Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Br J Cancer ; 125(1): 23-27, 2021 07.
Article in English | MEDLINE | ID: mdl-33762721

ABSTRACT

Circulating tumour cell (CTC) clusters have been proposed to be major players in the metastatic spread of breast cancer, particularly during advanced disease stages. Yet, it is unclear whether or not they manifest in early breast cancer, as their occurrence in patients with metastasis-free primary disease has not been thoroughly evaluated. In this study, exploiting nanostructured titanium oxide-coated slides for shear-free CTC identification, we detect clustered CTCs in the curative setting of multiple patients with early breast cancer prior to surgical treatment, highlighting their presence already at early disease stages. These results spotlight an important aspect of metastasis biology and the possibility to intervene with anti-cluster therapeutics already during the early manifestation of breast cancer.


Subject(s)
Breast Neoplasms/pathology , Neoplastic Cells, Circulating/pathology , Titanium/chemistry , Breast Neoplasms/surgery , Case-Control Studies , Cell Line, Tumor , Female , Humans , Nanostructures , Neoplasm Metastasis , Neoplasm Staging
2.
Part Fibre Toxicol ; 14(1): 41, 2017 10 26.
Article in English | MEDLINE | ID: mdl-29073907

ABSTRACT

BACKGROUND: The special physicochemical properties of gold nanoprisms make them very useful for biomedical applications including biosensing and cancer therapy. However, it is not clear how gold nanoprisms may affect cellular physiology including viability and other critical functions. We report a multiparametric investigation on the impact of gold-nanoprisms on mice and human, transformed and primary cells as well as tissue distribution and toxicity in vivo after parental injection. METHODS: Cellular uptake of the gold-nanoprisms (NPRs) and the most crucial parameters of cell fitness such as generation of reactive oxygen species (ROS), mitochondria membrane potential, cell morphology and apoptosis were systematically assayed in cells. Organ distribution and toxicity including inflammatory response were analysed in vivo in mice at 3 days or 4 months after parental administration. RESULTS: Internalized gold-nanoprisms have a significant impact in cell morphology, mitochondrial function and ROS production, which however do not affect the potential of cells to proliferate and form colonies. In vivo NPRs were only detected in spleen and liver at 3 days and 4 months after administration, which correlated with some changes in tissue architecture. However, the main serum biochemical markers of organ damage and inflammation (TNFα and IFNγ) remained unaltered even after 4 months. In addition, animals did not show any macroscopic sign of toxicity and remained healthy during all the study period. CONCLUSION: Our data indicate that these gold-nanoprisms are neither cytotoxic nor cytostatic in transformed and primary cells, and suggest that extensive parameters should be analysed in different cell types to draw useful conclusions on nanomaterials safety. Moreover, although there is a tendency for the NPRs to accumulate in liver and spleen, there is no observable negative impact on animal health.


Subject(s)
Apoptosis/drug effects , Cell Proliferation/drug effects , Gold/toxicity , Metal Nanoparticles/toxicity , A549 Cells , Animals , Cell Line, Transformed , Cell Shape/drug effects , Female , Gold/administration & dosage , Gold/pharmacokinetics , HeLa Cells , Humans , Inflammation Mediators/blood , Injections, Intravenous , Interferon-gamma/blood , Male , Membrane Potential, Mitochondrial/drug effects , Metal Nanoparticles/administration & dosage , Mice, Inbred C57BL , Mitochondria/drug effects , Mitochondria/metabolism , Mitochondria/pathology , Primary Cell Culture , Reactive Oxygen Species/metabolism , Risk Assessment , Tissue Distribution , Tumor Necrosis Factor-alpha/blood
3.
Langmuir ; 32(2): 411-20, 2016 Jan 19.
Article in English | MEDLINE | ID: mdl-26673053

ABSTRACT

Bifunctional and highly uniform Ln:BaGdF5 (Ln = Eu(3+) and Nd(3+)) nanoparticles have been successfully synthesized using a solvothermal method consisting of the aging at 120 °C of a glycerol solution containing the corresponding Lanthanide acetylacetonates and butylmethylimidazolium tetrafluoroborate. The absence of any surfactant in the synthesis process rendered hydrophilic nanospheres (with tunable diameter from 45 nm 85 nm, depending on the cations concentration of the starting solution) which are suitable for bioapplications. The particles are bifunctional because they showed both optical and magnetic properties due to the presence of the optically active lanthanides (Eu(3+) in the visible and Nd(3+) in the NIR regions of the electromagnetic spectrum) and the paramagnetic gadolinium ion, respectively. The luminescence decay curves of the nanospheres doped with different amounts of Eu(3+) and Nd(3+) have been recorded in order to determine the optimum dopant concentration in each case, which turned out to be 5% Eu(3+) and 0.5% Nd(3+). Likewise, proton relaxation times were measured at 1.5 T in water suspensions of the optimum particles found in the luminescence study. The values obtained suggested that both kinds of particles could be used as positive contrast agents for MRI. Finally, it was demonstrated that both the 5% Eu(3+) and 0.5% Nd(3+)-doped BaGdF5 nanospheres showed negligible cytotoxicity for VERO cells for concentrations up to 0.25 mg mL(-1).

4.
Mar Drugs ; 14(10)2016 Sep 30.
Article in English | MEDLINE | ID: mdl-27706041

ABSTRACT

The tunability of the properties of chitosan-based carriers opens new ways for the application of drugs with low water-stability or high adverse effects. In this work, the combination of a nanoemulsion with a chitosan hydrogel coating and the following poly (ethylene glycol) (PEG) grafting is proven to be a promising strategy to obtain a flexible and versatile nanocarrier with an improved stability. Thanks to chitosan amino groups, a new easy and reproducible method to obtain nanocapsule grafting with PEG has been developed in this work, allowing a very good control and tunability of the properties of nanocapsule surface. Two different PEG densities of coverage are studied and the nanocapsule systems obtained are characterized at all steps of the optimization in terms of diameter, Z potential and surface charge (amino group analysis). Results obtained are compatible with a conformation of PEG molecules laying adsorbed on nanoparticle surface after covalent linking through their amino terminal moiety. An improvement in nanocapsule stability in physiological medium is observed with the highest PEG coverage density obtained. Cytotoxicity tests also demonstrate that grafting with PEG is an effective strategy to modulate the cytotoxicity of developed nanocapsules. Such results indicate the suitability of chitosan as protective coating for future studies oriented toward drug delivery.


Subject(s)
Chitosan/chemistry , Chitosan/toxicity , Nanocapsules/chemistry , Nanocapsules/toxicity , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Drug Carriers/chemistry , Drug Carriers/toxicity , Drug Delivery Systems , Drug Stability , Electrochemical Techniques , Emulsions , Hydrogen-Ion Concentration , Particle Size , Polyethylene Glycols/chemistry , Surface Properties , Thermogravimetry , Vero Cells
5.
ACS Appl Mater Interfaces ; 10(5): 4548-4560, 2018 Feb 07.
Article in English | MEDLINE | ID: mdl-29328627

ABSTRACT

The protein corona formed on the surface of a nanoparticle in a biological medium determines its behavior in vivo. Herein, iron oxide nanoparticles containing the same core and shell, but bearing two different surface coatings, either glucose or poly(ethylene glycol), were evaluated. The nanoparticles' protein adsorption, in vitro degradation, and in vivo biodistribution and biotransformation over four months were investigated. Although both types of nanoparticles bound similar amounts of proteins in vitro, the differences in the protein corona composition correlated to the nanoparticles biodistribution in vivo. Interestingly, in vitro degradation studies demonstrated faster degradation for nanoparticles functionalized with glucose, whereas the in vivo results were opposite with accelerated biodegradation and clearance of the nanoparticles functionalized with poly(ethylene glycol). Therefore, the variation in the degradation rate observed in vivo could be related not only to the molecules attached to the surface, but also with the associated protein corona, as the key role of the adsorbed proteins on the magnetic core degradation has been demonstrated in vitro.


Subject(s)
Nanoparticles , Ferric Compounds , Protein Corona , Tissue Distribution
6.
Nanomedicine (Lond) ; 11(22): 2903-2916, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27785974

ABSTRACT

AIM: This work compares the synthesis, heating capability, cellular internalization and thermoablation capacity of two different types of anisotropic gold nanoparticles: gold nanorods (NRs) and nanoprisms (NPrs). METHODS: Both particles possess surface plasmon resonance absorption bands in the near-IR, and their heating efficiency upon irradiation with a continuous near-IR laser (1064 nm) was evaluated. The cellular internalization, location and toxicity of these PEG-stabilized NPrs and NRs were then assessed in the Vero cell line by transmission electron microscopy and inductively coupled plasma mass spectrometry analysis, and their ability to induce cell death upon laser irradiation was then evaluated and compared. RESULTS & CONCLUSION: Although both nanoparticles are highly efficient photothermal converters, NRs possessed a more efficient heating capability, yet the in vitro thermoablation studies clearly demonstrated that NPrs were more effective at inducing cell death through photothermal ablation due to their greater cellular internalization.


Subject(s)
Biocompatible Materials/chemistry , Cell Death/drug effects , Metal Nanoparticles/chemistry , Nanotubes/chemistry , Animals , Biocompatible Materials/administration & dosage , Chlorocebus aethiops , Gold/chemistry , Heating , Hyperthermia, Induced , Metal Nanoparticles/administration & dosage , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Transmission , Nanotubes/ultrastructure , Surface Plasmon Resonance , Vero Cells
7.
Dalton Trans ; 45(41): 16354-16365, 2016 Oct 18.
Article in English | MEDLINE | ID: mdl-27711783

ABSTRACT

A method for the synthesis of non-aggregated and highly uniform Eu3+ doped NaGd(MoO4)2 nanoparticles is reported for the first time. The obtained particles present tetragonal structure, ellipsoidal shape and their size can be varied by adjusting the experimental synthesis parameters. These nanoparticles, which were coated with citrate anions and functionalised with PLL, have also been developed in order to improve their colloidal stability in physiological medium (2-(N-morpholino)ethanesulfonic acid, MES). A study of the luminescent dynamics of the samples as a function of the Eu doping level has been conducted in order to find the optimum nanophosphors, whose magnetic relaxivity and cell viability have also been evaluated for the first time for this system, in order to assess their suitability as multifunctional probes for optical (in vitro) and magnetic bioimaging applications.

8.
Nanomedicine (Lond) ; 10(14): 2167-83, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25959578

ABSTRACT

AIM: To assess the cell response to magnetic nanoparticles under an alternating magnetic field by molecular quantification of heat responsive transcripts in two model systems. MATERIALS & METHODS: Melanoma cells and Hydra vulgaris treated with magnetic nanoparticles were subjected to an alternating magnetic field or to macroscopic heating. Effect to these treatments were assessed at animal, cellular and molecular levels. RESULTS: By comparing hsp70 expression following both treatments, thermotolerance pathways were found in both systems in absence of cell ablation or global temperature increment. CONCLUSION: Analysis of hsp70 transcriptional activation can be used as molecular thermometer to sense cells' response to magnetic hyperthermia. Similar responses were found in cells and Hydra, suggesting a general mechanism to the delivery of sublethal thermal doses.


Subject(s)
Hyperthermia, Induced/methods , Magnetics , Animals , Cell Line, Tumor , Cell Survival/physiology , HSP70 Heat-Shock Proteins/metabolism , Hydra/physiology , Mice
9.
ACS Nano ; 9(1): 52-61, 2015 Jan 27.
Article in English | MEDLINE | ID: mdl-25493329

ABSTRACT

The photothermal response of plasmonic nanomaterials can be exploited for a number of biomedical applications in diagnostics (biosensing and optoacoustic imaging) and therapy (drug delivery and photothermal therapy). The most common cellular response to photothermal cancer treatment (ablation of solid tumors) using plasmonic nanomaterials is necrosis, a process that releases intracellular constituents into the extracellular milieu producing detrimental inflammatory responses. Here we report the use of laser-induced photothermal therapy employing gold nanoprisms (NPRs) to specifically induce apoptosis in mouse embryonic fibroblast cells transformed with the SV40 virus. Laser-irradiated "hot" NPRs activate the intrinsic/mitochondrial pathway of apoptosis (programmed cell death), which is mediated by the nuclear-encoded proteins Bak and Bax through the activation of the BH3-only protein Bid. We confirm that an apoptosis mechanism is responsible by showing how the NPR-mediated cell death is dependent on the presence of caspase-9 and caspase-3 proteins. The ability to selectively induce apoptotic cell death and to understand the subsequent mechanisms provides the foundations to predict and optimize NP-based photothermal therapy to treat cancer patients suffering from chemo- and radioresistance.


Subject(s)
Apoptosis/drug effects , Apoptosis/radiation effects , Gold/chemistry , Gold/pharmacology , Nanomedicine , Nanostructures , Phototherapy , Animals , Cell Transformation, Viral , Fibroblasts/cytology , Fibroblasts/drug effects , Fibroblasts/radiation effects , Kinetics , Lasers , Mice
SELECTION OF CITATIONS
SEARCH DETAIL