Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters

Publication year range
1.
Proc Natl Acad Sci U S A ; 120(15): e2219223120, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-37023135

ABSTRACT

The study of molecular polaritons beyond simple quantum emitter ensemble models (e.g., Tavis-Cummings) is challenging due to the large dimensionality of these systems and the complex interplay of molecular electronic and nuclear degrees of freedom. This complexity constrains existing models to either coarse-grain the rich physics and chemistry of the molecular degrees of freedom or artificially limit the description to a small number of molecules. In this work, we exploit permutational symmetries to drastically reduce the computational cost of ab initio quantum dynamics simulations for large N. Furthermore, we discover an emergent hierarchy of timescales present in these systems, that justifies the use of an effective single molecule to approximately capture the dynamics of the entire ensemble, an approximation that becomes exact as N → ∞. We also systematically derive finite N corrections to the dynamics and show that addition of k extra effective molecules is enough to account for phenomena whose rates scale as 𝒪(N-k). Based on this result, we discuss how to seamlessly modify existing single-molecule strong coupling models to describe the dynamics of the corresponding ensemble. We call this approach collective dynamics using truncated equations (CUT-E), benchmark it against well-known results of polariton relaxation rates, and apply it to describe a universal cavity-assisted energy funneling mechanism between different molecular species. Beyond being a computationally efficient tool, this formalism provides an intuitive picture for understanding the role of bright and dark states in chemical reactivity, necessary to generate robust strategies for polariton chemistry.

2.
J Am Chem Soc ; 145(36): 19655-19661, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37643086

ABSTRACT

Most photochemistry occurs in the regime of weak light-matter coupling, in which a molecule absorbs a photon and then performs photochemistry from its excited state. In the strong coupling regime, enhanced light-matter interactions between an optical field and multiple molecules lead to collective hybrid light-matter states called polaritons. This strong coupling leads to fundamental changes in the nature of the excited states including multi-molecule delocalized excitations, modified potential energy surfaces, and dramatically altered energy levels relative to non-coupled molecules. The effect of strong light-matter coupling on covalent photochemistry has not been well explored. Photoswitches undergo reversible intramolecular photoreactions that can be readily monitored spectroscopically. In this work, we study the effect of strong light-matter coupling on the kinetics of photoswitching within optical cavities. Reproducing prior experiments, photoswitching of spiropyran/merocyanine photoswitches is decelerated in a cavity. Fulgide photoswitches, however, show the opposite effect, with strong coupling accelerating photoswitching. While modified merocyanine switching can be explained by changes in radiative decay rates or the amount of light in the cavity, modified fulgide switching kinetics suggest direct changes to excited-state reaction kinetics.

3.
Nano Lett ; 21(17): 7131-7137, 2021 Sep 08.
Article in English | MEDLINE | ID: mdl-34448396

ABSTRACT

In situ electron microscopy is an effective tool for understanding the mechanisms driving novel phenomena in 2D structures. However, due to practical challenges, it is difficult to address these technologically relevant 2D heterostructures with electron microscopy. Here, we use the differential phase contrast (DPC) imaging technique to build a methodology for probing local electrostatic fields during electrical operation with nanoscale spatial resolution in such materials. We find that, by combining a traditional DPC setup with a high-pass filter, we can largely eliminate electric fluctuations emanating from short-range atomic potentials. Using a method based on this filtering algorithm, a priori electric field expectations can be directly compared with experimentally derived values to readily identify inhomogeneities and potentially problematic regions. We use this platform to analyze the electric field and charge density distribution across layers of hBN and MoS2.

4.
J Am Chem Soc ; 143(41): 17153-17161, 2021 Oct 20.
Article in English | MEDLINE | ID: mdl-34613735

ABSTRACT

Lattice defects play an important role in determining the optical and electrical properties of monolayer semiconductors such as MoS2. Although the structures of various defects in monolayer MoS2 are well studied, little is known about the nature of the fluorescent defect species and their interaction with molecular adsorbates. In this study, the quenching of the low-temperature defect photoluminescence (PL) in MoS2 is investigated following the deposition of metallophthalocyanines (MPcs). The quenching is found to significantly depend on the identity of the phthalocyanine metal, with the quenching efficiency decreasing in the order CoPc > CuPc > ZnPc, and almost no quenching by metal-free H2Pc is observed. Time-correlated single photon counting (TCSPC) measurements corroborate the observed trend, indicating a decrease in the defect PL lifetime upon MPc adsorption, and the gate voltage-dependent PL reveals the suppression of the defect emission even at large Fermi level shifts. Density functional theory modeling argues that the MPc complexes stabilize dark negatively charged defects over luminescent neutral defects through an electrostatic local gating effect. These results demonstrate the control of defect-based excited-state decay pathways via molecular electronic structure tuning, which has broad implications for the design of mixed-dimensional optoelectronic devices.

5.
Appl Opt ; 60(13): 3865-3873, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33983324

ABSTRACT

Near-infrared wavelength observations are crucial for understanding numerous fields of astrophysics, such as supernova cosmology and positronium annihilation detection. However, current ground-based observations suffer from an enormous background due to OH emission in the upper atmosphere. One promising way to solve this problem is to use ring-resonator filters to suppress OH emission lines. In this work, we discuss our optimization of ring-resonator filter performance from five perspectives: resonance wavelength matching, polarization-independent operation, low insertion loss, low-loss coupling to astronomical instruments, and broadband operation. In the end, we discuss next steps needed for reliable supernova and positronium observations, thus providing a roadmap for future advances in near-infrared astronomy.

6.
Proc Natl Acad Sci U S A ; 114(3): 457-461, 2017 01 17.
Article in English | MEDLINE | ID: mdl-28053232

ABSTRACT

Three-dimensional plasmonic superlattice microcavities, made from programmable atom equivalents comprising gold nanoparticles functionalized with DNA, are used as a testbed to study directional light emission. DNA-guided nanoparticle colloidal crystallization allows for the formation of micrometer-scale single-crystal body-centered cubic gold nanoparticle superlattices, with dye molecules coupled to the DNA strands that link the particles together, in the form of a rhombic dodecahedron. Encapsulation in silica allows one to create robust architectures with the plasmonically active particles and dye molecules fixed in space. At the micrometer scale, the anisotropic rhombic dodecahedron crystal habit couples with photonic modes to give directional light emission. At the nanoscale, the interaction between the dye dipoles and surface plasmons can be finely tuned by coupling the dye molecules to specific sites of the DNA particle-linker strands, thereby modulating dye-nanoparticle distance (three different positions are studied). The ability to control dye position with subnanometer precision allows one to systematically tune plasmon-excition interaction strength and decay lifetime, the results of which have been supported by electrodynamics calculations that span length scales from nanometers to micrometers. The unique ability to control surface plasmon/exciton interactions within such superlattice microcavities will catalyze studies involving quantum optics, plasmon laser physics, strong coupling, and nonlinear phenomena.


Subject(s)
DNA/chemistry , Metal Nanoparticles/chemistry , Coloring Agents , Computer Simulation , Crystallization , Gold/chemistry , Microspectrophotometry , Models, Molecular , Nanotechnology , Optical Phenomena , Silicon Dioxide
7.
Nano Lett ; 18(5): 2990-2998, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29678116

ABSTRACT

Understanding the electronic transport of monolayer transition metal dichalcogenides (TMDs) and their heterostructures is complicated by the difficulty in achieving electrical contacts that do not perturb the material. Typically, metal deposition on monolayer TMDs leads to hybridization between the TMD and the metal, which produces Schottky barriers at the metal/semiconductor interface. In this work, we apply the recently reported hexagonal boron nitride (h-BN) tunnel contact scheme to probe the junction characteristics of a lateral TMD heterostructure grown via chemical vapor deposition. We first measure the electronic properties across the junction before elucidating optoelectronic generation mechanisms via scanning photocurrent microscopy. We find that the rectification ratio measured using the encapsulated, tunnel contact scheme is almost 2 orders of magnitude smaller than that observed via conventional metal contact geometry, which implies that the metal/semiconductor Schottky barriers play large roles in this aspect. Furthermore, we find that both the photovoltaic as well as hot carrier generation effects are dominant mechanisms driving photoresponse, depending on the external biasing conditions. This work is the first time that this encapsulation scheme has been applied to lateral heterostructures and serves as a reference for future electronic measurements on this material. It also simultaneously serves as a framework to more accurately assess the electronic transport characteristics of 2D heterostructures and better inform future device architectures.

8.
Opt Express ; 22(13): 16099-111, 2014 Jun 30.
Article in English | MEDLINE | ID: mdl-24977863

ABSTRACT

We describe an approach to optical non-reciprocity that exploits the local helicity of evanescent electric fields in axisymmetric resonators. By interfacing an optical cavity to helicity-sensitive transitions, such as Zeeman levels in a quantum dot, light transmission through a waveguide becomes direction-dependent when the state degeneracy is lifted. Using a linearized quantum master equation, we analyze the configurations that exhibit non-reciprocity, and we show that reasonable parameters from existing cavity QED experiments are sufficient to demonstrate a coherent non-reciprocal optical isolator operating at the level of a single photon.

9.
Nat Commun ; 14(1): 2193, 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37069140

ABSTRACT

Two-dimensional (2D) materials have attracted attention for quantum information science due to their ability to host single-photon emitters (SPEs). Although the properties of atomically thin materials are highly sensitive to surface modification, chemical functionalization remains unexplored in the design and control of 2D material SPEs. Here, we report a chemomechanical approach to modify SPEs in monolayer WSe2 through the synergistic combination of localized mechanical strain and noncovalent surface functionalization with aryl diazonium chemistry. Following the deposition of an aryl oligomer adlayer, the spectrally complex defect-related emission of strained monolayer WSe2 is simplified into spectrally isolated SPEs with high single-photon purity. Density functional theory calculations reveal energetic alignment between WSe2 defect states and adsorbed aryl oligomer energy levels, thus providing insight into the observed chemomechanically modified quantum emission. By revealing conditions under which chemical functionalization tunes SPEs, this work broadens the parameter space for controlling quantum emission in 2D materials.

10.
Article in English | MEDLINE | ID: mdl-35542986

ABSTRACT

Direct top-down nanopatterning of semiconductors is a powerful tool for engineering properties of optoelectronic devices. Translating this approach to two-dimensional semiconductors such as monolayer transition metal dichalcogenides (TMDs) is challenging because of both the small scales required for confinement and the degradation of electronic and optical properties caused by high-energy and high-dose electron radiation used for high-resolution top-down direct electron beam patterning. We show that encapsulating a TMD monolayer with hexagonal boron nitride preserves the narrow exciton linewidths and emission intensity typical in such heterostructures after electron beam lithography, allowing direct patterning of functional optical monolayer nanostructures on scales of a few tens of nanometers. We leverage this fabrication method to study size-dependent effects on nanodot arrays of MoS2 and MoSe2 as well as laterally confined electrical transport devices, demonstrating the potential of top-down lithography for nanoscale TMD optoelectronics.

11.
J Phys Chem Lett ; 12(1): 26-31, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-33296212

ABSTRACT

The optoelectronic properties of organic thin films are strongly dependent on their molecular orientation and packing, which in turn is sensitive to the underlying substrate. Hexagonal boron nitride (hBN) and other van der Waals (vdW) materials are known to template different organic thin film growth modalities from conventional inorganic substrates such as SiO2. Here, the morphology and temperature-dependent optical properties of pentacene films grown on hBN are reported. Pentacene deposited on hBN forms large-grain films with a molecular π-face-on orientation unlike the dendritic edge-on thin-film phase on SiO2. Pentacene/hBN films exhibit a 40 meV lower free exciton emission than pentacene/SiO2 and an unconventional emission energy temperature dependence. Time-resolved photoluminescence (PL) decay measurements show a long-lived signal in the π-face-on phase related to delayed emission from triplet-triplet fusion. This work demonstrates that growth on vdW materials provides a pathway for controlling optoelectronic functionality in molecular thin films.

12.
Nat Commun ; 12(1): 4530, 2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34312389

ABSTRACT

Selective breaking of degenerate energy levels is a well-known tool for coherent manipulation of spin states. Though most simply achieved with magnetic fields, polarization-sensitive optical methods provide high-speed alternatives. Exploiting the optical selection rules of transition metal dichalcogenide monolayers, the optical Stark effect allows for ultrafast manipulation of valley-coherent excitons. Compared to excitons in these materials, microcavity exciton-polaritons offer a promising alternative for valley manipulation, with longer lifetimes, enhanced valley coherence, and operation across wider temperature ranges. Here, we show valley-selective control of polariton energies in WS2 using the optical Stark effect, extending coherent valley manipulation to the hybrid light-matter regime. Ultrafast pump-probe measurements reveal polariton spectra with strong polarization contrast originating from valley-selective energy shifts. This demonstration of valley degeneracy breaking at picosecond timescales establishes a method for coherent control of valley phenomena in exciton-polaritons.

13.
ACS Nano ; 15(6): 10659-10667, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34101433

ABSTRACT

Two-dimensional transitional metal halides have recently attracted significant attention due to their thickness-dependent and electrostatically tunable magnetic properties. However, this class of materials is highly reactive chemically, which leads to irreversible degradation and catastrophic dissolution within seconds in ambient conditions, severely limiting subsequent characterization, processing, and applications. Here, we impart long-term ambient stability to the prototypical transition metal halide CrI3 by assembling a noncovalent organic buffer layer, perylenetetracarboxylic dianhydride (PTCDA), which templates subsequent atomic layer deposition (ALD) of alumina. X-ray photoelectron spectroscopy demonstrates the necessity of the noncovalent organic buffer layer since the CrI3 undergoes deleterious surface reactions with the ALD precursors in the absence of PTCDA. This organic-inorganic encapsulation scheme preserves the long-range magnetic ordering in CrI3 down to the monolayer limit as confirmed by magneto-optical Kerr effect measurements. Furthermore, we demonstrate field-effect transistors, photodetectors, and optothermal measurements of CrI3 thermal conductivity in ambient conditions.

14.
ACS Nano ; 14(2): 1569-1576, 2020 Feb 25.
Article in English | MEDLINE | ID: mdl-32003564

ABSTRACT

Layered transition metal dichalcogenides offer many attractive features for next-generation low-dimensional device geometries. Due to the practical and fabrication challenges related to in situ methods, the atomistic dynamics that give rise to realizable macroscopic device properties are often unclear. In this study, in situ transmission electron microscopy techniques are utilized in order to understand the structural dynamics at play, especially at interfaces and defects, in the prototypical film of monolayer MoS2 under electrical bias. Through our sample fabrication process, we clearly identify the presence of mass transport in the presence of a lateral electric field. In particular, we observe that the voids present at grain boundaries combine to induce structural deformation. The electric field mediates a net vacancy flux from the grain boundary interior to the exposed surface edge sites that leaves molybdenum clusters in its wake. Following the initial biasing cycles, however, the mass flow is largely diminished and the resultant structure remains stable over repeated biasing. We believe insights from this work can help explain observations of nonuniform heating and preferential oxidation at grain boundary sites in these materials.

15.
Sci Adv ; 6(39)2020 Sep.
Article in English | MEDLINE | ID: mdl-32967836

ABSTRACT

Halide perovskites have exceptional optoelectronic properties, but a poor understanding of the relationship between crystal dimensions, composition, and properties limits their use in integrated devices. We report a new multiplexed cantilever-free scanning probe method for synthesizing compositionally diverse and size-controlled halide perovskite nanocrystals spanning square centimeter areas. Single-particle photoluminescence studies reveal multiple independent emission modes due to defect-defined band edges with relative intensities that depend on crystal size at a fixed composition. Smaller particles, but ones with dimensions that exceed the quantum confinement regime, exhibit blue-shifted emission due to reabsorption of higher-energy modes. Six different halide perovskites have been synthesized, including a layered Ruddlesden-Popper phase, and the method has been used to prepare functional solar cells based on single nanocrystals. The ability to pattern arrays of multicolor light-emitting nanocrystals opens avenues toward the development of optoelectronic devices, including optical displays.

16.
ACS Appl Mater Interfaces ; 11(3): 3334-3341, 2019 Jan 23.
Article in English | MEDLINE | ID: mdl-30582322

ABSTRACT

In a monolayer transition metal dichalcogenide (TMDC) that lacks structural inversion symmetry, spin degeneracy is lifted by strong spin-orbit coupling, and a distinctive spin-valley locking allows for the creation of valley-locked spin-polarized carriers with a circularly polarized optical excitation. When excited carriers also have net in-plane momentum, spin-polarized photocurrents can be generated at ambient temperature without magnetic fields or materials. The behavior of these spin-polarized photocurrents in monolayer TMDC remains largely unexplored. In this work, we demonstrate the tuning of spin-valley photocurrent generated from the circularly polarized photogalvanic effect in monolayer MoS2, including magnitude and polarization degree, by purely electric means at room temperature. The magnitude of spin-polarized photocurrent can be modulated up to 45 times larger, and the polarization degree of the total photocurrent can be tuned significantly (here from 0.5 to 16.6%) by gate control. Combined with the atomic thickness and wafer-scale growth capabilities of monolayer TMDC, the efficient electrical tuning of spin-valley photocurrent suggests a pathway to achieve spin-logic processing by local gate architectures in monolayer opto-spintronic devices.

17.
ACS Nano ; 13(4): 4183-4190, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30848891

ABSTRACT

Mixed-dimensional heterojunctions, such as zero-dimensional (0D) organic molecules deposited on two-dimensional (2D) transition metal dichalcogenides (TMDCs), often exhibit interfacial effects that enhance the properties of the individual constituent layers. Here we report a systematic study of interfacial charge transfer in metallophthalocyanine (MPc) - MoS2 heterojunctions using optical absorption and Raman spectroscopy to elucidate M core (M = first row transition metal), MoS2 layer number, and excitation wavelength effects. Observed phenomena include the emergence of heterojunction-specific optical absorption transitions and strong Raman enhancement that depends on the M identity. In addition, the Raman enhancement is tunable by excitation laser wavelength and MoS2 layer number, ultimately reaching a maximum enhancement factor of 30x relative to SiO2 substrates. These experimental results, combined with density functional theory (DFT) calculations, indicate strong coupling between nonfrontier MPc orbitals and the MoS2 band structure as well as charge transfer across the heterojunction interface that varies as a function of the MPc electronic structure.

18.
Sci Rep ; 7(1): 3324, 2017 06 12.
Article in English | MEDLINE | ID: mdl-28607443

ABSTRACT

Three-dimensional confinement allows semiconductor quantum dots to exhibit size-tunable electronic and optical properties that enable a wide range of opto-electronic applications from displays, solar cells and bio-medical imaging to single-electron devices. Additional modalities such as spin and valley properties in monolayer transition metal dichalcogenides provide further degrees of freedom requisite for information processing and spintronics. In nanostructures, however, spatial confinement can cause hybridization that inhibits the robustness of these emergent properties. Here, we show that laterally-confined excitons in monolayer MoS2 nanodots can be created through top-down nanopatterning with controlled size tunability. Unlike chemically-exfoliated monolayer nanoparticles, the lithographically patterned monolayer semiconductor nanodots down to a radius of 15 nm exhibit the same valley polarization as in a continuous monolayer sheet. The inherited bulk spin and valley properties, the size dependence of excitonic energies, and the ability to fabricate MoS2 nanostructures using semiconductor-compatible processing suggest that monolayer semiconductor nanodots have potential to be multimodal building blocks of integrated optoelectronics and spintronics systems.

SELECTION OF CITATIONS
SEARCH DETAIL