dosage , Genes, Neoplasm , Humans , Ikaros Transcription Factor/genetics , In Situ Hybridization, Fluorescence , Mercaptopurine/administration & dosage , Methotrexate/administration & dosage , Neoplasm Proteins/genetics , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Precursor Cell Lymphoblastic Leukemia-Lymphoma/genetics , Prednisone/administration & dosage , Prospective Studies , Risk Factors , Transcriptome , Vincristine/administration & dosage , Workflow
16.
Int J Cancer ; 144(11): 2683-2694, 2019 06 01.
Article in English | MEDLINE | ID: mdl-30426508

ABSTRACT

NGS-based multiple gene panel resequencing in combination with a high resolution CGH-array was used to identify genetic risk factors for hereditary breast and/or ovarian cancer in 237 high risk patients who were previously tested negative for pathogenic BRCA1/2 variants. All patients were screened for pathogenic variants in 94 different cancer predisposing genes. We identified 32 pathogenic variants in 14 different genes (ATM, BLM, BRCA1, CDH1, CHEK2, FANCG, FANCM, FH, HRAS, PALB2, PMS2, PTEN, RAD51C and NBN) in 30 patients (12.7%). Two pathogenic BRCA1 variants that were previously undetected due to less comprehensive and sensitive methods were found. Five pathogenic variants are novel, three of which occur in genes yet unrelated to hereditary breast and/or ovarian cancer (FANCG, FH and HRAS). In our cohort we discovered a remarkably high frequency of truncating variants in FANCM (2.1%), which has recently been suggested as a susceptibility gene for hereditary breast cancer. Two patients of our cohort carried two different pathogenic variants each and 10 other patients in whom a pathogenic variant was confirmed also harbored a variant of unknown significance in a breast and ovarian cancer susceptibility gene. We were able to identify pathogenic variants predisposing for tumor formation in 12.3% of BRCA1/2 negative breast and/or ovarian cancer patients.


Subject(s)
Breast Neoplasms, Male/genetics , Breast Neoplasms/genetics , DNA Helicases/genetics , Hereditary Breast and Ovarian Cancer Syndrome/genetics , Ovarian Neoplasms/genetics , Adolescent , Adult , Aged , BRCA1 Protein/genetics , BRCA2 Protein/genetics , Breast Neoplasms/pathology , Cohort Studies , DNA Mutational Analysis , Female , Genetic Testing , Humans , Male , Medical History Taking , Middle Aged , Young Adult
17.
Clin Genet ; 96(1): 85-90, 2019 07.
Article in English | MEDLINE | ID: mdl-31044419

ABSTRACT

Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS), a rare condition that affects smooth muscle cells, is caused by biallelic null alleles in MYH11. We report on a girl with MMIHS in addition to growth hormone deficiency, central hypothyroidism and a tonically dilated pupil with accommodation deficit. Sanger sequencing and arrayCGH uncovered the novel heterozygous missense variant c.379C>T in MYH11 and a heterozygous 1.3 Mb deletion in 16q13.11 encompassing MYH11, respectively. Her mother carries the deletion, whereas her father is heterozygous for the c.379C>T p.(Pro127Ser) change. Proline 127 is crucial for the formation of the Adenosine triphosphate binding pocket of the MYH11 motor domain and molecular modeling indicated that p.Pro127Ser alters nucleotide binding properties. Thus, the unusual and complex clinical presentation of the patient results from compound heterozygosity for a 16p13.11 microdeletion including the entire MYH11 gene and a loss-of-function missense variant on the remaining MYH11 allele. In conclusion, we recommend genetic testing both for MYH11 sequence alterations and copy number imbalances in individuals with MMIHS and smooth muscle cell-associated abnormalities in additional organs, that is, multisystemic smooth muscle dysfunction.


Subject(s)
Abnormalities, Multiple/diagnosis , Abnormalities, Multiple/genetics , Chromosome Deletion , Chromosomes, Human, Pair 16 , Colon/abnormalities , Intestinal Pseudo-Obstruction/diagnosis , Intestinal Pseudo-Obstruction/genetics , Loss of Function Mutation , Mutation, Missense , Myosin Heavy Chains/genetics , Urinary Bladder/abnormalities , Amino Acid Sequence , Child , Female , Genetic Association Studies , Genetic Predisposition to Disease , Heterozygote , Humans , Immunohistochemistry , Mutation , Myosin Heavy Chains/chemistry , Phenotype , Protein Conformation
18.
Am J Med Genet A ; 179(7): 1383-1389, 2019 07.
Article in English | MEDLINE | ID: mdl-31062505

ABSTRACT

The PTEN hamartoma tumor syndrome (PHTS) is caused by heterozygous germline variants in PTEN. Here, we report two unrelated patients with juvenile polyposis, macrocephaly, intellectual disability, and hyperpigmented skin macules. Both patients were clinically suspected for the Bannayan-Riley-Ruvalcaba syndrome (BRRS), a PHTS subentity. By array-CGH analysis, we identified an interstitial 10q23.1q23.3 deletion in a buccal mucosa sample of Patient 1 that encompassed PTEN, BMPR1A, and KLLN, among others. In contrast, neither sequencing nor array-CGH analysis identified a pathogenic variant in PTEN or BMPR1A in a blood sample of Patient 2. However, in a surgical specimen of the thyroid gland high-level mosaicism for a 10q23.2q23.3 deletion was observed. Additionally, the pathogenic PTEN variant c.956_959delCTTT p.(Thr319LysfsTer24) was detected in his thyroid tissue. The frame shift variant was neither detected in the patient's blood nor in his buccal mucosa sample. Low-level mosaicism for the microdeletion was identified in a buccal swap sample, and reanalysis of the blood sample suggested marginal-level mosaicism for deletion. The 10q23.2q23.3 deletion mosaicism was also identified in a subsequently resected colonic polyp. Thus, in both cases, the diagnosis of a 10q23 deletion syndrome, which clinically presented as BRRS, was established. Overall, the study expands the BRRS spectrum and highlights the relevance of considering mosaicism in PHTS. We conclude that in all patients with a clear clinical suspicion of PHTS, in which genetic analyses of DNA from blood and buccal swap samples fail to identify causative genetic variants, genetic analyses of additional tissues are recommended.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I/genetics , Chromosome Deletion , Chromosomes, Human, Pair 10 , Hamartoma Syndrome, Multiple/genetics , Mosaicism , Mutation , PTEN Phosphohydrolase/genetics , Adolescent , Female , Humans , Male
19.
J Pathol ; 245(3): 373-383, 2018 07.
Article in English | MEDLINE | ID: mdl-29708279

ABSTRACT

Metaplastic breast carcinoma comprises a heterogeneous group of tumours with poorly understood pathogenesis. A subset of metaplastic breast cancers show myoepithelial differentiation and constitute a morphological spectrum with ill-defined borders from fibromatosis-like spindle cell carcinoma to myoepithelial carcinoma. In a series of 34 metaplastic breast cancers with spindle cell and myoepithelial differentiation, we found recurrent genetic aberrations, which set them apart from other metaplastic breast cancers and suggest a unique pathogenesis. The majority of cases (28 of 34 patients; 82.4%) showed distinct chromosomal loss in the 9p21.3 region, including CDKN2A and CDKN2B. Biallelic loss of the CDKN2A/B region was found in 50% of deleted cases. Expression of the cyclin-dependent kinase inhibitor CDKN2A (p16) was missing in all samples affected by 9p21.3 loss. Other genomic alterations frequently occurring in triple-negative and metaplastic breast cancer were absent or found in only a minority of cases. Gains of whole chromosome 5 and chromosomal region 5p were observed in nine cases, and were associated with recurrences (p < 0.001). In 64.3% of cases, 9p21.3 loss was accompanied by concurrent PIK3CA mutation. Both genomic abnormalities were also detectable in adenomyoepitheliomas (4/12), which are considered to represent the precursor lesion of myoepithelial metaplastic breast cancer. In adenomyoepithelioma, PIK3CA mutation was present in both luminal epithelial and myoepithelial cells, whereas p16 loss was found only in the latter. We conclude that 9p21.3 (CDKN2A) loss and PIK3CA mutation characterize a subgroup of metaplastic breast cancers with myoepithelial and spindle cell differentiation. Myoepithelial cells in adenomyoepithelioma may show identical aberrations. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/genetics , Chromosomes, Human, Pair 9 , Class I Phosphatidylinositol 3-Kinases/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Epithelial Cells/enzymology , Mutation , Myoepithelioma/genetics , Aged , Aged, 80 and over , Biomarkers, Tumor/deficiency , Breast Neoplasms/enzymology , Breast Neoplasms/pathology , Cell Differentiation , Cyclin-Dependent Kinase Inhibitor p16/deficiency , Epithelial Cells/pathology , Female , Genetic Predisposition to Disease , Humans , Metaplasia , Middle Aged , Myoepithelioma/enzymology , Myoepithelioma/pathology , Phenotype
20.
Breast Cancer Res ; 20(1): 87, 2018 08 07.
Article in English | MEDLINE | ID: mdl-30086788

ABSTRACT

BACKGROUND: Breast cancer is the most prevalent tumor entity in Li-Fraumeni syndrome. Up to 80% of individuals with a Li-Fraumeni-like phenotype do not harbor detectable causative germline TP53 variants. Yet, no systematic panel analyses for a wide range of cancer predisposition genes have been conducted on cohorts of women with breast cancer fulfilling Li-Fraumeni(-like) clinical diagnostic criteria. METHODS: To specifically help explain the diagnostic gap of TP53 wild-type Li-Fraumeni(-like) breast cancer cases, we performed array-based CGH (comparative genomic hybridization) and panel-based sequencing of 94 cancer predisposition genes on 83 breast cancer patients suggestive of Li-Fraumeni syndrome who had previously had negative test results for causative BRCA1, BRCA2, and TP53 germline variants. RESULTS: We identified 13 pathogenic or likely pathogenic germline variants in ten patients and in nine genes, including four copy number aberrations and nine single-nucleotide variants or small indels. Three patients presented as double-mutation carriers involving two different genes each. In five patients (5 of 83; 6% of cohort), we detected causative pathogenic variants in established hereditary breast cancer susceptibility genes (i.e., PALB2, CHEK2, ATM). Five further patients (5 of 83; 6% of cohort) were found to harbor pathogenic variants in genes lacking a firm association with breast cancer susceptibility to date (i.e., Fanconi pathway genes, RECQ family genes, CDKN2A/p14ARF, and RUNX1). CONCLUSIONS: Our study details the mutational spectrum in breast cancer patients suggestive of Li-Fraumeni syndrome and indicates the need for intensified research on monoallelic variants in Fanconi pathway and RECQ family genes. Notably, this study further reveals a large portion of still unexplained Li-Fraumeni(-like) cases, warranting comprehensive investigation of recently described candidate genes as well as noncoding regions of the TP53 gene in patients with Li-Fraumeni(-like) syndrome lacking TP53 variants in coding regions.


Subject(s)
Breast Neoplasms/genetics , Genetic Predisposition to Disease , Germ-Line Mutation/genetics , Li-Fraumeni Syndrome/genetics , Adult , Cohort Studies , DNA Copy Number Variations , DNA Mutational Analysis/methods , Female , Genetic Testing/methods , High-Throughput Nucleotide Sequencing , Humans , Oligonucleotide Array Sequence Analysis , Polymorphism, Single Nucleotide , Tumor Suppressor Protein p53/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL