Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Arch Virol ; 169(3): 66, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38451338

ABSTRACT

A lytic Acinetobacter baumannii phage, isolate vB_AbaM_AB3P2, was isolated from a sewage treatment plant in China. A. baumannii phage vB_AbaM_AB3P2 has a dsDNA genome that is 44,824 bp in length with a G + C content of 37.75%. Ninety-six open reading frames were identified, and no genes for antibiotic resistance or virulence factors were found. Genomic and phylogenetic analysis of this phage revealed that it represents a new species in the genus Obolenskvirus. Phage vB_AbaM_AB3P2 has a short latent period (10 min) and high stability at 30-70°C and pH 2-10 and is potentially useful for controlling multi-drug-resistant A. baumannii.


Subject(s)
Acinetobacter baumannii , Bacteriophages , Bacteriophages/genetics , Acinetobacter baumannii/genetics , Phylogeny , Genomics , Myoviridae/genetics
2.
Phytother Res ; 37(4): 1330-1345, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36428266

ABSTRACT

Hypericum sampsonii Hance has traditionally been used to treat enteritis and diarrhea. As one of the main benzophenones isolated from H. sampsonii, 4-geranyloxy-2,6-dihydroxybenzophenonel (4-GDB) has been shown to possess anti-inflammatory effects. However, the therapeutic effect and potential mechanisms of 4-GDB in ulcerative colitis (UC) remain unclear. This study aimed to evaluate the role of 4-GDB in UC using a dextran sulfate sodium-induced colitis mouse model. Intragastric administration of 4-GDB (20 mg/kg/day) for 8 days significantly attenuated colonic injury, reduced the expression of inflammatory mediators, and improved colonic barrier function in mice with colitis. Furthermore, in vivo and in vitro experiments indicated that 4-GDB could activate cAMP/PKA/CREB and inhibit the NF-κB pathway. Collectively, 4-GDB may be a potential agent for treating UC by regulating the cAMP/PKA/CREB and NF-κB pathways.


Subject(s)
Colitis, Ulcerative , Colitis , Mice , Animals , Colitis, Ulcerative/drug therapy , NF-kappa B/metabolism , Signal Transduction , Colitis/chemically induced
3.
Int J Food Sci Nutr ; 67(1): 20-8, 2016.
Article in English | MEDLINE | ID: mdl-26653879

ABSTRACT

This study investigated the hypocholesterolaemic effects of bitter melon aqueous extracts (BMAE) in vitro, the inhibitory effects of BMAE on pancreatic cholesterol esterase (CEase) and incorporation of cholesterol into micelles were investigated. BMAE decreased the in vitro micellar solubility of cholesterol in a dose-dependent manner. The conformation of CEase was investigated by means of circular dichroism (CD) and fluorescence. The result revealed the decrease of α-helix contents, increase of ß-sheet and exposure of aromatic amino acid residuals. The incorporation of cholesterol into micelles was inhibited by BMAE. A complex was observed by transmission electron microscopy (TEM), which indicated interaction between cholesterol and BMAE. The result revealed that BMAE can play a role in decreased intestinal cholesterol absorption via inhibition of CEase, and of micelle formation.


Subject(s)
Anticholesteremic Agents/pharmacology , Cholesterol/metabolism , Micelles , Momordica charantia , Plant Extracts/pharmacology , Sterol Esterase/metabolism , Intestinal Absorption/drug effects , Pancreas , Protein Conformation , Solubility
4.
Int J Biol Macromol ; 278(Pt 3): 134797, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39217041

ABSTRACT

The chemocatalystic conversion of cellulose, the main component of lignocellulosic biomass, to building-block chemicals in water under mild conditions, is an ideal but highly challenging process due to the robust crystal structure of cellulose. It is also the key to establishing a sustainable biomass-based chemical process. Here, we present a highly efficient and selective chemocatalytic hydrolysis of cellulose using ZnCl2·3H2O hydrate as the pretreatment reagent and water-compatible metal salts - ErCl3 as the catalyst, into lactic acid (LA), which is an important chemical building-block widely utilized in the food industry and in the production of chemicals and biodegradable plastic. With 94.0 % conversion of cellulose, an impressive LA yield of 84.6 % was achieved at 170 °C after 4 h under ambient air pressure in water. High yields of LA were also obtained from other carbohydrates, such as fructose (68.3 %), glucose (52.7 %), starch (54.4 %), and inulin (67 %). A series of experiments demonstrated that Er(III) combination with water catalyzed cascading steps of soluble cellulose into LA after ZnCl2·3H2O hydrate disrupted the hydrogen bonds in the cellulose, Zn(II) played an indirect role by promoting LA formation through inhibition of side reactions. A plausible mechanism was proposed for the chemocatalytic conversion of cellulose to LA.


Subject(s)
Cellulose , Chlorides , Lactic Acid , Zinc Compounds , Cellulose/chemistry , Chlorides/chemistry , Zinc Compounds/chemistry , Lactic Acid/chemistry , Catalysis , Hydrolysis , Water/chemistry , Salts/chemistry
5.
Int Immunopharmacol ; 128: 111490, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38218008

ABSTRACT

BACKGROUND AND OBJECTIVES: Ulcerative colitis (UC) is a recurrent intestinal inflammatory disease which poses a serious threat to the life of patients. However, there are no specific drugs for UC yet. Hypericum sampsonii Hance (HS) is a Chinese herbal medicine traditionally used to treat enteritis and dysentery. Our previous studies have demonstrated that HS holds potential anti-UC effects, and a novel compound named Hypersampsonone H (HS-1) isolated from HS possesses significant anti-inflammatory activity. However, the beneficial effects of HS-1 on UC remain unclear. This study aimed to investigate the therapeutic effects of HS-1 on UC and its potential mechanisms, both in vitro and in vivo. METHODS: The in vitro model was employed using LPS-induced RAW264.7 cells to investigate the anti-inflammatory effects of HS-1 and its possible mechanisms. Furthermore, the therapeutic efficacy and potential mechanisms of HS-1 against dextran sulfate sodium (DSS)-induced acute colitis were assessed through histopathological examination, biochemical analysis, and molecular docking. RESULTS: In vitro, HS-1 significantly reduced LPS-induced inflammatory responses, as indicated by inhibiting NO production, down-regulating the overexpression of COX-2 and iNOS, as well as regulating the imbalanced levels of IL-6, TNF-α, and IL-10. Moreover, HS-1 also inhibited the expression of PDE4, elevated the intracellular cAMP level, and promoted the phosphorylation of CREB, thereby activating the PKA/CREB pathway in RAW264.7 cells. In vivo, HS-1 demonstrated therapeutic capacity against DSS-induced colitis by alleviating the symptoms of colitis mice, regulating the abnormal expression of inflammatory mediators, protecting the integrity of intestinal epithelial barrier, and reducing tissue fibrosis. Consistently, HS-1 was found to decrease the expression of PDE4 isoforms, subsequently activating the cAMP/PKA/CREB signaling pathway. Furthermore, the molecular docking results indicated that HS-1 exhibited a high affinity for PDE4, particularly PDE4D. Further mechanistic validation in vitro demonstrated that HS-1 possessed a synergistic effect on forskolin and an antagonistic effect on H-89 dihydrochloride, thereby exerting anti-inflammatory effects through the cAMP/PKA/CREB signaling pathway. CONCLUSION: We disclose that HS-1 serves as a promising candidate drug for the treatment of UC by virtue of its ability to reduce DSS-induced colitis via the inhibition of PDE4 and the activation of cAMP/PKA/CREB signaling pathway.


Subject(s)
Colitis, Ulcerative , Colitis , Humans , Mice , Animals , Colitis, Ulcerative/drug therapy , Lipopolysaccharides/pharmacology , Molecular Docking Simulation , Signal Transduction , Colitis/chemically induced , Anti-Inflammatory Agents/therapeutic use , Dextran Sulfate/pharmacology , Disease Models, Animal , Mice, Inbred C57BL , Colon/pathology
6.
Materials (Basel) ; 17(17)2024 Aug 30.
Article in English | MEDLINE | ID: mdl-39274690

ABSTRACT

To achieve laser direct welding of glass and metal without optical contact is hard, owing to the large difference in thermal expansion and thermal conductivity between glass and metal and an insignificant melting area. In this study, the high-power picosecond pulsed laser was selected to successfully weld the aluminosilicate glass/6061 aluminum alloy with a gap of 35 ± 5 µm between glass and metal. The results show that the molten glass and metal diffuse and mix at the interface. No defects such as microcracks or holes are observed in the diffusion mixing zone. Due to the relatively large gap, the glass collapsed after melting and caulking, resulting in an approximately arc-shaped microcrack between modified glass and unmodified glass or weakly modified glass. The shape of the glass modification zone and thermal accumulation are influenced by the single-pulse energy and linear energy density of the picosecond laser during welding, resulting in variations in the number and size of defects and the shape of the glass modification zone. By reasonably tuning the two factors, the shear strength of the joint reaches 15.98 MPa. The diffusion and mixing at the interface and the mechanical interlocking effect of the glass modification zone are the main reasons for achieving a high shear strength of the joint. This study will provide reference and new ideas for the laser transmission welding of glass and metal in the non-optical contact conditions.

7.
Eur J Med Chem ; 278: 116795, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39216381

ABSTRACT

Ischemic stroke (IS) is a disease of high death and disability worldwide with few medications in clinical treatment. Neuroinflammation and oxidative stress are considered as crucial factors in the progression of IS. In our previous studies, N-salicyloyl tryptamine derivative (NST) L7 exhibited promising anti-inflammatory properties and is considered a potential clinical therapy for IS but had limited antioxidant capacity. Here, we have designed, synthesized, and biologically evaluated 30 novel NSTs for their neuroprotective effects against cerebral ischemia-reperfusion (CI/R) injury. To identify a multifunctional neuroprotectant with enhanced antioxidant and anti-inflammatory capacity, as well as an effective therapeutic agent for CI/R damage. Among them, M11 exhibited synergistic highly anti-oxidant, anti-inflammatory, anti-ferroptosis, and anti-apoptosis effects and surpassed the parent compound L7. Further studies demonstrated that the synergistic and efficient neuroprotective role of M11 was mainly achieved by activating Nrf2 and stimulating its downstream target HO-1/GCLC/NQO1/GPX4. In addition, M11 possessed good blood-brain barrier permeability. Moreover, M11 effectively reduced cerebral infarct volume and improved neurological deficits in MCAO/R mice. Its hydrochloride form, M11·HCl, exhibited better pharmacokinetic properties, high safety, and a significant reduction in infarct volume, which is comparable to Edaravone. In conclusion, our findings suggested that M11 capable of activating Nrf2, could represent a promising candidate agent for IS.


Subject(s)
Drug Design , Ischemic Stroke , Neuroprotective Agents , Tryptamines , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemical synthesis , Neuroprotective Agents/chemistry , Animals , Ischemic Stroke/drug therapy , Mice , Tryptamines/pharmacology , Tryptamines/chemistry , Tryptamines/chemical synthesis , Tryptamines/therapeutic use , Structure-Activity Relationship , Molecular Structure , Male , Dose-Response Relationship, Drug , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Mice, Inbred C57BL , Apoptosis/drug effects
8.
Fitoterapia ; 169: 105610, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37451349

ABSTRACT

Phytochemical investigation of Hypericum sampsonii Hance resulted in the isolation of thirty-five polycyclic polyprenylated acylphloroglucinols including six new ones (1, 3, 5, and 15-17). Their structures were elucidated by UV, IR, NMR, HRESIMS, and calculated ECD analysis. Some compounds were evaluated for their anti-inflammatory effects in LPS-induced RAW264.7 cells. Compounds 1 and 26 showed significant inhibitory effects on LPS-induced NO production, and markedly suppressed the protein expression of iNOS and COX-2 in LPS-activated RAW264.7 cells.


Subject(s)
Hypericum , Molecular Structure , Hypericum/chemistry , Phloroglucinol/pharmacology , Phloroglucinol/chemistry , Lipopolysaccharides/pharmacology , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry
9.
J Glob Antimicrob Resist ; 33: 221-226, 2023 06.
Article in English | MEDLINE | ID: mdl-37062506

ABSTRACT

OBJECTIVES: The co-emergence of mcr and carbapenem resistance genes in Gram-negative bacteria is a serious problem. This study aims to clarify the genetic characteristic of one novel multidrug-resistant Enterobacter kobei EC1382 with mcr-9 causing urinary tract inflammation in an infant. METHODS: Antimicrobial drug susceptibility testing was performed for this isolate using the broth microdilution method. Whole-genome sequencing was performed using the Illumina PacBio RS II platform and HiSeq platform, and the antimicrobial resistance genes, mobile elements, and plasmid replicon types were identified. Conjugation analysis was performed using Escherichia coli C600 as recipients. RESULTS: Enterobacter kobei EC1382 was resistant to carbapenem, aminoglycoside, and cephalosporin. Twenty-five antimicrobial resistance genes were identified, including genes conferring resistance to carbapenem (blaNDM-1), colistin (mcr-9), and aminoglycosides (rmtC). The blaNDM-1 gene, accompanied by bleMBL and rmtC located downstream of an ISCR14 element, was detected in the IncFII(Yp) type plasmid pEC1382-2. Interestingly, although E. kobei EC1382 was susceptible to colistin, it had three identical mcr-9 genes (two in the chromosome and one in the IncHI2-type plasmid pEC1382-1). The backbone (∼12.2-kb genetic fragment) of these mcr-9 (flanked by IS903B and IS481-IS26) regions were conserved in this strain, and they were found to be present in various bacteria as three types, implying a silent distribution. CONCLUSIONS: To the best of our knowledge, this is the first study to demonstrate the coexistence of blaNDM-1, rmtC, and mcr-9 in E. kobei. The silent prevalence of mcr-9 in bacteria may be a threat to public health.


Subject(s)
Escherichia coli Proteins , Mycobacterium tuberculosis , Urinary Tract Infections , Humans , Infant , Colistin , Escherichia coli Proteins/genetics , Microbial Sensitivity Tests , beta-Lactamases/genetics , Anti-Bacterial Agents/pharmacology , Escherichia coli/genetics , Urinary Tract Infections/microbiology , Carbapenems/pharmacology
10.
ACS Appl Mater Interfaces ; 15(14): 17938-17946, 2023 Apr 12.
Article in English | MEDLINE | ID: mdl-37009862

ABSTRACT

Owing to the capacity boost from anion redox activities, cation-disordered rock-salt oxides are considered as potential candidates for the next-generation of high energy density Li-ion cathode materials. Unfortunately, the anion redox process that affords ultra-high specific capacity often triggers irreversible O2 release, which brings about structural degradation and rapid capacity decay. In this study, we present a partial chlorine (Cl) substitution strategy to synthesize a new cation-disordered rock-salt compound of Li1.225Ti0.45Mn0.325O1.9Cl0.1 and investigate the impact of Cl substitution on the oxygen redox process and the structural stability of cation-disordered rock-salt cathodes. We find that partial replacement of O2- by Cl- expands the cell volume and promotes anion redox reaction reversibility, thus increasing the Li+ ion diffusion rate and suppressing irreversible lattice oxygen loss. As a result, the Li1.225Ti0.45Mn0.325O1.9Cl0.1 cathode exhibits significantly improved cycling durability at high current densities, compared with the pristine Li1.225Ti0.45Mn0.325O2 cathode. This work demonstrates the promising feasibility of the Cl substitution process for advanced cation-disordered rock-salt cathode materials.

11.
ACS Chem Neurosci ; 14(11): 2146-2158, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37170554

ABSTRACT

Cerebral ischemia/reperfusion (I/R) injury is a key reason for the poor prognosis of ischemic stroke. As only a few neuroprotective medications for cerebral I/R injury have been applied in the clinic, it is necessary to design a new therapeutic strategy to treat cerebral I/R injury. The N-salicyloyl tryptamine derivative LZWL02003, synthesized from melatonin and salicylic acid, exhibits a wide range of biological properties. In this study, we assessed the neuroprotective capabilities of LZWL02003 in vivo and in vitro and investigated its possible mechanisms. Oxygen-glucose deprivation/reoxygenation was utilized to create an in vitro model of cerebral I/R damage. Middle cerebral artery occlusion/reperfusion was employed to imitate cerebral I/R injury in vivo. Neuronal apoptosis, oxidative stress, mitochondrial dysfunction, and neuroinflammation are associated with the pathogenesis of cerebral I/R injury. Our findings demonstrated that LZWL02003 upregulated the expression of Bcl-2 and downregulated the expression of Bax, thus maintaining the homeostasis of Bcl-2/Bax proteins and preventing apoptosis. LZWL02003 also reduced oxidative stress by reducing malondialdehyde and reactive oxygen species levels, increasing the superoxide dismutase activity, and resolving mitochondrial malfunction. LZWL02003 can lower interleukin (IL)-1ß, tumor necrosis factor (TNF)-α, and IL-6 levels, which in turn suppress neuroinflammation. Activation of the nuclear factor-kappa B (NF-κB) pathway is involved in various pathophysiologies, including cerebral I/R injury. We discovered that LZWL02003 suppressed the phosphorylation activation of NF-κB pathway-related proteins and decreased the nuclear translocation of NF-κB p65 subunits. Taken together, our results suggest that LZWL02003 is a neuroprotective drug with pleiotropic effects and may be a candidate for treating cerebral I/R injury.


Subject(s)
Brain Ischemia , Neuroprotective Agents , Reperfusion Injury , Humans , NF-kappa B/metabolism , Neuroprotective Agents/pharmacology , Neuroprotective Agents/therapeutic use , bcl-2-Associated X Protein , Neuroinflammatory Diseases , Reperfusion Injury/metabolism , Brain Ischemia/drug therapy , Infarction, Middle Cerebral Artery/drug therapy , Proto-Oncogene Proteins c-bcl-2 , Tryptamines/pharmacology , Apoptosis
12.
Bioengineering (Basel) ; 10(1)2022 Dec 27.
Article in English | MEDLINE | ID: mdl-36671607

ABSTRACT

Acinetobacter baumannii is an important opportunistic pathogen common in clinical infections. Phage therapy become a hot research field worldwide again after the post-antibiotic era. This review summarizes the important progress of phage treatments for A. baumannii in the last five years, and focus on the new interesting advances including the combination of phage and other substances (like photosensitizer), and the phage encapsulation (by microparticle, hydrogel) in delivery. We also discuss the remaining challenges and promising directions for phage-based therapy of A. baumannii infection in the future, and the innovative combination of materials in this area may be one promising direction.

13.
ACS Appl Mater Interfaces ; 14(34): 38865-38874, 2022 Aug 31.
Article in English | MEDLINE | ID: mdl-35960601

ABSTRACT

Cation-disordered rock-salt cathode materials are featured by their extraordinarily high specific capacities in lithium-ion batteries primarily contributed by anion redox reactions. Unfortunately, anion redox reactions can trigger oxygen release in this class of materials, leading to fast capacity fading and major safety concern. Despite the capability of absorbing structural distortions, high-ratio d0 transition-metal cations are considered to be unfavorable in design of a new cation-disordered rock-salt structure because of their electrochemically inactive nature. Herein, we report a new cation-disordered rock-salt compound of Li1.2Ti0.6Mn0.2O2 with the stoichiometry of Ti4+ as high as 0.6. The capacity reducing effect by the low-ratio active transition-metal center can be balanced by using a Mn2+/Mn4+ two-electron redox couple. The strengthened networks of strong Ti-O bonds greatly retard the oxygen release and improve the structural stability of cation-disordered rock-salt cathode materials. As expected, Li1.2Ti0.6Mn0.2O2 delivers significantly improved electrochemical performances and thermal stability compared to the low-ratio Ti4+ counterpart of Li1.2Ti0.4Mn0.4O2. Theoretical simulations further reveal that the improved electrochemical performances of Li1.2Ti0.6Mn0.2O2 are attributed to its lower Li+ diffusion energy barrier and enhanced unhybridized O 2p states compared to Li1.2Ti0.4Mn0.4O2. This concept might be helpful for the improvement of structural stability and electrochemical performances of other cation-disordered rock-salt metal oxide cathode materials.

14.
J Ethnopharmacol ; 296: 115447, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-35688258

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Hypericum sampsonii Hance (Yuanbaocao), a traditional herbal medicine with various pharmacological properties, is traditionally used to treat diarrhea and enteritis in China for hundreds of years. Investigations have uncovered its anti-inflammatory effects and corresponding bioactive constituents in H. sampsonii, however, the mechanisms of action for the treatment of enteritis are still unclear. AIMS OF THE STUDY: This study aims to investigate the therapeutic effects and molecular mechanisms of H. sampsonii in a dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) mice model. MATERIALS AND METHODS: The major ingredients of the ethyl acetate extract (HS) in H. sampsonii were analyzed by UPLC-QTOF-MS. The inflammatory state of UC mice was caused by 3% DSS once daily for seven days. During DSS treatment, the mice in the positive drug group and the other three groups were orally administered 5-ASA (positive control) or HS daily. After treatment with HS or 5-ASA for a week, colonic pathological observation and the molecular biological index were performed for therapeutic evaluation, including visual inspection in the length and weight of colons and spleens, pathological morphology by hematoxylin and eosin (HE) staining, determination of oxidative markers, inflammatory cytokines and tumor necrosis factor-alpha (TNF-α) levels in colonic tissues as well as spleen index. Gene expression levels of inflammatory cytokines, antioxidant enzymes and PDE4 were detected using kits and PCR, while the expression of colonic tight junction proteins and relative signals of PKA/CREB signaling pathway were analyzed by Western blot. RESULTS: The main components in HS were found to be polycyclic polyprenylated acylphloroglucinols (PPAPs). HS distinctly alleviated DSS-stimulated UC-like lesions symptoms as evidenced by a significant recovery from body weight, colon lengths, and histological injuries of colons. HS reduced the accumulation of pro-inflammatory cytokines and improved the mRNA level of IL-10. Simultaneously, the colonic mRNA expression levels of IL-1ß, IL-17, iNOS and COX-2 were all significantly suppressed by HS in a dose-dependent manner. Furthermore, HS restored the protein expression of tight junction-associated protein (ZO-1 and occluding). Besides, HS significantly inhibited the protein level of PDE4 and decreased the expressions of PKA and phosphorylated CREB. CONCLUSION: This is the first work about main composition and anti-UC effect of Hypericum sampsonii Hance. For the first time, this study reveals HS is not toxic in a single dose and exert significantly protective effect in DSS-colitis mice. The underlying mechanisms may involve the improvement to inflammatory status, the protection for intestinal barrier function, the inhibition of PDE4, and the activation of PKA/CREB signaling pathway. This study provided an experimental basis for the traditional application of H. sampsonii Hance in the treatment of diarrhea and dysentery.


Subject(s)
Colitis, Ulcerative , Enteritis , Animals , Colitis, Ulcerative/chemically induced , Colitis, Ulcerative/drug therapy , Colitis, Ulcerative/metabolism , Colon , Cytokines/metabolism , Dextran Sulfate , Diarrhea/metabolism , Disease Models, Animal , Enteritis/metabolism , Enteritis/pathology , Inflammation/pathology , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism , Signal Transduction , Tight Junction Proteins/metabolism
15.
Fitoterapia ; 157: 105124, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35007685

ABSTRACT

Four new cytochalasans, arbuschalasins A-D (1-4), along with thirteen known analogues (5-17), were isolated from the solid rice medium of endophytic fungus Xylaria arbuscula. Arbuschalasins A-B feature a rare 5/6/6/6 fused ring system while arbuschalasin D was characterized as the first example of natural cytochalasans that possesses a 5/5/11 fused scaffold. The structures of 1-4 were assigned by spectroscopic data, with their absolute structures being determined by electronic circular dichroism (ECD) calculations. All of the isolates were evaluated against the human colorectal adenocarcinoma cell lines (HCT15). Compounds 6 and 7 showed significant inhibitory effects (IC50 values were 13.5 and 13.4 µM, respectively), being more active than those of the positive control, fluorouracil (103.1 µM).


Subject(s)
Ascomycota/chemistry , Cytochalasins/isolation & purification , Rhizophoraceae/microbiology , Cell Line, Tumor , Cell Survival , Cytochalasins/chemistry , Fermentation , Humans , Magnetic Resonance Spectroscopy , Molecular Structure
16.
Front Plant Sci ; 13: 1064623, 2022.
Article in English | MEDLINE | ID: mdl-36582644

ABSTRACT

Introduction: Genomic selection (GS) is a potential breeding approach for soybean improvement. Methods: In this study, GS was performed on soybean protein and oil content using the Ridge Regression Best Linear Unbiased Predictor (RR-BLUP) based on 1,007 soybean accessions. The SoySNP50K SNP dataset of the accessions was obtained from the USDA-ARS, Beltsville, MD lab, and the protein and oil content of the accessions were obtained from GRIN. Results: Our results showed that the prediction accuracy of oil content was higher than that of protein content. When the training population size was 100, the prediction accuracies for protein content and oil content were 0.60 and 0.79, respectively. The prediction accuracy increased with the size of the training population. Training populations with similar phenotype or with close genetic relationships to the prediction population exhibited better prediction accuracy. A greatest prediction accuracy for both protein and oil content was observed when approximately 3,000 markers with -log10(P) greater than 1 were included. Discussion: This information will help improve GS efficiency and facilitate the application of GS.

17.
Food Funct ; 12(6): 2554-2568, 2021 Mar 21.
Article in English | MEDLINE | ID: mdl-33625409

ABSTRACT

Ulcerative colitis is a recrudescent intestinal inflammation coupled with diarrhea, weight loss, pus, and blood stool, which seriously impacts the quality of patient life. d-Pinitol, which can be a food supplement isolated from the food plant-like soybeans, Ceratonia siliqua Linn and Bruguiera gymnorrhiza, has been proved to show anti-oxidative and anti-inflammatory effects. However, the potential mechanism of d-pinitol still remains ill-defined contemporarily. In the current study, the therapeutic effect and potential mechanisms of d-pinitol against colitis were investigated. Oxidative stress and inflammation of experimental colitis were caused by 3% DSS treatment once daily for 7 days. During DSS treatment, the mice of the positive drug group and three other groups were orally administered SASP or d-pinitol once daily. Clinical symptoms were analyzed, and macroscopic scores were calculated. The levels of oxidative and inflammatory cytokines were measured using assay kits and RT-PCR. Additionally, the protein expression of the Nrf2/ARE pathway and PPAR-γ was measured by Western blot. Results showed that d-pinitol enormously alleviated DSS-induced bodyweight loss, colon shortening, and histological injuries, achieving a therapeutic efficacy superior to SASP. Moreover, the oxidative stress and colonic inflammatory response were mitigated. d-pinitol not only significantly activated the Nrf2/ARE signaling pathway via facilitating the translocation of Nrf2 from sitoplazma to cytoblast, upregulating the protein expression levels of GCLC, GCLM, HO-1, and NQO1, but also improved the PPAR-γ level by binding to the active site of PPAR-γ, when suppressing NF-κB p65 and IκBα phosphorylation. In conclusion, d-pinitol exhibited a dramatic anti-colitis efficacy by activating the Nrf2/ARE pathway and PPAR-γ. Hence, d-pinitol may be a promising therapeutic drug against UC in the future.


Subject(s)
Colitis/metabolism , Inositol/analogs & derivatives , NF-E2-Related Factor 2/metabolism , Signal Transduction/drug effects , Animals , Dietary Supplements , Disease Models, Animal , Inositol/pharmacology , Male , Mice , Mice, Inbred BALB C , NF-kappa B/metabolism , PPAR gamma/metabolism
18.
Front Cell Dev Biol ; 9: 733908, 2021.
Article in English | MEDLINE | ID: mdl-34858973

ABSTRACT

The dynamic balance of cardiomyocytes and neurons is essential to maintain the normal physiological functions of heart and brain. If excessive cells die in tissues, serious Cardio-Cerebrovascular Diseases would occur, namely, hypertension, myocardial infarction, and ischemic stroke. The regulation of cell death plays a role in promoting or alleviating Cardio-Cerebrovascular Diseases. Ferroptosis is an iron-dependent new type of cell death that has been proved to occur in a variety of diseases. In our review, we focus on the critical role of ferroptosis and its regulatory mechanisms involved in Cardio-Cerebrovascular Diseases, and discuss the important function of ferroptosis-related inhibitors in order to propose potential implications for the prevention and treatment of Cardio-Cerebrovascular Diseases.

19.
Front Pharmacol ; 12: 745061, 2021.
Article in English | MEDLINE | ID: mdl-34504432

ABSTRACT

Cardio-Cerebrovascular Disease is a collective term for cardiovascular disease and cerebrovascular disease, being a serious threat to human health. A growing number of studies have proved that the content of inflammatory factors or mediators determines the stability of vascular plaque and the incidence of cardio-cerebrovascular event, and involves in the process of Cardio-Cerebrovascular Diseases. Interleukin-6 is a widely used cytokine that causes inflammation and oxidative stress, which would further result in cardiac and cerebral injury. The increased expression of interleukin-6 is closely related to atherosclerosis, myocardial infarction, heart failure and ischemic stroke. It is a key risk factor for these diseases by triggering inflammatory reaction and inducing other molecules release. Therefore, interleukin-6 may become a potential target for Cardio-Cerebrovascular Diseases in the future. This paper is aimed to discuss the expression changes and pathological mechanisms of interleukin-6 in Cardio-Cerebrovascular Diseases, and to provide a novel strategy for the prevention and treatment of Cardio-Cerebrovascular Diseases.

20.
Front Physiol ; 12: 656139, 2021.
Article in English | MEDLINE | ID: mdl-33897463

ABSTRACT

Pulmonary hypertension (PH) is a critical and dangerous disease in cardiovascular system. Pulmonary vascular remodeling is an important pathophysiological mechanism for the development of pulmonary arterial hypertension. Pulmonary artery smooth muscle cell (PASMC) proliferation, hypertrophy, and enhancing secretory activity are the main causes of pulmonary vascular remodeling. Previous studies have proven that various active substances and inflammatory factors, such as interleukin 6 (IL-6), IL-8, chemotactic factor for monocyte 1, etc., are involved in pulmonary vascular remodeling in PH. However, the underlying mechanisms of these active substances to promote the PASMC proliferation remain to be elucidated. In our study, we demonstrated that PASMC senescence, as a physiopathologic mechanism, played an essential role in hypoxia-induced PASMC proliferation. In the progression of PH, senescence PASMCs could contribute to PASMC proliferation via increasing the expression of paracrine IL-6 (senescence-associated secretory phenotype). In addition, we found that activated mTOR/S6K1 pathway can promote PASMC senescence and elevate hypoxia-induced PASMC proliferation. Further study revealed that the activation of mTOR/S6K1 pathway was responsible for senescence PASMCs inducing PASMC proliferation via paracrine IL-6. Targeted inhibition of PASMC senescence could effectively suppress PASMC proliferation and relieve pulmonary vascular remodeling in PH, indicating a potential for the exploration of novel anti-PH strategies.

SELECTION OF CITATIONS
SEARCH DETAIL