Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
PLoS Biol ; 21(8): e3002239, 2023 08.
Article in English | MEDLINE | ID: mdl-37651504

ABSTRACT

Understanding central auditory processing critically depends on defining underlying auditory cortical networks and their relationship to the rest of the brain. We addressed these questions using resting state functional connectivity derived from human intracranial electroencephalography. Mapping recording sites into a low-dimensional space where proximity represents functional similarity revealed a hierarchical organization. At a fine scale, a group of auditory cortical regions excluded several higher-order auditory areas and segregated maximally from the prefrontal cortex. On mesoscale, the proximity of limbic structures to the auditory cortex suggested a limbic stream that parallels the classically described ventral and dorsal auditory processing streams. Identities of global hubs in anterior temporal and cingulate cortex depended on frequency band, consistent with diverse roles in semantic and cognitive processing. On a macroscale, observed hemispheric asymmetries were not specific for speech and language networks. This approach can be applied to multivariate brain data with respect to development, behavior, and disorders.


Subject(s)
Auditory Cortex , Humans , Auditory Perception , Brain , Electrocorticography , Electrophysiology
2.
J Neurosci ; 42(25): 5034-5046, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35534226

ABSTRACT

The dynamics of information flow within the auditory cortical hierarchy associated with speech processing and the emergence of hemispheric specialization remain incompletely understood. To study these questions with high spatiotemporal resolution, intracranial recordings in 29 human neurosurgical patients of both sexes were obtained while subjects performed a semantic classification task. Neural activity was recorded from posteromedial portion of Heschl's gyrus (HGPM) and anterolateral portion of Heschl's gyrus (HGAL), planum temporale (PT), planum polare, insula, and superior temporal gyrus (STG). Responses to monosyllabic words exhibited early gamma power increases and a later suppression of alpha power, envisioned to represent feedforward activity and decreased feedback signaling, respectively. Gamma activation and alpha suppression had distinct magnitude and latency profiles. HGPM and PT had the strongest gamma responses with shortest onset latencies, indicating that they are the earliest auditory cortical processing stages. The origin of attenuated top-down influences in auditory cortex, as indexed by alpha suppression, was in STG and HGAL. Gamma responses and alpha suppression were typically larger to nontarget words than tones. Alpha suppression was uniformly greater to target versus nontarget stimuli. Hemispheric bias for words versus tones and for target versus nontarget words, when present, was left lateralized. Better task performance was associated with increased gamma activity in the left PT and greater alpha suppression in HGPM and HGAL bilaterally. The prominence of alpha suppression during semantic classification and its accessibility for noninvasive electrophysiologic studies suggests that this measure is a promising index of auditory cortical speech processing.SIGNIFICANCE STATEMENT Understanding the dynamics of cortical speech processing requires the use of active tasks. This is the first comprehensive intracranial electroencephalography study to examine cortical activity within the superior temporal plane, lateral superior temporal gyrus, and the insula during a semantic classification task. Distinct gamma activation and alpha suppression profiles clarify the functional organization of feedforward and feedback processing within the auditory cortical hierarchy. Asymmetries in cortical speech processing emerge at early processing stages. Relationships between cortical activity and task performance are interpreted in the context of current models of speech processing. Results lay the groundwork for iEEG studies using connectivity measures of the bidirectional information flow within the auditory processing hierarchy.


Subject(s)
Auditory Cortex , Speech Perception , Acoustic Stimulation , Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping/methods , Female , Humans , Magnetic Resonance Imaging , Male , Speech , Speech Perception/physiology
3.
Cereb Cortex ; 31(12): 5435-5448, 2021 10 22.
Article in English | MEDLINE | ID: mdl-34117741

ABSTRACT

Elucidating neural signatures of sensory processing across consciousness states is a major focus in neuroscience. Noninvasive human studies using the general anesthetic propofol reveal differential effects on auditory cortical activity, with a greater impact on nonprimary and auditory-related areas than primary auditory cortex. This study used intracranial electroencephalography to examine cortical responses to vowel sequences during induction of general anesthesia with propofol. Subjects were adult neurosurgical patients with intracranial electrodes placed to identify epileptic foci. Data were collected before electrode removal surgery. Stimuli were vowel sequences presented in a target detection task during awake, sedated, and unresponsive states. Averaged evoked potentials (AEPs) and high gamma (70-150 Hz) power were measured in auditory, auditory-related, and prefrontal cortex. In the awake state, AEPs were found throughout studied brain areas; high gamma activity was limited to canonical auditory cortex. Sedation led to a decrease in AEP magnitude. Upon LOC, there was a decrease in the superior temporal gyrus and adjacent auditory-related cortex and a further decrease in AEP magnitude in core auditory cortex, changes in the temporal structure and increased trial-to-trial variability of responses. The findings identify putative biomarkers of LOC and serve as a foundation for future investigations of altered sensory processing.


Subject(s)
Auditory Cortex , Wakefulness , Acoustic Stimulation , Adult , Auditory Cortex/physiology , Electroencephalography , Electrophysiology , Evoked Potentials, Auditory/physiology , Humans
4.
Cereb Cortex ; 31(2): 1131-1148, 2021 01 05.
Article in English | MEDLINE | ID: mdl-33063098

ABSTRACT

The superior temporal sulcus (STS) is a crucial hub for speech perception and can be studied with high spatiotemporal resolution using electrodes targeting mesial temporal structures in epilepsy patients. Goals of the current study were to clarify functional distinctions between the upper (STSU) and the lower (STSL) bank, hemispheric asymmetries, and activity during self-initiated speech. Electrophysiologic properties were characterized using semantic categorization and dialog-based tasks. Gamma-band activity and alpha-band suppression were used as complementary measures of STS activation. Gamma responses to auditory stimuli were weaker in STSL compared with STSU and had longer onset latencies. Activity in anterior STS was larger during speaking than listening; the opposite pattern was observed more posteriorly. Opposite hemispheric asymmetries were found for alpha suppression in STSU and STSL. Alpha suppression in the STS emerged earlier than in core auditory cortex, suggesting feedback signaling within the auditory cortical hierarchy. STSL was the only region where gamma responses to words presented in the semantic categorization tasks were larger in subjects with superior task performance. More pronounced alpha suppression was associated with better task performance in Heschl's gyrus, superior temporal gyrus, and STS. Functional differences between STSU and STSL warrant their separate assessment in future studies.


Subject(s)
Acoustic Stimulation/methods , Electroencephalography/methods , Psychomotor Performance/physiology , Speech Perception/physiology , Temporal Lobe/physiology , Adolescent , Adult , Drug Resistant Epilepsy/diagnostic imaging , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Female , Humans , Male , Middle Aged , Temporal Lobe/diagnostic imaging , Temporal Lobe/surgery , Young Adult
5.
J Neurosci ; 38(39): 8441-8452, 2018 09 26.
Article in English | MEDLINE | ID: mdl-30126970

ABSTRACT

The systems-level mechanisms underlying loss of consciousness (LOC) under anesthesia remain unclear. General anesthetics suppress sensory responses within higher-order cortex and feedback connections, both critical elements of predictive coding hypotheses of conscious perception. Responses to auditory novelty may offer promise as biomarkers for consciousness. This study examined anesthesia-induced changes in auditory novelty responses over short (local deviant [LD]) and long (global deviant [GD]) time scales, envisioned to engage preattentive and conscious levels of processing, respectively. Electrocorticographic recordings were obtained in human neurosurgical patients (3 male, 3 female) from four hierarchical processing levels: core auditory cortex, non-core auditory cortex, auditory-related, and PFC. Stimuli were vowel patterns incorporating deviants within and across stimuli (LD and GD). Subjects were presented with stimuli while awake, and during sedation (responsive) and following LOC (unresponsive) under propofol anesthesia. LD and GD effects were assayed as the averaged evoked potential and high gamma (70-150 Hz) activity. In the awake state, LD and GD effects were present in all recorded regions, with averaged evoked potential effects more broadly distributed than high gamma activity. Under sedation, LD effects were preserved in all regions, except PFC. LOC was accompanied by loss of LD effects outside of auditory cortex. By contrast, GD effects were markedly suppressed under sedation in all regions and were absent following LOC. Thus, although the presence of GD effects is indicative of being awake, its absence is not indicative of LOC. Loss of LD effects in higher-order cortical areas may constitute an alternative biomarker of LOC.SIGNIFICANCE STATEMENT Development of a biomarker that indexes changes in the brain upon loss of consciousness (LOC) under general anesthesia has broad implications for elucidating the neural basis of awareness and clinical relevance to mechanisms of sleep, coma, and disorders of consciousness. Using intracranial recordings from neurosurgery patients, we investigated changes in the activation of cortical networks involved in auditory novelty detection over short (local deviance) and long (global deviance) time scales associated with sedation and LOC under propofol anesthesia. Our results indicate that, whereas the presence of global deviance effects can index awareness, their loss cannot serve as a biomarker for LOC. The dramatic reduction of local deviance effects in areas beyond auditory cortex may constitute an alternative biomarker of LOC.


Subject(s)
Anesthesia, General , Auditory Cortex/physiology , Auditory Perception/physiology , Awareness/physiology , Prefrontal Cortex/physiology , Acoustic Stimulation , Adult , Anesthetics, General/administration & dosage , Auditory Cortex/drug effects , Auditory Perception/drug effects , Awareness/drug effects , Brain Waves , Electrocorticography , Evoked Potentials, Auditory/drug effects , Female , Humans , Male , Prefrontal Cortex/drug effects , Young Adult
6.
J Neurosci ; 37(44): 10645-10655, 2017 11 01.
Article in English | MEDLINE | ID: mdl-28954867

ABSTRACT

An important aspect of auditory scene analysis is auditory stream segregation-the organization of sound sequences into perceptual streams reflecting different sound sources in the environment. Several models have been proposed to account for stream segregation. According to the "population separation" (PS) model, alternating ABAB tone sequences are perceived as a single stream or as two separate streams when "A" and "B" tones activate the same or distinct frequency-tuned neuronal populations in primary auditory cortex (A1), respectively. A crucial test of the PS model is whether it can account for the observation that A and B tones are generally perceived as a single stream when presented synchronously, rather than in an alternating pattern, even if they are widely separated in frequency. Here, we tested the PS model by recording neural responses to alternating (ALT) and synchronous (SYNC) tone sequences in A1 of male macaques. Consistent with predictions of the PS model, a greater effective tonotopic separation of A and B tone responses was observed under ALT than under SYNC conditions, thus paralleling the perceptual organization of the sequences. While other models of stream segregation, such as temporal coherence, are not excluded by the present findings, we conclude that PS is sufficient to account for the perceptual organization of ALT and SYNC sequences and thus remains a viable model of auditory stream segregation.SIGNIFICANCE STATEMENT According to the population separation (PS) model of auditory stream segregation, sounds that activate the same or separate neural populations in primary auditory cortex (A1) are perceived as one or two streams, respectively. It is unclear, however, whether the PS model can account for the perception of sounds as a single stream when they are presented synchronously. Here, we tested the PS model by recording neural responses to alternating (ALT) and synchronous (SYNC) tone sequences in macaque A1. A greater effective separation of tonotopic activity patterns was observed under ALT than under SYNC conditions, thus paralleling the perceptual organization of the sequences. Based on these findings, we conclude that PS remains a plausible neurophysiological model of auditory stream segregation.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Auditory Perception/physiology , Models, Biological , Animals , Macaca , Macaca fascicularis , Male
7.
Neuroimage ; 183: 412-424, 2018 12.
Article in English | MEDLINE | ID: mdl-30114466

ABSTRACT

Under the predictive coding hypothesis, specific spatiotemporal patterns of cortical activation are postulated to occur during sensory processing as expectations generate feedback predictions and prediction errors generate feedforward signals. Establishing experimental evidence for this information flow within cortical hierarchy has been difficult, especially in humans, due to spatial and temporal limitations of non-invasive measures of cortical activity. This study investigated cortical responses to auditory novelty using the local/global deviant paradigm, which engages the hierarchical network underlying auditory predictive coding over short ('local deviance'; LD) and long ('global deviance'; GD) time scales. Electrocorticographic responses to auditory stimuli were obtained in neurosurgical patients from regions of interest (ROIs) including auditory, auditory-related and prefrontal cortex. LD and GD effects were assayed in averaged evoked potential (AEP) and high gamma (70-150 Hz) signals, the former likely dominated by local synaptic currents and the latter largely reflecting local spiking activity. AEP LD effects were distributed across all ROIs, with greatest percentage of significant sites in core and non-core auditory cortex. High gamma LD effects were localized primarily to auditory cortex in the superior temporal plane and on the lateral surface of the superior temporal gyrus (STG). LD effects exhibited progressively longer latencies in core, non-core, auditory-related and prefrontal cortices, consistent with feedforward signaling. The spatial distribution of AEP GD effects overlapped that of LD effects, but high gamma GD effects were more restricted to non-core areas. High gamma GD effects had shortest latencies in STG and preceded AEP GD effects in most ROIs. This latency profile, along with the paucity of high gamma GD effects in the superior temporal plane, suggest that the STG plays a prominent role in initiating novelty detection signals over long time scales. Thus, the data demonstrate distinct patterns of information flow in human cortex associated with auditory novelty detection over multiple time scales.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Electrocorticography/methods , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Adult , Drug Resistant Epilepsy/physiopathology , Drug Resistant Epilepsy/surgery , Female , Humans , Male , Middle Aged , Time Factors , Young Adult
8.
Neuroimage ; 152: 78-93, 2017 05 15.
Article in English | MEDLINE | ID: mdl-28254512

ABSTRACT

The functional organization of human auditory cortex remains incompletely characterized. While the posteromedial two thirds of Heschl's gyrus (HG) is generally considered to be part of core auditory cortex, additional subdivisions of HG remain speculative. To further delineate the hierarchical organization of human auditory cortex, we investigated regional heterogeneity in the modulation of auditory cortical responses under varying depths of anesthesia induced by propofol. Non-invasive studies have shown that propofol differentially affects auditory cortical activity, with a greater impact on non-core areas. Subjects were neurosurgical patients undergoing removal of intracranial electrodes placed to identify epileptic foci. Stimuli were 50Hz click trains, presented continuously during an awake baseline period, and subsequently, while propofol infusion was incrementally titrated to induce general anesthesia. Electrocorticographic recordings were made with depth electrodes implanted in HG and subdural grid electrodes implanted over superior temporal gyrus (STG). Depth of anesthesia was monitored using spectral entropy. Averaged evoked potentials (AEPs), frequency-following responses (FFRs) and high gamma (70-150Hz) event-related band power were used to characterize auditory cortical activity. Based on the changes in AEPs and FFRs during the induction of anesthesia, posteromedial HG could be divided into two subdivisions. In the most posteromedial aspect of the gyrus, the earliest AEP deflections were preserved and FFRs increased during induction. In contrast, the remainder of the posteromedial HG exhibited attenuation of both the AEP and the FFR. The anterolateral HG exhibited weaker activation characterized by broad, low-voltage AEPs and the absence of FFRs. Lateral STG exhibited limited activation by click trains, and FFRs there diminished during induction. Sustained high gamma activity was attenuated in the most posteromedial portion of HG, and was absent in all other regions. These differential patterns of auditory cortical activity during the induction of anesthesia may serve as useful physiological markers for field delineation. In this study, the posteromedial HG could be parcellated into at least two subdivisions. Preservation of the earliest AEP deflections and FFRs in the posteromedial HG likely reflects the persistence of feedforward synaptic activity generated by inputs from subcortical auditory pathways, including the medial geniculate nucleus.


Subject(s)
Auditory Cortex/drug effects , Auditory Cortex/physiology , Auditory Perception/physiology , Evoked Potentials, Auditory/drug effects , Propofol/administration & dosage , Acoustic Stimulation , Adult , Anesthetics, Intravenous/administration & dosage , Auditory Perception/drug effects , Electrocorticography , Female , Gamma Rhythm , Humans , Male , Middle Aged
9.
J Neurosci ; 34(37): 12425-43, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25209282

ABSTRACT

The ability to attend to a particular sound in a noisy environment is an essential aspect of hearing. To accomplish this feat, the auditory system must segregate sounds that overlap in frequency and time. Many natural sounds, such as human voices, consist of harmonics of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0. A difference in pitch between simultaneous HCTs provides a powerful cue for their segregation. The neural mechanisms underlying concurrent sound segregation based on pitch differences are poorly understood. Here, we examined neural responses in monkey primary auditory cortex (A1) to two concurrent HCTs that differed in F0 such that they are heard as two separate "auditory objects" with distinct pitches. We found that A1 can resolve, via a rate-place code, the lower harmonics of both HCTs, a prerequisite for deriving their pitches and for their perceptual segregation. Onset asynchrony between the HCTs enhanced the neural representation of their harmonics, paralleling their improved perceptual segregation in humans. Pitches of the concurrent HCTs could also be temporally represented by neuronal phase-locking at their respective F0s. Furthermore, a model of A1 responses using harmonic templates could qualitatively reproduce psychophysical data on concurrent sound segregation in humans. Finally, we identified a possible intracortical homolog of the "object-related negativity" recorded noninvasively in humans, which correlates with the perceptual segregation of concurrent sounds. Findings indicate that A1 contains sufficient spectral and temporal information for segregating concurrent sounds based on differences in pitch.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Nerve Net/physiology , Pattern Recognition, Physiological/physiology , Pitch Perception/physiology , Animals , Brain Mapping , Cues , Haplorhini , Humans , Macaca fascicularis , Male , Perceptual Masking
10.
Cereb Cortex ; 24(2): 340-52, 2014 Feb.
Article in English | MEDLINE | ID: mdl-23048019

ABSTRACT

The place of the posterolateral superior temporal (PLST) gyrus within the hierarchical organization of the human auditory cortex is unknown. Understanding how PLST processes spectral information is imperative for its functional characterization. Pure-tone stimuli were presented to subjects undergoing invasive monitoring for refractory epilepsy. Recordings were made using high-density subdural grid electrodes. Pure tones elicited robust high gamma event-related band power responses along a portion of PLST adjacent to the transverse temporal sulcus (TTS). Responses were frequency selective, though typically broadly tuned. In several subjects, mirror-image response patterns around a low-frequency center were observed, but typically, more complex and distributed patterns were seen. Frequency selectivity was greatest early in the response. Classification analysis using a sparse logistic regression algorithm yielded above-chance accuracy in all subjects. Classifier performance typically peaked at 100-150 ms after stimulus onset, was comparable for the left and right hemisphere cases, and was stable across stimulus intensities. Results demonstrate that representations of spectral information within PLST are temporally dynamic and contain sufficient information for accurate discrimination of tone frequencies. PLST adjacent to the TTS appears to be an early stage in the hierarchy of cortical auditory processing. Pure-tone response patterns may aid auditory field identification.


Subject(s)
Auditory Cortex/physiology , Auditory Perception , Acoustic Stimulation , Acoustics , Adult , Brain Waves , Electrodes, Implanted , Epilepsy/physiopathology , Evoked Potentials, Auditory , Female , Functional Laterality , Humans , Logistic Models , Male , Middle Aged , Young Adult
11.
J Neurosci ; 33(25): 10312-23, 2013 Jun 19.
Article in English | MEDLINE | ID: mdl-23785145

ABSTRACT

Many natural sounds are periodic and consist of frequencies (harmonics) that are integer multiples of a common fundamental frequency (F0). Such harmonic complex tones (HCTs) evoke a pitch corresponding to their F0, which plays a key role in the perception of speech and music. "Pitch-selective" neurons have been identified in non-primary auditory cortex of marmoset monkeys. Noninvasive studies point to a putative "pitch center" located in a homologous cortical region in humans. It remains unclear whether there is sufficient spectral and temporal information available at the level of primary auditory cortex (A1) to enable reliable pitch extraction in non-primary auditory cortex. Here we evaluated multiunit responses to HCTs in A1 of awake macaques using a stimulus design employed in auditory nerve studies of pitch encoding. The F0 of the HCTs was varied in small increments, such that harmonics of the HCTs fell either on the peak or on the sides of the neuronal pure tone tuning functions. Resultant response-amplitude-versus-harmonic-number functions ("rate-place profiles") displayed a periodic pattern reflecting the neuronal representation of individual HCT harmonics. Consistent with psychoacoustic findings in humans, lower harmonics were better resolved in rate-place profiles than higher harmonics. Lower F0s were also temporally represented by neuronal phase-locking to the periodic waveform of the HCTs. Findings indicate that population responses in A1 contain sufficient spectral and temporal information for extracting the pitch of HCTs by neurons in downstream cortical areas that receive their input from A1.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Pitch Perception/physiology , Acoustic Stimulation , Animals , Electrodes, Implanted , Evoked Potentials, Auditory/physiology , Macaca fascicularis , Male , Wakefulness/physiology
12.
Neuroimage ; 101: 598-609, 2014 Nov 01.
Article in English | MEDLINE | ID: mdl-25019680

ABSTRACT

The model for functional organization of human auditory cortex is in part based on findings in non-human primates, where the auditory cortex is hierarchically delineated into core, belt and parabelt fields. This model envisions that core cortex directly projects to belt, but not to parabelt, whereas belt regions are a major source of direct input for auditory parabelt. In humans, the posteromedial portion of Heschl's gyrus (HG) represents core auditory cortex, whereas the anterolateral portion of HG and the posterolateral superior temporal gyrus (PLST) are generally interpreted as belt and parabelt, respectively. In this scheme, response latencies can be hypothesized to progress in serial fashion from posteromedial to anterolateral HG to PLST. We examined this hypothesis by comparing response latencies to multiple stimuli, measured across these regions using simultaneous intracranial recordings in neurosurgical patients. Stimuli were 100 Hz click trains and the speech syllable /da/. Response latencies were determined by examining event-related band power in the high gamma frequency range. The earliest responses in auditory cortex occurred in posteromedial HG. Responses elicited from sites in anterolateral HG were neither earlier in latency from sites on PLST, nor more robust. Anterolateral HG and PLST exhibited some preference for speech syllable stimuli compared to click trains. These findings are not supportive of a strict serial model envisioning principal flow of information along HG to PLST. In contrast, data suggest that a portion of PLST may represent a relatively early stage in the auditory cortical hierarchy.


Subject(s)
Auditory Cortex/physiology , Auditory Perception/physiology , Brain Mapping/methods , Electroencephalography/methods , Evoked Potentials, Auditory/physiology , Gamma Rhythm/physiology , Adult , Auditory Cortex/anatomy & histology , Electrodes, Implanted , Female , Humans , Male , Middle Aged , Reaction Time/physiology , Speech Perception/physiology , Young Adult
13.
Hear Res ; 444: 108972, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38359485

ABSTRACT

Auditory semantic novelty - a new meaningful sound in the context of a predictable acoustical environment - can probe neural circuits involved in language processing. Aberrant novelty detection is a feature of many neuropsychiatric disorders. This large-scale human intracranial electrophysiology study examined the spatial distribution of gamma and alpha power and auditory evoked potentials (AEP) associated with responses to unexpected words during performance of semantic categorization tasks. Participants were neurosurgical patients undergoing monitoring for medically intractable epilepsy. Each task included repeatedly presented monosyllabic words from different talkers ("common") and ten words presented only once ("novel"). Targets were words belonging to a specific semantic category. Novelty effects were defined as differences between neural responses to novel and common words. Novelty increased task difficulty and was associated with augmented gamma, suppressed alpha power, and AEP differences broadly distributed across the cortex. Gamma novelty effect had the highest prevalence in planum temporale, posterior superior temporal gyrus (STG) and pars triangularis of the inferior frontal gyrus; alpha in anterolateral Heschl's gyrus (HG), anterior STG and middle anterior cingulate cortex; AEP in posteromedial HG, lower bank of the superior temporal sulcus, and planum polare. Gamma novelty effect had a higher prevalence in dorsal than ventral auditory-related areas. Novelty effects were more pronounced in the left hemisphere. Better novel target detection was associated with reduced gamma novelty effect within auditory cortex and enhanced gamma effect within prefrontal and sensorimotor cortex. Alpha and AEP novelty effects were generally more prevalent in better performing participants. Multiple areas, including auditory cortex on the superior temporal plane, featured AEP novelty effect within the time frame of P3a and N400 scalp-recorded novelty-related potentials. This work provides a detailed account of auditory novelty in a paradigm that directly examined brain regions associated with semantic processing. Future studies may aid in the development of objective measures to assess the integrity of semantic novelty processing in clinical populations.


Subject(s)
Auditory Cortex , Electroencephalography , Humans , Male , Female , Semantics , Acoustic Stimulation , Evoked Potentials , Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Magnetic Resonance Imaging , Brain Mapping
14.
J Neurosci ; 32(45): 15747-58, 2012 Nov 07.
Article in English | MEDLINE | ID: mdl-23136414

ABSTRACT

The mismatch negativity (MMN) is a preattentive component of the auditory event-related potential that is elicited by a change in a repetitive acoustic pattern. While MMN has been extensively used in human electrophysiological studies of auditory processing, the neural mechanisms and brain regions underlying its generation remain unclear. We investigate possible homologs of the MMN in macaque primary auditory cortex (A1) using a frequency oddball paradigm in which rare "deviant" tones are randomly interspersed among frequent "standard" tones. Standards and deviants had frequencies equal to the best frequency (BF) of the recorded neural population or to a frequency that evoked a response half the amplitude of the BF response. Early and later field potentials, current source density components, multiunit activity, and induced high-gamma band responses were larger when elicited by deviants than by standards of the same frequency. Laminar analysis indicated that differences between deviant and standard responses were more prominent in later activity, thus suggesting cortical amplification of initial responses driven by thalamocortical inputs. However, unlike the human MMN, larger deviant responses were characterized by the enhancement of "obligatory" responses rather than the introduction of new components. Furthermore, a control condition wherein deviants were interspersed among many tones of variable frequency replicated the larger responses to deviants under the oddball condition. Results suggest that differential responses under the oddball condition in macaque A1 reflect stimulus-specific adaptation rather than deviance detection per se. We conclude that neural mechanisms of deviance detection likely reside in cortical areas outside of A1.


Subject(s)
Auditory Cortex/physiology , Evoked Potentials, Auditory/physiology , Neurons/physiology , Acoustic Stimulation , Animals , Attention/physiology , Auditory Perception/physiology , Electroencephalography , Macaca fascicularis , Male
15.
Neuron ; 111(13): 1995-1997, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37413966

ABSTRACT

In this issue of Neuron, Oganian et al.1 performed intracranial recordings in the auditory cortex of human subjects to clarify how vowels are encoded by the brain. Formant-based tuning curves demonstrated the organization of vowel encoding. The need for population codes and demonstration of speaker normalization were emphasized.


Subject(s)
Auditory Cortex , Speech Perception , Humans , Auditory Cortex/physiology , Phonetics , Speech Perception/physiology
16.
Front Hum Neurosci ; 17: 1334742, 2023.
Article in English | MEDLINE | ID: mdl-38318272

ABSTRACT

Introduction: Cochlear implants (CIs) are the treatment of choice for severe to profound hearing loss. Variability in CI outcomes remains despite advances in technology and is attributed in part to differences in cortical processing. Studying these differences in CI users is technically challenging. Spectrally degraded stimuli presented to normal-hearing individuals approximate input to the central auditory system in CI users. This study used intracranial electroencephalography (iEEG) to investigate cortical processing of spectrally degraded speech. Methods: Participants were adult neurosurgical epilepsy patients. Stimuli were utterances /aba/ and /ada/, spectrally degraded using a noise vocoder (1-4 bands) or presented without vocoding. The stimuli were presented in a two-alternative forced choice task. Cortical activity was recorded using depth and subdural iEEG electrodes. Electrode coverage included auditory core in posteromedial Heschl's gyrus (HGPM), superior temporal gyrus (STG), ventral and dorsal auditory-related areas, and prefrontal and sensorimotor cortex. Analysis focused on high gamma (70-150 Hz) power augmentation and alpha (8-14 Hz) suppression. Results: Chance task performance occurred with 1-2 spectral bands and was near-ceiling for clear stimuli. Performance was variable with 3-4 bands, permitting identification of good and poor performers. There was no relationship between task performance and participants demographic, audiometric, neuropsychological, or clinical profiles. Several response patterns were identified based on magnitude and differences between stimulus conditions. HGPM responded strongly to all stimuli. A preference for clear speech emerged within non-core auditory cortex. Good performers typically had strong responses to all stimuli along the dorsal stream, including posterior STG, supramarginal, and precentral gyrus; a minority of sites in STG and supramarginal gyrus had a preference for vocoded stimuli. In poor performers, responses were typically restricted to clear speech. Alpha suppression was more pronounced in good performers. In contrast, poor performers exhibited a greater involvement of posterior middle temporal gyrus when listening to clear speech. Discussion: Responses to noise-vocoded speech provide insights into potential factors underlying CI outcome variability. The results emphasize differences in the balance of neural processing along the dorsal and ventral stream between good and poor performers, identify specific cortical regions that may have diagnostic and prognostic utility, and suggest potential targets for neuromodulation-based CI rehabilitation strategies.

17.
JCI Insight ; 8(22)2023 Nov 22.
Article in English | MEDLINE | ID: mdl-37788112

ABSTRACT

Postictal apnea is thought to be a major cause of sudden unexpected death in epilepsy (SUDEP). However, the mechanisms underlying postictal apnea are unknown. To understand causes of postictal apnea, we used a multimodal approach to study brain mechanisms of breathing control in 20 patients (ranging from pediatric to adult) undergoing intracranial electroencephalography for intractable epilepsy. Our results indicate that amygdala seizures can cause postictal apnea. Moreover, we identified a distinct region within the amygdala where electrical stimulation was sufficient to reproduce prolonged breathing loss persisting well beyond the end of stimulation. The persistent apnea was resistant to rising CO2 levels, and air hunger failed to occur, suggesting impaired CO2 chemosensitivity. Using es-fMRI, a potentially novel approach combining electrical stimulation with functional MRI, we found that amygdala stimulation altered blood oxygen level-dependent (BOLD) activity in the pons/medulla and ventral insula. Together, these findings suggest that seizure activity in a focal subregion of the amygdala is sufficient to suppress breathing and air hunger for prolonged periods of time in the postictal period, likely via brainstem and insula sites involved in chemosensation and interoception. They further provide insights into SUDEP, may help identify those at greatest risk, and may lead to treatments to prevent SUDEP.


Subject(s)
Apnea , Sudden Unexpected Death in Epilepsy , Adult , Humans , Child , Carbon Dioxide , Hunger , Electroencephalography/methods , Seizures , Amygdala/diagnostic imaging
18.
J Neurophysiol ; 107(9): 2366-82, 2012 May.
Article in English | MEDLINE | ID: mdl-22323627

ABSTRACT

The ability to detect and track relevant acoustic signals embedded in a background of other sounds is crucial for hearing in complex acoustic environments. This ability is exemplified by a perceptual phenomenon known as "rhythmic masking release" (RMR). To demonstrate RMR, a sequence of tones forming a target rhythm is intermingled with physically identical "Distracter" sounds that perceptually mask the rhythm. The rhythm can be "released from masking" by adding "Flanker" tones in adjacent frequency channels that are synchronous with the Distracters. RMR represents a special case of auditory stream segregation, whereby the target rhythm is perceptually segregated from the background of Distracters when they are accompanied by the synchronous Flankers. The neural basis of RMR is unknown. Previous studies suggest the involvement of primary auditory cortex (A1) in the perceptual organization of sound patterns. Here, we recorded neural responses to RMR sequences in A1 of awake monkeys in order to identify neural correlates and potential mechanisms of RMR. We also tested whether two current models of stream segregation, when applied to these responses, could account for the perceptual organization of RMR sequences. Results suggest a key role for suppression of Distracter-evoked responses by the simultaneous Flankers in the perceptual restoration of the target rhythm in RMR. Furthermore, predictions of stream segregation models paralleled the psychoacoustics of RMR in humans. These findings reinforce the view that preattentive or "primitive" aspects of auditory scene analysis may be explained by relatively basic neural mechanisms at the cortical level.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Models, Neurological , Neurons/physiology , Sound Localization/physiology , Animals , Macaca fascicularis , Male
19.
Cereb Cortex ; 21(10): 2332-47, 2011 Oct.
Article in English | MEDLINE | ID: mdl-21368087

ABSTRACT

To clarify speech-elicited response patterns within auditory-responsive cortex of the posterolateral superior temporal (PLST) gyrus, time-frequency analyses of event-related band power in the high gamma frequency range (75-175 Hz) were performed on the electrocorticograms recorded from high-density subdural grid electrodes in 8 patients undergoing evaluation for medically intractable epilepsy. Stimuli were 6 stop consonant-vowel (CV) syllables that varied in their consonant place of articulation (POA) and voice onset time (VOT). Initial augmentation was maximal over several centimeters of PLST, lasted about 400 ms, and was often followed by suppression and a local outward expansion of activation. Maximal gamma power overlapped either the Nα or Pß deflections of the average evoked potential (AEP). Correlations were observed between the relative magnitudes of gamma band responses elicited by unvoiced stop CV syllables (/pa/, /ka/, /ta/) and their corresponding voiced stop CV syllables (/ba/, /ga/, /da/), as well as by the VOT of the stimuli. VOT was also represented in the temporal patterns of the AEP. These findings, obtained in the passive awake state, indicate that PLST discriminates acoustic features associated with POA and VOT and serve as a benchmark upon which task-related speech activity can be compared.


Subject(s)
Acoustic Stimulation/methods , Auditory Cortex/physiology , Speech Perception/physiology , Temporal Lobe/physiology , Adult , Brain Mapping/instrumentation , Brain Mapping/methods , Electrodes, Implanted , Evoked Potentials, Auditory/physiology , Female , Humans , Male , Middle Aged , Speech/physiology , Young Adult
20.
Sci Rep ; 12(1): 314, 2022 01 10.
Article in English | MEDLINE | ID: mdl-35013345

ABSTRACT

Acoustic structures associated with native-language phonological sequences are enhanced within auditory pathways for perception, although the underlying mechanisms are not well understood. To elucidate processes that facilitate perception, time-frequency (T-F) analyses of EEGs obtained from native speakers of English and Polish were conducted. Participants listened to same and different nonword pairs within counterbalanced attend and passive conditions. Nonwords contained the onsets /pt/, /pət/, /st/, and /sət/ that occur in both the Polish and English languages with the exception of /pt/, which never occurs in the English language in word onset. Measures of spectral power and inter-trial phase locking (ITPL) in the low gamma (LG) and theta-frequency bands were analyzed from two bilateral, auditory source-level channels, created through source localization modeling. Results revealed significantly larger spectral power in LG for the English listeners to the unfamiliar /pt/ onsets from the right hemisphere at early cortical stages, during the passive condition. Further, ITPL values revealed distinctive responses in high and low-theta to acoustic characteristics of the onsets, which were modulated by language exposure. These findings, language-specific processing in LG and acoustic-level and language-specific processing in theta, support the view that multi scale temporal processing in the LG and theta-frequency bands facilitates speech perception.

SELECTION OF CITATIONS
SEARCH DETAIL