Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
BMC Med ; 19(1): 293, 2021 11 22.
Article in English | MEDLINE | ID: mdl-34802442

ABSTRACT

BACKGROUND: There is a clear need for novel approaches to malaria vaccine development. We aimed to develop a genetically attenuated blood-stage vaccine and test its safety, infectivity, and immunogenicity in healthy volunteers. Our approach was to target the gene encoding the knob-associated histidine-rich protein (KAHRP), which is responsible for the assembly of knob structures at the infected erythrocyte surface. Knobs are required for correct display of the polymorphic adhesion ligand P. falciparum erythrocyte membrane protein 1 (PfEMP1), a key virulence determinant encoded by a repertoire of var genes. METHODS: The gene encoding KAHRP was deleted from P. falciparum 3D7 and a master cell bank was produced in accordance with Good Manufacturing Practice. Eight malaria naïve males were intravenously inoculated (day 0) with 1800 (2 subjects), 1.8 × 105 (2 subjects), or 3 × 106 viable parasites (4 subjects). Parasitemia was measured using qPCR; immunogenicity was determined using standard assays. Parasites were rescued into culture for in vitro analyses (genome sequencing, cytoadhesion assays, scanning electron microscopy, var gene expression). RESULTS: None of the subjects who were administered with 1800 or 1.8 × 105 parasites developed parasitemia; 3/4 subjects administered 3× 106 parasites developed significant parasitemia, first detected on days 13, 18, and 22. One of these three subjects developed symptoms of malaria simultaneously with influenza B (day 17; 14,022 parasites/mL); one subject developed mild symptoms on day 28 (19,956 parasites/mL); and one subject remained asymptomatic up to day 35 (5046 parasites/mL). Parasitemia rapidly cleared with artemether/lumefantrine. Parasitemia induced a parasite-specific antibody and cell-mediated immune response. Parasites cultured ex vivo exhibited genotypic and phenotypic properties similar to inoculated parasites, although the var gene expression profile changed during growth in vivo. CONCLUSIONS: This study represents the first clinical investigation of a genetically attenuated blood-stage human malaria vaccine. A P. falciparum 3D7 kahrp- strain was tested in vivo and found to be immunogenic but can lead to patent parasitemia at high doses. TRIAL REGISTRATION: Australian New Zealand Clinical Trials Registry (number: ACTRN12617000824369 ; date: 06 June 2017).


Subject(s)
Antimalarials , Malaria Vaccines , Malaria, Falciparum , Malaria , Antimalarials/therapeutic use , Artemether/therapeutic use , Artemether, Lumefantrine Drug Combination/therapeutic use , Australia , Humans , Malaria/drug therapy , Malaria Vaccines/adverse effects , Malaria, Falciparum/drug therapy , Malaria, Falciparum/prevention & control , Male , Plasmodium falciparum/genetics , Protozoan Proteins/genetics , Vaccine Development , Vaccines, Attenuated/adverse effects
2.
Malar J ; 16(1): 279, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28679447

ABSTRACT

BACKGROUND: Sequestration of parasitized red blood cells from the peripheral circulation during an infection with Plasmodium falciparum is caused by an interaction between the parasite protein PfEMP1 and receptors on the surface of host endothelial cells, known as cytoadherence. Several lines of evidence point to a link between the pathology of severe malaria and cytoadherence, therefore blocking adhesion receptors involved in this process could be a good target to inhibit pRBC sequestration and prevent disease. In a malaria endemic setting this is likely to be used as an adjunct therapy by reversing existing cytoadherence. Two well-characterized parasite lines plus three recently derived patient isolates were tested for their cytoadherence to purified receptors (CD36 and ICAM-1) as well as endothelial cells. Monoclonal antibodies against human CD36 and ICAM-1 were used to inhibit and reverse infected erythrocyte binding in static and flow-based adhesion assays. RESULTS: Anti-ICAM-1 and CD36 monoclonal antibodies were able to inhibit and reverse P. falciparum binding of lab and recently adapted patient isolates in vitro. However, reversal of binding was incomplete and varied in its efficiency between parasite isolates. CONCLUSIONS: The results show that, as a proof of concept, disturbing existing ligand-receptor interactions is possible and could have potential therapeutic value for severe malaria. The variation seen in the degree of reversing existing binding with different parasite isolates and the incomplete nature of reversal, despite the use of high affinity inhibitors, suggest that anti-adhesion approaches as adjunct therapies for severe malaria may not be effective, and the focus may need to be on inhibitory approaches such as vaccines.


Subject(s)
Antibodies, Monoclonal/immunology , CD36 Antigens/immunology , Cell Adhesion , Endothelium/parasitology , Intercellular Adhesion Molecule-1/immunology , Plasmodium falciparum/physiology , Cell Adhesion/immunology , Cells, Cultured , Endothelial Cells/cytology , Endothelial Cells/immunology , Endothelial Protein C Receptor/immunology , Erythrocytes/cytology , Erythrocytes/immunology , Erythrocytes/parasitology , Erythropoietin/immunology , Host-Parasite Interactions/immunology , Human Umbilical Vein Endothelial Cells , Humans , Peptides, Cyclic/immunology , Plasmodium falciparum/cytology
3.
PLoS Pathog ; 10(1): e1003876, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24453970

ABSTRACT

Phospoenolpyruvate carboxylase (PEPC) is absent from humans but encoded in the Plasmodium falciparum genome, suggesting that PEPC has a parasite-specific function. To investigate its importance in P. falciparum, we generated a pepc null mutant (D10(Δpepc) ), which was only achievable when malate, a reduction product of oxaloacetate, was added to the growth medium. D10(Δpepc) had a severe growth defect in vitro, which was partially reversed by addition of malate or fumarate, suggesting that pepc may be essential in vivo. Targeted metabolomics using (13)C-U-D-glucose and (13)C-bicarbonate showed that the conversion of glycolytically-derived PEP into malate, fumarate, aspartate and citrate was abolished in D10(Δpepc) and that pentose phosphate pathway metabolites and glycerol 3-phosphate were present at increased levels. In contrast, metabolism of the carbon skeleton of (13)C,(15)N-U-glutamine was similar in both parasite lines, although the flux was lower in D10(Δpepc); it also confirmed the operation of a complete forward TCA cycle in the wild type parasite. Overall, these data confirm the CO2 fixing activity of PEPC and suggest that it provides metabolites essential for TCA cycle anaplerosis and the maintenance of cytosolic and mitochondrial redox balance. Moreover, these findings imply that PEPC may be an exploitable target for future drug discovery.


Subject(s)
Acids, Acyclic/metabolism , Erythrocytes/diagnostic imaging , Phosphoenolpyruvate Carboxylase/metabolism , Plasmodium falciparum/enzymology , Protozoan Proteins/metabolism , Citric Acid Cycle/physiology , Erythrocytes/metabolism , Genome, Protozoan/physiology , Humans , Malaria, Falciparum/drug therapy , Malaria, Falciparum/enzymology , Malaria, Falciparum/genetics , Mitochondria/genetics , Mitochondria/metabolism , Pentose Phosphate Pathway/physiology , Phosphoenolpyruvate Carboxylase/antagonists & inhibitors , Phosphoenolpyruvate Carboxylase/genetics , Plasmodium falciparum/genetics , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/genetics , Radiography
4.
Microbiol Spectr ; 12(7): e0072724, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38864616

ABSTRACT

A hallmark of cerebral malaria (CM) is sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature. Binding of IE to endothelium reduces microvascular flow and, combined with an inflammatory response, perturbs endothelial barrier function, resulting in breakdown of the blood-brain barrier (BBB). Cytoadherence leads to activation of the endothelium and alters a range of cell processes affecting signaling pathways, receptor expression, coagulation, and disruption of BBB integrity. Here, we investigated whether CM-derived parasites elicit differential effects on human brain microvascular endothelial cells (HBMECs), as compared to uncomplicated malaria (UM)-derived parasites. Patient-derived IE from UM and CM clinical cases, as well as non-binding skeleton-binding protein 1 knockout parasites, were overlaid onto tumour necrosis factor (TNF)-activated HBMECs. Gene expression analysis of endothelial responses was performed using probe-based assays of a panel of genes involved in inflammation, apoptosis, endothelial barrier function, and prostacyclin synthesis pathway. We observed a significant effect on endothelial transcriptional responses in the presence of IE, yet there was no significant correlation between HBMEC responses and type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and level of IE binding to HBMECs, as we detected the same change in endothelial responses when employing both binding and non-binding parasites. Our results suggest that interaction of IE with endothelial cells in this co-culture model induces some endothelial responses that are independent of clinical origin and independent of the expression of the major variant antigen Plasmodium falciparum erythrocyte membrane protein 1 on the IE surface. IMPORTANCE: Cerebral malaria (CM) is the most prevalent and deadly complication of severe Plasmodium falciparum infection. A hallmark of this disease is sequestration of P. falciparum-infected erythrocytes (IE) in brain microvasculature that ultimately results in breakdown of the blood-brain barrier. Here, we compared the effect of P. falciparum parasites derived from uncomplicated malaria (UM) and CM cases on the relative gene expression of human brain microvascular endothelial cells (HBMECs) for a panel of genes. We observed a significant effect on the endothelial transcriptional response in the presence of IE, yet there is no significant correlation between HBMEC responses and the type of clinical syndrome (UM or CM). Furthermore, there was no correlation between HBMEC gene expression and both binding itself and the level of IE binding to HBMECs. Our results suggest that interaction of IE with endothelial cells induces endothelial responses that are independent of clinical origin and not entirely driven by surface Plasmodium falciparum erythrocyte membrane protein 1 expression.


Subject(s)
Blood-Brain Barrier , Brain , Endothelial Cells , Erythrocytes , Malaria, Cerebral , Malaria, Falciparum , Plasmodium falciparum , Plasmodium falciparum/genetics , Plasmodium falciparum/metabolism , Plasmodium falciparum/physiology , Humans , Endothelial Cells/parasitology , Endothelial Cells/metabolism , Malaria, Falciparum/parasitology , Malaria, Falciparum/metabolism , Malaria, Cerebral/parasitology , Malaria, Cerebral/metabolism , Brain/parasitology , Brain/metabolism , Blood-Brain Barrier/parasitology , Blood-Brain Barrier/metabolism , Erythrocytes/parasitology , Erythrocytes/metabolism
5.
PLoS One ; 18(5): e0285323, 2023.
Article in English | MEDLINE | ID: mdl-37141324

ABSTRACT

Monocytes contribute to the pro-inflammatory immune response during the blood stage of a Plasmodium falciparum infection, but their precise role in malaria pathology is not clear. Besides phagocytosis, monocytes are activated by products from P. falciparum infected erythrocytes (IE) and one of the activation pathways is potentially the NLR family pyrin domain containing 3 (NLRP3) inflammasome, a multi-protein complex that leads to the production of interleukin (IL)-1ß. In cerebral malaria cases, monocytes accumulate at IE sequestration sites in the brain microvascular and the locally produced IL-1ß, or other secreted molecules, could contribute to leakage of the blood-brain barrier. To study the activation of monocytes by IE within the brain microvasculature in an in vitro model, we co-cultured IT4var14 IE and the monocyte cell line THP-1 for 24 hours and determined whether generated soluble molecules affect barrier function of human brain microvascular endothelial cells, measured by real time trans-endothelial electrical resistance. The medium produced after co-culture did not affect endothelial barrier function and similarly no effect was measured after inducing oxidative stress by adding xanthine oxidase to the co-culture. While IL-1ß does decrease barrier function, barely any IL-1ß was produced in the co- cultures, indicative of a lack of or incomplete THP-1 activation by IE in this co-culture model.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Monocytes/metabolism , Coculture Techniques , Endothelial Cells/metabolism , Inflammasomes/metabolism , Erythrocytes/metabolism , Cell Line , Brain/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-1beta/metabolism
6.
PLoS One ; 18(11): e0295053, 2023.
Article in English | MEDLINE | ID: mdl-38033133

ABSTRACT

The human malaria parasite Plasmodium falciparum is responsible for the majority of mortality and morbidity caused by malaria infection and differs from other human malaria species in the degree of accumulation of parasite-infected red blood cells in the microvasculature, known as cytoadherence or sequestration. In P. falciparum, cytoadherence is mediated by a protein called PfEMP1 which, due to its exposure to the host immune system, undergoes antigenic variation resulting in the expression of different PfEMP1 variants on the infected erythrocyte membrane. These PfEMP1s contain various combinations of adhesive domains, which allow for the differential engagement of a repertoire of endothelial receptors on the host microvasculature, with specific receptor usage associated with severe disease. We used a co-culture model of cytoadherence incubating human brain microvascular endothelial cells with erythrocytes infected with two parasite lines expressing different PfEMP1s that demonstrate different binding profiles to vascular endothelium. We determined the transcriptional profile of human brain microvascular endothelial cells (HBMEC) following different incubation periods with infected erythrocytes, identifying different transcriptional profiles of pathways previously found to be involved in the pathology of severe malaria, such as inflammation, apoptosis and barrier integrity, induced by the two PfEMP1 variants.


Subject(s)
Malaria, Falciparum , Plasmodium falciparum , Humans , Endothelial Cells/metabolism , Coculture Techniques , Protozoan Proteins/metabolism , Malaria, Falciparum/parasitology , Erythrocytes/parasitology , Endothelium, Vascular/metabolism , Cell Adhesion
7.
Methods Mol Biol ; 2470: 527-536, 2022.
Article in English | MEDLINE | ID: mdl-35881372

ABSTRACT

The pathology of Plasmodium falciparum malaria syndromes, such as cerebral malaria, severe anemia, respiratory distress, and malaria in pregnancy are associated with the cytoadherence of P. falciparum-infected erythrocytes (IEs) to host receptors. To investigate binding of laboratory strains or patient isolates to specific receptors, a relatively simple but informative method is a static binding assay. Purified protein receptors are absorbed onto polystyrene dishes, overlaid with a trophozoite IE suspension and incubated for a fixed time. After washing to remove unbound cells, the plates are fixed, stained, and adherent IEs counted by microscopy. Although simple, this assay requires careful implementation to provide reproducible results, but it is deliverable in relatively low-resource settings and so well matched to using fresh patient isolates for adhesion assays.


Subject(s)
Malaria, Cerebral , Malaria, Falciparum , Cell Adhesion , Erythrocytes/metabolism , Humans , Malaria, Falciparum/metabolism , Plasmodium falciparum/metabolism , Protozoan Proteins/metabolism
8.
Malar J ; 10: 193, 2011 Jul 14.
Article in English | MEDLINE | ID: mdl-21756354

ABSTRACT

BACKGROUND: Plasmodium falciparum contains three genes encoding potential glutamate dehydrogenases. The protein encoded by gdha has previously been biochemically and structurally characterized. It was suggested that it is important for the supply of reducing equivalents during intra-erythrocytic development of Plasmodium and, therefore, a suitable drug target. METHODS: The gene encoding the NADP(H)-dependent GDHa has been disrupted by reverse genetics in P. falciparum and the effect on the antioxidant and metabolic capacities of the resulting mutant parasites was investigated. RESULTS: No growth defect under low and elevated oxygen tension, no up- or down-regulation of a number of antioxidant and NADP(H)-generating proteins or mRNAs and no increased levels of GSH were detected in the D10Δgdha parasite lines. Further, the fate of the carbon skeleton of [13C] labelled glutamine was assessed by metabolomic studies, revealing no differences in the labelling of α-ketoglutarate and other TCA pathway intermediates between wild type and mutant parasites. CONCLUSIONS: First, the data support the conclusion that D10Δgdha parasites are not experiencing enhanced oxidative stress and that GDHa function may not be the provision of NADP(H) for reductive reactions. Second, the results imply that the cytosolic, NADP(H)-dependent GDHa protein is not involved in the oxidative deamination of glutamate but that the protein may play a role in ammonia assimilation as has been described for other NADP(H)-dependent GDH from plants and fungi. The lack of an obvious phenotype in the absence of GDHa may point to a regulatory role of the protein providing glutamate (as nitrogen storage molecule) in situations where the parasites experience a limiting supply of carbon sources and, therefore, under in vitro conditions the enzyme is unlikely to be of significant importance. The data imply that the protein is not a suitable target for future drug development against intra-erythrocytic parasite development.


Subject(s)
Gene Deletion , Glutamate Dehydrogenase/metabolism , Plasmodium falciparum/enzymology , Plasmodium falciparum/metabolism , Glutamate Dehydrogenase/genetics , Oxidants/metabolism , Oxidants/toxicity , Oxidative Stress , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development
9.
Wellcome Open Res ; 5: 34, 2020.
Article in English | MEDLINE | ID: mdl-32724861

ABSTRACT

Background: Sequestration and cytoadherence of Plasmodium falciparum-infected erythrocytes (IE) to microvascular endothelium alters endothelial barrier function and plays a role in the pathogenesis of severe malaria. Binding of IE is mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1) and the PfEMP1 variants that binds to endothelial protein C receptor (EPCR) have, in particular, been associated with the dysregulation of the coagulation/inflammation pathways in endothelial cells. This has prompted speculation about the role of protease-activated receptor-1 (PAR1) activation and signalling in causing endothelial activation and loss of barrier function in cerebral malaria. Methods: We used a co-culture of primary human brain microvascular endothelial cells (HBMEC) with P. falciparum material, recombinant PfEMP1 or lysates from IE, and measured barrier function by trans endothelial electrical resistance (TEER).  A selection of PAR1 inhibitors was tested for their ability to reverse the P. falciparum and thrombin induced decrease in barrier function. Results: An initial screen in the presence of recombinant PfEMP1 identified a few inhibitors that were able to reduce the rapid thrombin-induced barrier disruption even when activated protein C (aPC) was unable to do so. However, in the IE lysate co-culture system we identified a mechanism that slowly reduces barrier function and which is insensitive to PAR1 inhibitors. Conclusions: The selected PAR1 inhibitors were able to reverse the disruption of barrier function by thrombin but did not reverse the IE lysate induced disruption of barrier function, implicating a different PAR1-independent mechanism.  These findings have implications for the design of adjunct therapies to reduce brain swelling in cerebral malaria.

10.
Blood Adv ; 4(13): 2851-2864, 2020 07 14.
Article in English | MEDLINE | ID: mdl-32579667

ABSTRACT

Microvascular thrombosis and blood-brain barrier (BBB) breakdown are key components of cerebral malaria (CM) pathogenesis in African children and are implicated in fatal brain swelling. How Plasmodium falciparum infection causes this endothelial disruption and why this occurs, particularly in the brain, is not fully understood. In this study, we have demonstrated that circulating extracellular histones, equally of host and parasite origin, are significantly elevated in CM patients. Higher histone levels are associated with brain swelling on magnetic resonance imaging. On postmortem brain sections of CM patients, we found that histones are colocalized with P falciparum-infected erythrocytes sequestered inside small blood vessels, suggesting that histones might be expelled locally during parasite schizont rupture. Histone staining on the luminal vascular surface colocalized with thrombosis and leakage, indicating a possible link between endothelial surface accumulation of histones and coagulation activation and BBB breakdown. Supporting this, patient sera or purified P falciparum histones caused disruption of barrier function and were toxic to cultured human brain endothelial cells, which were abrogated with antihistone antibody and nonanticoagulant heparin. Overall, our data support a role for histones of parasite and host origin in thrombosis, BBB breakdown, and brain swelling in CM, processes implicated in the causal pathway to death. Neutralizing histones with agents such as nonanticoagulant heparin warrant exploration to prevent brain swelling in the development or progression of CM and thereby to improve outcomes.


Subject(s)
Malaria, Cerebral , Parasites , Thrombosis , Animals , Brain , Child , Endothelial Cells , Endothelium , Histones , Humans , Plasmodium falciparum , Thrombosis/etiology
11.
Biochemistry ; 48(26): 6249-58, 2009 Jul 07.
Article in English | MEDLINE | ID: mdl-19456124

ABSTRACT

Multidrug efflux pumps, such as P-glycoprotein (ABCB1), present major barriers to the success of chemotherapy in a number of clinical settings. Molecular details of the multidrug efflux process by ABCB1 remain elusive, in particular, the interdomain communication associated with bioenergetic coupling. The present investigation has focused on the role of transmembrane helix 12 (TM12) in the multidrug efflux process of ABCB1. Cysteine residues were introduced at various positions within TM12, and their effect on ATPase activity, nucleotide binding, and drug interaction were assessed. Mutation of several residues within TM12 perturbed the maximal ATPase activity of ABCB1, and the underlying cause was a reduction in basal (i.e., drug-free) hydrolysis of the nucleotide. Two of the mutations (L976C and F978C) were found to reduce the binding of [gamma-(32)P]-azido-ATP to ABCB1. In contrast, the A980C mutation within TM12 enhanced the rate of ATP hydrolysis; once again, this was due to modified basal activity. Several residues also caused reductions in the potency of stimulation of ATP hydrolysis by nicardipine and vinblastine, although the effects were independent of changes in drug binding per se. Overall, the results indicate that TM12 plays a key role in the progression of the ATP hydrolytic cycle in ABCB1, even in the absence of the transported substrate.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Adenosine Triphosphate/metabolism , Biocatalysis , ATP Binding Cassette Transporter, Subfamily B , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Adenosine Triphosphate/analogs & derivatives , Amino Acid Substitution , Cysteine/chemistry , Cysteine/genetics , Humans , Hydrolysis , Kinetics , Models, Molecular , Nicardipine/chemistry , Protein Binding/genetics , Protein Conformation , Protein Isoforms/chemistry , Protein Isoforms/genetics , Protein Isoforms/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Vinblastine/chemistry
12.
PLoS Pathog ; 3(12): e189, 2007 Dec.
Article in English | MEDLINE | ID: mdl-18069893

ABSTRACT

Lipoic acid (LA) is an essential cofactor of alpha-keto acid dehydrogenase complexes (KADHs) and the glycine cleavage system. In Plasmodium, LA is attached to the KADHs by organelle-specific lipoylation pathways. Biosynthesis of LA exclusively occurs in the apicoplast, comprising octanoyl-[acyl carrier protein]: protein N-octanoyltransferase (LipB) and LA synthase. Salvage of LA is mitochondrial and scavenged LA is ligated to the KADHs by LA protein ligase 1 (LplA1). Both pathways are entirely independent, suggesting that both are likely to be essential for parasite survival. However, disruption of the LipB gene did not negatively affect parasite growth despite a drastic loss of LA (>90%). Surprisingly, the sole, apicoplast-located pyruvate dehydrogenase still showed lipoylation, suggesting that an alternative lipoylation pathway exists in this organelle. We provide evidence that this residual lipoylation is attributable to the dual targeted, functional lipoate protein ligase 2 (LplA2). Localisation studies show that LplA2 is present in both mitochondrion and apicoplast suggesting redundancy between the lipoic acid protein ligases in the erythrocytic stages of P. falciparum.


Subject(s)
Lipoproteins/metabolism , Organelles/enzymology , Peptide Synthases/physiology , Plasmodium falciparum/enzymology , Protozoan Proteins/physiology , Thioctic Acid/metabolism , Animals , DNA, Protozoan/genetics , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation , Gene Silencing , Genes, Protozoan/genetics , Lipoproteins/chemistry , Lipoproteins/genetics , Plasmodium falciparum/genetics , Plasmodium falciparum/growth & development , Trophozoites/growth & development , Trophozoites/metabolism
13.
Org Biomol Chem ; 7: 3040-3048, 2009.
Article in English | MEDLINE | ID: mdl-21359112

ABSTRACT

Conoidin A (1) is an inhibitor of host cell invasion by the protozoan parasite Toxoplasma gondii. In the course of studies aimed at identifying potential targets of this compound, we determined that it binds to the T. gondii enzyme peroxiredoxin II (TgPrxII). Peroxiredoxins are a widely conserved family of enzymes that function in antioxidant defense and signal transduction, and changes in PrxII expression are associated with a variety of human diseases, including cancer. Disruption of the TgPrxII gene by homologous recombination had no effect on the sensitivity of the parasites to 1, suggesting that TgPrxII is not the invasion-relevant target of 1. However, we showed that 1 binds covalently to the peroxidatic cysteine of TgPrxII, inhibiting its enzymatic activity in vitro. Studies with human epithelial cells showed that 1 also inhibits hyperoxidation of human PrxII. These data identify Conoidin A as a novel inhibitor of this important class of antioxidant and redox signaling enzymes.

14.
Cryobiology ; 58(1): 37-44, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18983838

ABSTRACT

The drug efflux pump P-glycoprotein (P-gp) (ABCB1) confers multidrug resistance, a major cause of failure in the chemotherapy of tumours, exacerbated by a shortage of potent and selective inhibitors. A high throughput assay using purified P-gp to screen and characterise potential inhibitors would greatly accelerate their development. However, long-term stability of purified reconstituted ABCB1 can only be reliably achieved with storage at -80 degrees C. For example, at 20 degrees C, the activity of ABCB1 was abrogated with a half-life of <1 day. The aim of this investigation was to stabilise purified, reconstituted ABCB1 to enable storage at higher temperatures and thereby enable design of a high throughput assay system. The ABCB1 purification procedure was optimised to allow successful freeze drying by substitution of glycerol with the disaccharides trehalose or maltose. Addition of disaccharides resulted in ATPase activity being retained immediately following lyophilisation with no significant difference between the two disaccharides. However, during storage trehalose preserved ATPase activity for several months regardless of the temperature (e.g. 60% retention at 150 days), whereas ATPase activity in maltose purified P-gp was affected by both storage time and temperature. The data provide an effective mechanism for the production of resilient purified, reconstituted ABCB1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/isolation & purification , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Disaccharides , Freeze Drying/methods , ATP Binding Cassette Transporter, Subfamily B, Member 1/chemistry , Adenosine Triphosphatases/metabolism , Animals , Calorimetry, Differential Scanning , Glycerol , Humans , Maltose , Moths/genetics , Phase Transition , Proteolipids/chemistry , Proteolipids/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Recombinant Proteins/metabolism , Temperature , Trehalose
15.
EMBO Mol Med ; 11(2)2019 02.
Article in English | MEDLINE | ID: mdl-30610112

ABSTRACT

Sequestration of Plasmodium falciparum-infected erythrocytes (IE) within the brain microvasculature is a hallmark of cerebral malaria (CM). Using a microchannel flow adhesion assay with TNF-activated primary human microvascular endothelial cells, we demonstrate that IE isolated from Malawian paediatric CM cases showed increased binding to brain microvascular endothelial cells compared to IE from uncomplicated malaria (UM) cases. Further, UM isolates showed significantly greater adhesion to dermal than to brain microvascular endothelial cells. The major mediator of parasite adhesion is P. falciparum erythrocyte membrane protein 1, encoded by var genes. Higher levels of var gene transcripts predicted to bind host endothelial protein C receptor (EPCR) and ICAM-1 were detected in CM isolates. These data provide further evidence for differential tissue binding in severe and uncomplicated malaria syndromes, and give additional support to the hypothesis that CM pathology is based on increased cytoadherence of IE in the brain microvasculature.


Subject(s)
Brain/pathology , Cell Adhesion , Endothelial Cells/physiology , Erythrocytes/parasitology , Malaria, Cerebral/pathology , Plasmodium falciparum/growth & development , Brain/parasitology , Cells, Cultured , Child , Child, Preschool , Female , Humans , Infant , Malaria, Cerebral/parasitology , Male , Models, Biological
16.
Structure ; 14(11): 1623-32, 2006 Nov.
Article in English | MEDLINE | ID: mdl-17098188

ABSTRACT

ABCG2 is a multidrug efflux pump associated with resistance of cancer cells to a plethora of unrelated drugs. ABCG2 is a "half-transporter," and previous studies have indicated that it forms homodimers and higher oligomeric species. In this manuscript, electron microscopic structural analysis directly addressed this issue. An N-terminal hexahistidine-tagged ABCG2(R482G) isoform was expressed to high levels in insect cells. An extensive detergent screen was employed to effect extraction of ABCG2(R482G) from membranes and identified only the fos-choline detergents as efficient. Soluble protein was purified to >95% homogeneity by a three-step procedure while retaining the ability to bind substrates. Cryonegative stain electron microscopy of purified ABCG2(R482G) provided 3D structural data at a resolution of approximately 18 A. Single-particle analysis revealed that the complex forms a tetrameric complex ( approximately 180 A in diameter x approximately 140 A high) with an aqueous central region. We interpret the tetrameric structure as comprising four homodimeric ABCG2(R482G) complexes.


Subject(s)
ATP-Binding Cassette Transporters/chemistry , ATP-Binding Cassette Transporters/isolation & purification , Neoplasm Proteins/chemistry , Neoplasm Proteins/isolation & purification , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Cell Membrane/metabolism , Chromatography/methods , Cryoelectron Microscopy , Detergents/chemistry , Detergents/pharmacology , Dimerization , Humans , Image Processing, Computer-Assisted , Imaging, Three-Dimensional , Insecta , Protein Conformation , Protein Isoforms , Protein Structure, Tertiary
17.
Clin Vaccine Immunol ; 24(7)2017 Jul.
Article in English | MEDLINE | ID: mdl-28515136

ABSTRACT

Invasive nontyphoidal Salmonella (iNTS) infections are commonly associated with Plasmodium falciparum infections, but the immunologic basis for this linkage is poorly understood. We hypothesized that P. falciparum infection compromises the humoral and cellular immunity of the host to NTS, which increases the susceptibility of the host to iNTS infection. We prospectively recruited children aged between 6 and 60 months at a Community Health Centre in Blantyre, Malawi, and allocated them to the following groups; febrile with uncomplicated malaria, febrile malaria negative, and nonfebrile malaria negative. Levels of Salmonella enterica serovar Typhimurium-specific serum bactericidal activity (SBA) and whole-blood bactericidal activity (WBBA), complement C3 deposition, and neutrophil respiratory burst activity (NRBA) were measured. Levels of SBA with respect to S Typhimurium were reduced in febrile P. falciparum-infected children (median, -0.20 log10 [interquartile range {IQR}, -1.85, 0.32]) compared to nonfebrile malaria-negative children (median, -1.42 log10 [IQR, -2.0, -0.47], P = 0.052). In relation to SBA, C3 deposition on S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 7.5% [IQR, 4.1, 15.0]) compared to nonfebrile malaria-negative children (median, 29% [IQR, 11.8, 48.0], P = 0.048). WBBA with respect to S Typhimurium was significantly reduced in febrile P. falciparum-infected children (median, 0.25 log10 [IQR, -0.73, 1.13], P = 0.0001) compared to nonfebrile malaria-negative children (median, -1.0 log10 [IQR, -1.68, -0.16]). In relation to WBBA, S Typhimurium-specific NRBA was reduced in febrile P. falciparum-infected children (median, 8.8% [IQR, 3.7, 20], P = 0.0001) compared to nonfebrile malaria-negative children (median, 40.5% [IQR, 33, 65.8]). P. falciparum infection impairs humoral and cellular immunity to S Typhimurium in children during malaria episodes, which may explain the increased risk of iNTS observed in children from settings of malaria endemicity. The mechanisms underlying humoral immunity impairment are incompletely understood and should be explored further.


Subject(s)
Blood Bactericidal Activity , Disease Susceptibility , Immunity, Cellular , Immunity, Humoral , Malaria, Falciparum/complications , Salmonella Infections/immunology , Salmonella Vaccines/immunology , Child, Preschool , Complement System Proteins/metabolism , Female , Humans , Infant , Malawi , Male , Neutrophils/immunology , Prospective Studies , Respiratory Burst , Salmonella Infections/epidemiology , Salmonella typhimurium/immunology
18.
FEBS Lett ; 579(18): 3984-90, 2005 Jul 18.
Article in English | MEDLINE | ID: mdl-16004994

ABSTRACT

The transmembrane (TM) domains in P-glycoprotein (P-gp) contain the drug binding sites and undergo conformational changes driven by nucleotide catalysis to effect translocation. However, our understanding of exactly which regions are involved in such events remains unclear. A site-directed labelling approach was used to attach thiol-reactive probes to cysteines introduced into transmembrane segment 6 (TM6) in order to perturb function and infer involvement of specific residues in drug binding and/or interdomain communication. Covalent attachment of coumarin-maleimide at residue 339C within TM6 resulted in impaired ATP hydrolysis by P-gp. The nature of the effect was to reduce the characteristic modulation of basal activity caused by transported substrates, modulators and the potent inhibitor XR9576. Photoaffinity labelling of P-gp with [(3)H]-azidopine indicated that residue 339C does not alter drug binding per se. However, covalent modification of this residue appears to prevent conformational changes that lead to drug stimulation of ATP hydrolysis.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Cell Membrane/metabolism , Adenosine Triphosphatases/chemistry , Adenosine Triphosphate/chemistry , Animals , Baculoviridae/metabolism , Binding Sites , Catalysis , Cell Line , Coumarins/chemistry , Cysteine/chemistry , Hydrolysis , Insecta , Kinetics , Linear Models , Mutagenesis, Site-Directed , Nicardipine/pharmacology , Paclitaxel/pharmacology , Protein Binding , Protein Conformation , Protein Isoforms , Protein Structure, Tertiary , Protein Transport , Quinolines/pharmacology , Recombinant Proteins/chemistry , Sulfhydryl Compounds/chemistry , Time Factors , Vinblastine/pharmacology
20.
Article in English | MEDLINE | ID: mdl-25120958

ABSTRACT

Despite decades of research on cerebral malaria (CM) there is still a paucity of knowledge about what actual causes CM and why certain people develop it. Although sequestration of P. falciparum infected red blood cells has been linked to pathology, it is still not clear if this is directly or solely responsible for this clinical syndrome. Recent data have suggested that a combination of parasite variant types, mainly defined by the variant surface antigen, P. falciparum erythrocyte membrane protein 1 (PfEMP1), its receptors, coagulation and host endothelial cell activation (or inflammation) are equally important. This makes CM a multi-factorial disease and a challenge to unravel its causes to decrease its detrimental impact.


Subject(s)
Malaria, Cerebral/etiology , Malaria, Falciparum/etiology , Biomarkers , Cell Adhesion , Endothelium/metabolism , Humans , Inflammation/parasitology , Inflammation/pathology , Malaria, Cerebral/diagnosis , Malaria, Cerebral/pathology , Malaria, Cerebral/therapy , Malaria, Falciparum/diagnosis , Malaria, Falciparum/pathology , Malaria, Falciparum/therapy
SELECTION OF CITATIONS
SEARCH DETAIL