Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Country/Region as subject
Language
Publication year range
1.
Mol Biol Evol ; 28(9): 2651-60, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21478460

ABSTRACT

There are many more selectively constrained noncoding than coding nucleotides in the mammalian genome, but most mammalian noncoding DNA is subject to weak selection, on average. One of the most striking discoveries to have emerged from comparisons among mammalian genomes is the hundreds of noncoding elements of more than 200 bp in length that show absolute conservation among mammalian orders. These elements represent the tip of the iceberg of a much larger class of conserved noncoding elements (CNEs). Much evidence suggests that CNEs are selectively constrained and not mutational cold-spots, and there is evidence that some CNEs play a role in the regulation of development. Here, we quantify negative and positive selection acting in murine CNEs by analyzing within-species nucleotide variation and between-species divergence of CNEs that we identified using a phylogenetically independent comparison. The distribution of fitness effects of new mutations in CNEs, inferred from within-species polymorphism, suggests that CNEs receive a higher number of strongly selected deleterious mutations and many fewer nearly neutral mutations than amino acid sites of protein-coding genes or regulatory elements close to genes. However, we also show that CNEs experience a far higher proportion of adaptive substitutions than any known category of genomic sites in murids. The absolute rate of adaptation of CNEs is similar to that of amino acid sites of proteins. This result suggests that there is widespread adaptation in mammalian conserved noncoding DNA elements, some of which have been implicated in the regulation of crucially important processes, including development.


Subject(s)
Conserved Sequence/genetics , DNA, Intergenic/genetics , RNA, Untranslated/genetics , Selection, Genetic , Animals , Evolution, Molecular , Mammals/genetics , Mice , Mutation , Open Reading Frames/genetics , Phylogeny
2.
Mol Ecol ; 20(7): 1475-91, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21251111

ABSTRACT

Homoploid hybridization after secondary contact between related species can lead to mixtures of genotypes which have the potential for rapid adaptation to new environmental conditions. Here, we focus on a case where anthropogenic changes within the past 200 years have allowed the hybridization between two fish species (Cottus rhenanus and Cottus perifretum) in the Netherlands. Specifically, we address the question of the dynamics of the emergence of these hybrids and invasion of the river systems. Using a set of 81 mostly ancestry-informative SNP markers, as well as broad sample coverage in and around the area of the initial contact, we find a structured hybrid swarm with at least three distinct hybrid lineages that have emerged out of this secondary contact situation. We show that genetically coherent groups can occur at geographically distant locations, while geographically adjacent groups can be genetically different, indicating that some form of reproductive isolation between the lineages is already effective. Using a newly developed modelling approach, we test the relative influence of founding admixture, drift and migration on the allele compositions of the sampling sites. We find that the allele frequency distributions can best be explained if continued gene flow between the parental species and the hybrid lineages is invoked. Genome mapping of the invasive lineage in the Rhine shows that major chromosomal rearrangements were not involved in creating this distinct lineage. Our results show that hybridization after secondary contact can quickly lead to multiple independent new lineages that have the capacity to form hybrid species.


Subject(s)
Genetic Speciation , Hybridization, Genetic , Perciformes/genetics , Adaptation, Physiological/genetics , Animals , Chromosome Mapping , DNA, Mitochondrial/analysis , Gene Frequency , Genetic Markers , Genotype , Humans , Models, Genetic , Netherlands , Polymorphism, Single Nucleotide , Rivers
3.
Proc Biol Sci ; 272(1579): 2379-87, 2005 Nov 22.
Article in English | MEDLINE | ID: mdl-16243698

ABSTRACT

Fish abundance surveys in the Rhine system have shown in the past two decades that there is a rapid upriver invasion of a freshwater sculpin of the genus Cottus. These fish are found in habitats that are atypical for the known species Cottus gobio, which is confined to small cold streams within the Rhine drainage. Phylogeographic analysis based on mitochondrial haplotypes and diagnostic single nucleotide polymorphisms indicates that the invasive sculpins are hybrids between two old lineages from the River Scheldt drainage and the River Rhine drainage, although it is morphologically more similar to the Scheldt sculpins. Most importantly, however, the invasive population possesses a unique ecological potential that does not occur in either of the source populations from the Rhine or the Scheldt, which allows the colonization of new habitats that have previously been free of sculpins. Microsatellite analysis shows that the new lineage is genetically intermediate between the old lineages and that it forms a distinct genetic group across its whole expansion range. We conclude that hybridization between long separated groups has lead to the fast emergence of a new, adaptationally distinct sculpin lineage.


Subject(s)
Adaptation, Physiological , Biological Evolution , Ecosystem , Fishes/genetics , Fishes/physiology , Hybridization, Genetic , Rivers , Animals , Europe , Geography , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL