Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
1.
Immunity ; 42(2): 239-251, 2015 Feb 17.
Article in English | MEDLINE | ID: mdl-25692700

ABSTRACT

T follicular helper (Tfh) cells are essential in the induction of high-affinity, class-switched antibodies. The differentiation of Tfh cells is a multi-step process that depends upon the co-receptor ICOS and the activation of phosphoinositide-3 kinase leading to the expression of key Tfh cell genes. We report that ICOS signaling inactivates the transcription factor FOXO1, and a Foxo1 genetic deletion allowed for generation of Tfh cells with reduced dependence on ICOS ligand. Conversely, enforced nuclear localization of FOXO1 inhibited Tfh cell development even though ICOS was overexpressed. FOXO1 regulated Tfh cell differentiation through a broad program of gene expression exemplified by its negative regulation of Bcl6. Final differentiation to germinal center Tfh cells (GC-Tfh) was instead FOXO1 dependent as the Foxo1(-/-) GC-Tfh cell population was substantially reduced. We propose that ICOS signaling transiently inactivates FOXO1 to initiate a Tfh cell contingency that is completed in a FOXO1-dependent manner.


Subject(s)
Cell Differentiation/immunology , DNA-Binding Proteins/biosynthesis , Forkhead Transcription Factors/genetics , Inducible T-Cell Co-Stimulator Protein/immunology , T-Lymphocytes, Helper-Inducer/cytology , Animals , Enzyme Activation , Forkhead Box Protein O1 , Forkhead Transcription Factors/immunology , Gene Expression Regulation , Lymphocyte Activation/immunology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-bcl-6 , Signal Transduction , T-Lymphocytes, Helper-Inducer/immunology
2.
BMC Biol ; 19(1): 107, 2021 05 25.
Article in English | MEDLINE | ID: mdl-34030676

ABSTRACT

BACKGROUND: The anti-tumor activity of anti-PD-1/PD-L1 therapies correlates with T cell infiltration in tumors. Thus, a major goal in oncology is to find strategies that enhance T cell infiltration and efficacy of anti-PD-1/PD-L1 therapy. TGF-ß has been shown to contribute to T cell exclusion, and anti-TGF-ß improves anti-PD-L1 efficacy in vivo. However, TGF-ß inhibition has frequently been shown to induce toxicity in the clinic, and the clinical efficacy of combination PD-L1 and TGF-ß blockade has not yet been proven. To identify strategies to overcome resistance to PD-L1 blockade, the transcriptional programs associated with PD-L1 and/or TGF-ß blockade in the tumor microenvironment should be further elucidated. RESULTS: We used single-cell RNA sequencing in a mouse model to characterize the transcriptomic effects of PD-L1 and/or TGF-ß blockade on nearly 30,000 single cells in the tumor and surrounding microenvironment. Combination treatment led to upregulation of immune response genes, including multiple chemokine genes such as CCL5, in macrophages, and downregulation of extracellular matrix genes in fibroblasts. Analysis of publicly available tumor transcriptome profiles showed that the chemokine CCL5 was strongly associated with immune cell infiltration in various human cancers. Further investigation with in vivo models showed that intratumorally administered CCL5 enhanced cytotoxic lymphocytes and the anti-tumor activity of anti-PD-L1. CONCLUSIONS: Taken together, our data could be leveraged translationally to complement or find alternatives to anti-PD-L1 plus anti-TGF-ß combination therapy, for example through companion biomarkers, and/or to identify novel targets that could be modulated to overcome resistance.


Subject(s)
Neoplasms , Animals , B7-H1 Antigen/genetics , Mice , Transcriptome , Transforming Growth Factor beta , Tumor Microenvironment
3.
Immunity ; 33(6): 890-904, 2010 Dec 14.
Article in English | MEDLINE | ID: mdl-21167754

ABSTRACT

Foxo transcription factors integrate extrinsic signals to regulate cell division, differentiation and survival, and specific functions of lymphoid and myeloid cells. Here, we showed the absence of Foxo1 severely curtailed the development of Foxp3(+) regulatory T (Treg) cells and those that developed were nonfunctional in vivo. The loss of function included diminished CTLA-4 receptor expression as the Ctla4 gene was a direct target of Foxo1. T cell-specific loss of Foxo1 resulted in exocrine pancreatitis, hind limb paralysis, multiorgan lymphocyte infiltration, anti-nuclear antibodies and expanded germinal centers. Foxo-mediated control over Treg cell specification was further revealed by the inability of TGF-ß cytokine to suppress T-bet transcription factor in the absence of Foxo1, resulting in IFN-γ secretion. In addition, the absence of Foxo3 exacerbated the effects of the loss of Foxo1. Thus, Foxo transcription factors guide the contingencies of T cell differentiation and the specific functions of effector cell populations.


Subject(s)
Antigens, CD/biosynthesis , Forkhead Transcription Factors/metabolism , T-Box Domain Proteins/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocytes, Regulatory/metabolism , Animals , Antigens, CD/genetics , Autoimmunity/genetics , CTLA-4 Antigen , Cell Differentiation , Cell Lineage , Cells, Cultured , Forkhead Box Protein O1 , Forkhead Transcription Factors/biosynthesis , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/immunology , Gene Expression Regulation/immunology , Immune Tolerance/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , T-Box Domain Proteins/genetics , T-Box Domain Proteins/immunology , T-Lymphocyte Subsets/immunology , T-Lymphocyte Subsets/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/pathology , Th1-Th2 Balance , Transforming Growth Factor beta/immunology , Transforming Growth Factor beta/metabolism
4.
Proc Natl Acad Sci U S A ; 111(46): 16466-71, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25362052

ABSTRACT

Signaling from the T-cell receptor (TCR) conditions T-cell differentiation and activation, requiring exquisite sensitivity and discrimination. Using mass cytometry, a high-dimensional technique that can probe multiple signaling nodes at the single-cell level, we interrogate TCR signaling dynamics in control C57BL/6 and autoimmunity-prone nonobese diabetic (NOD) mice, which show ineffective ERK activation after TCR triggering. By quantitating signals at multiple steps along the signaling cascade and parsing the phosphorylation level of each node as a function of its predecessors, we show that a small impairment in initial pCD3ζ activation resonates farther down the signaling cascade and results in larger defects in activation of the ERK1/2-S6 and IκBα modules. This nonlinear property of TCR signaling networks, which magnifies small initial differences during signal propagation, also applies in cells from B6 mice activated at different levels of intensity. Impairment in pCD3ζ and pSLP76 is not a feedback consequence of a primary deficiency in ERK activation because no proximal signaling defect was observed in Erk2 KO T cells. These defects, which were manifest at all stages of T-cell differentiation from early thymic pre-T cells to memory T cells, may condition the imbalanced immunoregulation and tolerance in NOD T cells. More generally, this amplification of small initial differences in signal intensity may explain how T cells discriminate between closely related ligands and adopt strongly delineated cell fates.


Subject(s)
Extracellular Signal-Regulated MAP Kinases/physiology , Immunologic Deficiency Syndromes/immunology , MAP Kinase Signaling System/physiology , Mass Spectrometry/methods , Receptors, Antigen, T-Cell/physiology , Single-Cell Analysis/methods , Animals , Diabetes Mellitus, Type 1/genetics , Diabetes Mellitus, Type 1/immunology , Disease Models, Animal , Enzyme Activation , Genetic Variation , I-kappa B Proteins/metabolism , Immune Tolerance , Immunity, Cellular , Immunologic Memory , Lymph Nodes/cytology , Lymph Nodes/immunology , Lymphopoiesis , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Knockout , Mitogen-Activated Protein Kinase 1/deficiency , NF-KappaB Inhibitor alpha , Phosphorylation , Protein Processing, Post-Translational , Receptors, Antigen, T-Cell/analysis , Self Tolerance , Thymus Gland/cytology , Thymus Gland/immunology
5.
Bioorg Med Chem ; 23(21): 6891-9, 2015 Nov 01.
Article in English | MEDLINE | ID: mdl-26474663

ABSTRACT

Potent, selective antitumour AhR ligands 5F 203 and GW 610 are bioactivated by CYPs 1A1 and 2W1. Herein we reason that DNA adducts' generation resulting in lethal DNA double strand breaks (DSBs) underlies benzothiazoles' activity. Treatment of sensitive carcinoma cell lines with GW 610 generated co-eluting DNA adducts (R(2)>0.7). Time-dependent appearance of γ-H2AX foci revealed subsequent DNA double strand breaks. Propensity for systemic toxicity of benzothiazoles steered development of prodrugs' hydrogels for localised delivery. Clinical applications of targeted therapies include prevention or treatment of recurrent disease after surgical resection of solid tumours. In vitro evaluation of 5F 203 prodrugs' activity demonstrated nanomolar potency against MCF-7 breast and IGROV-1 ovarian carcinoma cell lines.


Subject(s)
Antineoplastic Agents/chemical synthesis , DNA Adducts/analysis , Hydrogels/chemistry , Prodrugs/chemical synthesis , Thiazoles/chemistry , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Benzothiazoles/pharmacology , Cell Line, Tumor , Cell Survival/drug effects , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP1A1/genetics , Cytochrome P-450 CYP1A1/metabolism , DNA Adducts/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation/drug effects , Histones/metabolism , Humans , Microscopy, Confocal , Prodrugs/chemistry , Prodrugs/pharmacology , Resveratrol , Stilbenes/chemistry , Thiazoles/chemical synthesis , Thiazoles/pharmacology
6.
Cancer Immunol Res ; 11(3): 278-289, 2023 03 01.
Article in English | MEDLINE | ID: mdl-36548516

ABSTRACT

Pathologically activated neutrophils (PMN) with immunosuppressive activity, which are termed myeloid-derived suppressor cells (PMN-MDSC), play a critical role in regulating tumor progression. These cells have been implicated in promoting tumor metastases by contributing to premetastatic niche formation. This effect was facilitated by enhanced spontaneous migration of PMN from bone marrow to the premetastatic niches during the early-stage of cancer development. The molecular mechanisms underpinning this phenomenon remained unclear. In this study, we found that syntaphilin (SNPH), a cytoskeletal protein previously known for anchoring mitochondria to the microtubule in neurons and tumor cells, could regulate migration of PMN. Expression of SNPH was decreased in PMN from tumor-bearing mice and patients with cancer as compared with PMN from tumor-free mice and healthy donors, respectively. In Snph-knockout (SNPH-KO) mice, spontaneous migration of PMN was increased and the mice showed increased metastasis. Mechanistically, in SNPH-KO mice, the speed and distance travelled by mitochondria in PMN was increased, rates of oxidative phosphorylation and glycolysis were elevated, and generation of adenosine was increased. Thus, our study reveals a molecular mechanism regulating increased migratory activity of PMN during cancer progression and suggests a novel therapeutic targeting opportunity.


Subject(s)
Membrane Proteins , Myeloid-Derived Suppressor Cells , Neoplasms , Nerve Tissue Proteins , Animals , Mice , Cell Movement , Membrane Proteins/metabolism , Myeloid-Derived Suppressor Cells/metabolism , Neoplasms/pathology , Neutrophils/metabolism
7.
J Biol Chem ; 285(48): 37683-92, 2010 Nov 26.
Article in English | MEDLINE | ID: mdl-20841351

ABSTRACT

Alterations in glycosylation play an important role during intestinal cell differentiation. Here, we compared expression of mucin-type O-glycan synthases from proliferating and differentiated HT-29 and Caco-2 cells. Mucin-type O-glycan structures were analyzed at both stages by mass spectrometry. Core2 ß1,6-N-acetylglucosaminyltransferase-2 (C2GnT-2) was markedly increased in differentiated HT-29 and Caco-2 cells, but the core3 structure was hardly detectable. To determine whether such differential expression of mucin-type O-glycan structures has physiological significance in intestinal cell differentiation, expression of sucrase isomaltase (SI) and dipeptidyl-peptidase IV (DPP-IV), two well known intestinal differentiation markers, was examined. Interestingly, the fully glycosylated mature form of SI was decreased in C2GnT-2 knock-out mice but not in core2 N-acetylglucosaminyltransferase-3 (C2GnT-3) nulls. In addition, expression of SI and DPP-IV was dramatically reduced in C2GnT-1-3 triple knock-out mice. These patterns were confirmed by RNAi analysis; C2GnT-2 knockdown significantly reduced cell surface expression of SI and DPP-IV in Caco-2 cells. Similarly, overexpression of the core3 structure in HT-29 cells attenuated cell surface expression of both enzymes. These findings indicate that core3 O-glycan structure regulates cell surface expression of SI and DPP-IV and that core2 O-glycan is presumably an essential mucin-type O-glycan structure found in both molecules in vivo. Finally, goblet cells in the upper part of the crypt showed impaired maturation in the core2 O-glycan-deficient mice. These studies are the first to clearly identify functional mucin-type O-glycan structures modulating cell surface expression of SI and DPP-IV during the intestinal cell differentiation.


Subject(s)
Cell Differentiation , Dipeptidyl Peptidase 4/metabolism , Gene Expression Regulation, Enzymologic , Intestines/cytology , Intestines/enzymology , N-Acetylglucosaminyltransferases/chemistry , Sucrase-Isomaltase Complex/metabolism , Animals , Caco-2 Cells , Dipeptidyl Peptidase 4/genetics , Glycosylation , HT29 Cells , Humans , Intestines/chemistry , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Sucrase-Isomaltase Complex/genetics
8.
Glycobiology ; 21(1): 82-98, 2011 Jan.
Article in English | MEDLINE | ID: mdl-20855471

ABSTRACT

Core 2 ß1,6-N-acetylglucosaminyltransferase (C2GnT), which exists in three isoforms, C2GnT1, C2GnT2 and C2GnT3, is one of the key enzymes in the O-glycan biosynthetic pathway. These isoenzymes produce core 2 O-glycans and have been correlated with the biosynthesis of core 4 O-glycans and I-branches. Previously, we have reported mice with single and multiple deficiencies of C2GnT isoenzyme(s) and have evaluated the biological and structural consequences of the loss of core 2 function. We now present more comprehensive O-glycomic analyses of neutral and sialylated glycans expressed in the colon, small intestine, stomach, kidney, thyroid/trachea and thymus of wild-type, C2GnT2 and C2GnT3 single knockouts and the C2GnT1-3 triple knockout mice. Very high-quality data have emerged from our mass spectrometry techniques with the capability of detecting O-glycans up to at least 3500 Da. We were able to unambiguously elucidate the types of O-glycan core, branching location and residue linkages, which allowed us to exhaustively characterize structural changes in the knockout tissues. The C2GnT2 knockout mice suffered a major loss of core 2 O-glycans as well as glycans with I-branches on core 1 antennae especially in the stomach and the colon. In contrast, core 2 O-glycans still dominated the O-glycomic profile of most tissues in the C2GnT3 knockout mice. Analysis of the C2GnT triple knockout mice revealed a complete loss of both core 2 O-glycans and branched core 1 antennae, confirming that the three known isoenzymes are entirely responsible for producing these structures. Unexpectedly, O-linked mannosyl glycans are upregulated in the triple deficient stomach. In addition, our studies have revealed an interesting terminal structure detected on O-glycans of the colon tissues that is similar to the RM2 antigen from glycolipids.


Subject(s)
N-Acetylglucosaminyltransferases/chemistry , Animals , Colon/metabolism , Glycomics , Mass Spectrometry , Mice , Mice, Knockout , N-Acetylglucosaminyltransferases/genetics
9.
Cancer Immunol Res ; 7(8): 1371-1380, 2019 08.
Article in English | MEDLINE | ID: mdl-31239316

ABSTRACT

Antibodies targeting CTLA-4 induce durable responses in some patients with melanoma and are being tested in a variety of human cancers. However, these therapies are ineffective for a majority of patients across tumor types. Further understanding the immune alterations induced by these therapies may enable the development of novel strategies to enhance tumor control and biomarkers to identify patients most likely to respond. In several murine models, including colon26, MC38, CT26, and B16 tumors cotreated with GVAX, anti-CTLA-4 efficacy depends on interactions between the Fc region of CTLA-4 antibodies and Fc receptors (FcR). Anti-CTLA-4 binding to FcRs has been linked to depletion of intratumoral T regulatory cells (Treg). In agreement with previous studies, we found that Tregs infiltrating CT26, B16-F1, and autochthonous Braf V600E Pten -/- melanoma tumors had higher expression of surface CTLA-4 (sCTLA-4) than other T-cell subsets, and anti-CTLA-4 treatment led to FcR-dependent depletion of Tregs infiltrating CT26 tumors. This Treg depletion coincided with activation and degranulation of intratumoral natural killer cells. Similarly, in non-small cell lung cancer (NSCLC) and melanoma patient-derived tumor tissue, Tregs had higher sCTLA-4 expression than other intratumoral T-cell subsets, and Tregs infiltrating NSCLC expressed more sCTLA-4 than circulating Tregs. Patients with cutaneous melanoma who benefited from ipilimumab, a mAb targeting CTLA-4, had higher intratumoral CD56 expression, compared with patients who received little to no benefit from this therapy. Furthermore, using the murine CT26 model we found that combination therapy with anti-CTLA-4 plus IL15/IL15Rα complexes enhanced tumor control compared with either monotherapy.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , CTLA-4 Antigen/antagonists & inhibitors , Interleukin-15 Receptor alpha Subunit/metabolism , Interleukin-15/metabolism , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Neoplasms/immunology , Neoplasms/metabolism , Animals , CTLA-4 Antigen/genetics , CTLA-4 Antigen/metabolism , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/immunology , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/pathology , Cell Degranulation/drug effects , Cell Degranulation/immunology , Disease Models, Animal , Gene Expression , Humans , Ipilimumab/pharmacology , Killer Cells, Natural/pathology , Lymphocyte Activation/immunology , Lymphocytes, Tumor-Infiltrating/immunology , Lymphocytes, Tumor-Infiltrating/metabolism , Lymphocytes, Tumor-Infiltrating/pathology , Mice , Neoplasms/drug therapy , Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/metabolism , T-Lymphocytes, Regulatory/pathology , Tumor Microenvironment/drug effects , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
10.
Clin Cancer Res ; 24(21): 5347-5356, 2018 11 01.
Article in English | MEDLINE | ID: mdl-29898988

ABSTRACT

Purpose: We have shown that the aged microenvironment increases melanoma metastasis, and decreases response to targeted therapy, and here we queried response to anti-PD1.Experimental Design: We analyzed the relationship between age, response to anti-PD1, and prior therapy in 538 patients. We used mouse models of melanoma, to analyze the intratumoral immune microenvironment in young versus aged mice and confirmed our findings in human melanoma biopsies.Results: Patients over the age of 60 responded more efficiently to anti-PD-1, and likelihood of response to anti-PD-1 increased with age, even when we controlled for prior MAPKi therapy. Placing genetically identical tumors in aged mice (52 weeks) significantly increased their response to anti-PD1 as compared with the same tumors in young mice (8 weeks). These data suggest that this increased response in aged patients occurs even in the absence of a more complex mutational landscape. Next, we found that young mice had a significantly higher population of regulatory T cells (Tregs), skewing the CD8+:Treg ratio. FOXP3 staining of human melanoma biopsies revealed similar increases in Tregs in young patients. Depletion of Tregs using anti-CD25 increased the response to anti-PD1 in young mice.Conclusions: While there are obvious limitations to our study, including our inability to conduct a meta-analysis due to a lack of available data, and our inability to control for mutational burden, there is a remarkable consistency in these data from over 500 patients across 8 different institutes worldwide. These results stress the importance of considering age as a factor for immunotherapy response. Clin Cancer Res; 24(21); 5347-56. ©2018 AACR See related commentary by Pawelec, p. 5193.


Subject(s)
Antineoplastic Agents, Immunological/pharmacology , Immunomodulation/drug effects , Programmed Cell Death 1 Receptor/antagonists & inhibitors , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Age Factors , Animals , Antineoplastic Agents, Immunological/therapeutic use , Biomarkers, Tumor , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cell Line, Tumor , Disease Models, Animal , Female , Humans , Melanoma/drug therapy , Melanoma/immunology , Melanoma/metabolism , Melanoma/pathology , Mice , Mice, Transgenic , Neoplasms/drug therapy , Neoplasms/immunology , Neoplasms/metabolism , Neoplasms/pathology , T-Lymphocytes, Regulatory/immunology , Tumor Microenvironment/immunology , Xenograft Model Antitumor Assays
11.
J Med Chem ; 49(1): 179-85, 2006 Jan 12.
Article in English | MEDLINE | ID: mdl-16392802

ABSTRACT

A series of new 2-phenylbenzothiazoles has been synthesized on the basis of the discovery of the potent and selective in vitro antitumor properties of 2-(3,4-dimethoxyphenyl)-5-fluorobenzothiazole (8n; GW 610, NSC 721648). Synthesis of analogues substituted in the benzothiazole ring was achieved via the reaction of o-aminothiophenol disulfides with substituted benzaldehydes under reducing conditions. Compounds were evaluated in vitro in four human cancer cell lines, and compound 8n was found to possess exquisitely potent antiproliferative activity (GI(50) < 0.1 nM for MCF-7 and MDA 468). Potent and selective activity was also observed in the NCI 60 human cancer cell line panel. Structure-activity relationships established that the compound 8n stands on a pinnacle of potent activity, with most structural variations having a deactivating in vitro effect. Mechanistically, this new series of agents contrasts with the previously reported 2-(4-aminophenyl)benzothiazoles; compound 8n is not reliant on induction of CYP1A1 expression for antitumor activity.


Subject(s)
Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Breast Neoplasms/drug therapy , Colonic Neoplasms/drug therapy , Lung Neoplasms/drug therapy , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Benzothiazoles/chemical synthesis , Benzothiazoles/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Screening Assays, Antitumor , Humans , In Vitro Techniques , Molecular Structure , Stereoisomerism
13.
Elife ; 52016 07 04.
Article in English | MEDLINE | ID: mdl-27376549

ABSTRACT

Affinity and dose of T cell receptor (TCR) interaction with antigens govern the magnitude of CD4+ T cell responses, but questions remain regarding the quantitative translation of TCR engagement into downstream signals. We find that while the response of mouse CD4+ T cells to antigenic stimulation is bimodal, activated cells exhibit analog responses proportional to signal strength. Gene expression output reflects TCR signal strength, providing a signature of T cell activation. Expression changes rely on a pre-established enhancer landscape and quantitative acetylation at AP-1 binding sites. Finally, we show that graded expression of activation genes depends on ERK pathway activation, suggesting that an ERK-AP-1 axis plays an important role in translating TCR signal strength into proportional activation of enhancers and genes essential for T cell function.


Subject(s)
Antigens/metabolism , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/immunology , Gene Expression , Receptors, Antigen, T-Cell/metabolism , Animals , Lymphocyte Activation , Mice , Signal Transduction
14.
PLoS One ; 10(5): e0126728, 2015.
Article in English | MEDLINE | ID: mdl-25969990

ABSTRACT

FOXO transcription factors have a highly conserved role in regulating transcription of genes involved in differentiation, cell cycle arrest, apoptosis and DNA repair. Loss of FOXO3 in mice has previously been shown to result in a myeloproliferative disease. In agreement with this, we found that an independent Foxo3 null mouse strain, Foxo3Kca, exhibits an increase in neutrophils in the spleen, bone marrow and blood. This coincides with an expansion of myeloid progenitor cells including pre-granulocyte-macrophage progenitors (Pre-GMs) and granulocyte-macrophage progenitors (GMPs). Surprisingly, despite neutrophilia, the severity of passive serum transfer arthritis was markedly attenuated in Foxo3Kca mice. These defects appear to be at least partially intrinsic to the myeloid lineage, as deleting Foxo3 specifically from myeloid cells using LysMCre also leads to an elevated number of neutrophils and protection from K/BxN-serum transfer-induced arthritis.


Subject(s)
Arthritis/immunology , Forkhead Transcription Factors/genetics , Myeloid Progenitor Cells/physiology , Myelopoiesis , Animals , Arthritis/genetics , Disease Susceptibility , Forkhead Box Protein O3 , Forkhead Transcription Factors/metabolism , Homeostasis , Mice, Inbred C57BL , Mice, Knockout , Neutrophils/physiology , Peritonitis/immunology
15.
PLoS One ; 9(2): e89274, 2014.
Article in English | MEDLINE | ID: mdl-24586650

ABSTRACT

The search for significantly overrepresented and co-occurring transcription factor binding sites in the promoter regions of the most differentially expressed genes in microarray data sets could be a powerful approach for finding key regulators of complex biological processes. To test this concept, two previously published independent data sets on wounded human epidermis were re-analyzed. The presence of co-occurring transcription factor binding sites for FOXO1, FOXO3 and FOXO4 in the majority of the promoter regions of the most significantly differentially expressed genes between non-wounded and wounded epidermis implied an important role for FOXO transcription factors during wound healing. Expression levels of FOXO transcription factors during wound healing in vivo in both human and mouse skin were analyzed and a decrease for all FOXOs in human wounded skin was observed, with FOXO3 having the highest expression level in non wounded skin. Impaired re-epithelialization was found in cultures of primary human keratinocytes expressing a constitutively active variant of FOXO3. Conversely knockdown of FOXO3 in keratinocytes had the opposite effect and in an in vivo mouse model with FOXO3 knockout mice we detected significantly accelerated wound healing. This article illustrates that the proposed approach is a viable method for identifying important regulators of complex biological processes using in vivo samples. FOXO3 has not previously been implicated as an important regulator of wound healing and its exact function in this process calls for further investigation.


Subject(s)
Binding Sites/genetics , Epidermis/physiology , Forkhead Transcription Factors/metabolism , Wound Healing/physiology , Animals , DNA Primers/genetics , Forkhead Box Protein O1 , Forkhead Box Protein O3 , Forkhead Transcription Factors/genetics , Humans , Immunohistochemistry , Keratinocytes/metabolism , Mice , Mice, Knockout , Microarray Analysis , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction , Species Specificity , Streptococcus pyogenes
16.
Nat Rev Immunol ; 12(9): 649-61, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22918467

ABSTRACT

The outcome of an infection with any given pathogen varies according to the dosage and route of infection, but, in addition, the physiological state of the host can determine the efficacy of clearance, the severity of infection and the extent of immunopathology. Here we propose that the forkhead box O (FOXO) transcription factor family--which is central to the integration of growth factor signalling, oxidative stress and inflammation--provides connections between physical well-being and the form and magnitude of an immune response. We present a case that FOXO transcription factors guide T cell differentiation and function in a context-driven manner, and might provide a link between metabolism and immunity.


Subject(s)
Forkhead Transcription Factors/metabolism , T-Lymphocytes/metabolism , Animals , Forkhead Transcription Factors/genetics , Gene Expression Regulation , Humans , Protein Processing, Post-Translational , Signal Transduction , T-Lymphocytes/immunology
17.
Methods Enzymol ; 479: 155-72, 2010.
Article in English | MEDLINE | ID: mdl-20816165

ABSTRACT

The three glycosyltransferases of the Core 2 beta1,6-N-acetylglucosaminyltransferase (C2GnT) family, C2GnT1, C2GnT2, and C2GnT3, are able to initiate the Core 2 branch of O-glycans. However, C2GnT2, which is highly expressed in the digestive tract, has a broader acceptor substrate specificity that allows it to also generate Core 4 O-glycans and I branches. We discovered that C2GnT2 KO mice have decreased mucosal barrier function in the digestive tract, reduced levels of circulating IgGs and fecal IgA, and increased susceptibility to experimental colitis. Mass spectrometric analyses also revealed that C2GnT2 KO mice had a reduction in Core 2 O-glycans in the digestive tract with a corresponding increase in elongated Core 1 O-glycans. Unexpectedly, we saw that the loss of C2GnT2 and especially the loss of all three C2GnTs resulted in the expression of elongated O-mannose structures in the stomach, suggesting that the elongation of these structures is controlled by competition for UDP-GlcNAc [Stone, E. L., Ismail, M. N., Lee, S. H., Luu, Y., Ramirez, K., Haslam, S. M., Ho, S. B., Dell, A., Fukuda, M. and Marth, J. D. (2009). Glycosyltransferase function in Core 2-type protein O-glycosylation. Mol. Cell. Biol. 29, 3370-3782].


Subject(s)
Gene Deletion , N-Acetylglucosaminyltransferases/genetics , N-Acetylglucosaminyltransferases/metabolism , Animals , Enzyme Assays/methods , Feces/chemistry , Genotype , Glycosylation , Mass Spectrometry , Mice , Mice, Knockout , Mucin-2/chemistry , Mucin-2/genetics , Mucin-2/metabolism , Phenotype
18.
Mol Cell Biol ; 29(13): 3770-82, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19349303

ABSTRACT

Three glycosyltransferases have been identified in mammals that can initiate core 2 protein O glycosylation. Core 2 O-glycans are abundant among glycoproteins but, to date, few functions for these structures have been identified. To investigate the biological roles of core 2 O-glycans, we produced and characterized mice deficient in one or more of the three known glycosyltransferases that generate core 2 O-glycans (C2GnT1, C2GnT2, and C2GnT3). A role for C2GnT1 in selectin ligand formation has been described. We now report that C2GnT2 deficiency impaired the mucosal barrier and increased susceptibility to colitis. C2GnT2 deficiency also reduced immunoglobulin abundance and resulted in the loss of all core 4 O-glycan biosynthetic activity. In contrast, the absence of C2GnT3 altered behavior linked to reduced thyroxine levels in circulation. Remarkably, elimination of all three C2GnTs was permissive of viability and fertility. Core 2 O-glycan structures were reduced among tissues from individual C2GnT deficiencies and completely absent from triply deficient mice. C2GnT deficiency also induced alterations in I-branching, core 1 O-glycan formation, and O mannosylation. Although the absence of C2GnT and C4GnT activities is tolerable in vivo, core 2 O glycosylation exerts a significant influence on O-glycan biosynthesis and is important in multiple physiological processes.


Subject(s)
Isoenzymes/metabolism , N-Acetylglucosaminyltransferases/metabolism , Polysaccharides/biosynthesis , Animals , Behavior, Animal/physiology , Carbohydrate Conformation , Carbohydrate Sequence , Colitis/chemically induced , Colitis/pathology , Glycosylation , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Isoenzymes/genetics , Male , Mice , Molecular Sequence Data , N-Acetylglucosaminyltransferases/genetics , Polysaccharides/chemistry , Thyroxine/metabolism , Tissue Distribution
19.
Breast Cancer Res Treat ; 110(1): 57-68, 2008 Jul.
Article in English | MEDLINE | ID: mdl-17674193

ABSTRACT

Compounds within the 2-(4-aminophenyl)benzothiazole class represent extremely potent and selective experimental antitumour agents. The lysylamide prodrug of 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole is undergoing phase I clinical evaluation. Extensive studies to elucidate mechanisms underlying the stark selectivity demonstrated potent cytosolic AhR ligand binding and cytochrome P450 1A1-catalysed bioactivation. Two human derived breast cell lines, initially exquisitely sensitive to this class of agent (GI50 < 5 nM) have been derived displaying acquired resistance to 2-(4-amino-3-methylphenyl)benzothiazole (DF 203; GI50 > 50 microM). Cross resistance to 2-(4-amino-3-iodophenyl)benzothiazole and 2-(4-amino-3-cyanophenyl)benzothiazole is observed (GI50 > 30 microM) as is > 100-fold reduced sensitivity of the two variant lines to 2-(4-amino-3-methylphenyl)-5-fluorobenzothiazole (5F 203). In contrast, cell lines possessing acquired resistance to DF 203 (203R) retain sensitivity to benzo[a]pyrene and doxorubicin. Examination of DF 203-treated cells by confocal microscopy and HPLC analyses of nutrient media concur revealing diminished depletion of DF 203 from medium and impaired intracellular DF 203 retention. In contrast to cytosolic arylhydrocarbon (AhR) receptors of wild type cells, AhR appears constitutively localised within nuclei of 203R cells; consequently, DF 203 fails to drive transcription of cyp1a1. DF 203- and 5F 203-derived DNA adducts fall significantly in 203R cells. Reduced number and intensity of gamma H2AX foci report protection against DF 203-evoked DNA double strand breaks. In conclusion, aberrant AhR signalling underlies at least in part acquired resistance to DF 203. Intriguingly, comparisons of gene transcription profiles between sensitive and resistant paired lines reveal > 5-fold up-regulation of cyp1b1 expression, a protein implicated in resistance to therapeutic agents.


Subject(s)
Aniline Compounds/pharmacology , Antineoplastic Agents/pharmacology , Benzothiazoles/pharmacology , Breast Neoplasms/drug therapy , Aniline Compounds/chemistry , Aniline Compounds/metabolism , Aryl Hydrocarbon Hydroxylases , Benzothiazoles/chemistry , Benzothiazoles/metabolism , Breast Neoplasms/pathology , Cell Line, Tumor , Cytochrome P-450 CYP1B1 , Cytochrome P-450 Enzyme System/analysis , DNA Adducts/analysis , Drug Resistance, Neoplasm , Female , Humans , Polychlorinated Dibenzodioxins/pharmacology , Receptors, Aryl Hydrocarbon/analysis , Receptors, Aryl Hydrocarbon/drug effects
20.
J Med Chem ; 51(16): 5135-9, 2008 Aug 28.
Article in English | MEDLINE | ID: mdl-18666770

ABSTRACT

New fluorinated 2-aryl-benzothiazoles, -benzoxazoles, and -chromen-4-ones have been synthesized and their activity against MCF-7 and MDA 468 breast cancer cell lines compared with the potent antitumor benzothiazole 5. Analogues such as 9a, b and 12a, d yielded submicromolar GI50 values in both cell lines; however, none of the new compounds approached 5 in terms of antitumor potency. For 5, binding to the aryl hydrocarbon receptor appeared to be necessary but not sufficient for growth inhibition.


Subject(s)
Antineoplastic Agents/chemical synthesis , Benzopyrans/chemical synthesis , Benzothiazoles/chemical synthesis , Benzoxazoles/chemical synthesis , Antineoplastic Agents/pharmacology , Benzopyrans/pharmacology , Benzothiazoles/pharmacology , Benzoxazoles/pharmacology , Breast Neoplasms/drug therapy , Cell Cycle/drug effects , Cell Line, Tumor , Humans , Receptors, Aryl Hydrocarbon/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL