Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Nat Immunol ; 23(3): 458-468, 2022 03.
Article in English | MEDLINE | ID: mdl-35210623

ABSTRACT

Alveolar macrophages (AMs) are lung tissue-resident macrophages that can be expanded in culture, but it is unknown to what extent culture affects their in vivo identity. Here we show that mouse long-term ex vivo expanded AMs (exAMs) maintained a core AM gene expression program, but showed culture adaptations related to adhesion, metabolism and proliferation. Upon transplantation into the lung, exAMs reacquired full transcriptional and epigenetic AM identity, even after several months in culture and could self-maintain long-term in the alveolar niche. Changes in open chromatin regions observed in culture were fully reversible in transplanted exAMs and resulted in a gene expression profile indistinguishable from resident AMs. Our results indicate that long-term proliferation of AMs in culture did not compromise cellular identity in vivo. The robustness of exAM identity provides new opportunities for mechanistic analysis and highlights the therapeutic potential of exAMs.


Subject(s)
Lung , Macrophages, Alveolar , Animals , Chromatin/metabolism , Epigenesis, Genetic , Epigenomics , Lung/metabolism , Macrophages, Alveolar/metabolism , Mice
2.
EMBO J ; 38(19): e101233, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31414712

ABSTRACT

Tissues in multicellular organisms are populated by resident macrophages, which perform both generic and tissue-specific functions. The latter are induced by signals from the microenvironment and rely on unique tissue-specific molecular programs requiring the combinatorial action of tissue-specific and broadly expressed transcriptional regulators. Here, we identify the transcription factors Bhlhe40 and Bhlhe41 as novel regulators of alveolar macrophages (AMs)-a population that provides the first line of immune defense and executes homeostatic functions in lung alveoli. In the absence of these factors, AMs exhibited decreased proliferation that resulted in a severe disadvantage of knockout AMs in a competitive setting. Gene expression analyses revealed a broad cell-intrinsic footprint of Bhlhe40/Bhlhe41 deficiency manifested by a downregulation of AM signature genes and induction of signature genes of other macrophage lineages. Genome-wide characterization of Bhlhe40 DNA binding suggested that these transcription factors directly repress the expression of lineage-inappropriate genes in AMs. Taken together, these results identify Bhlhe40 and Bhlhe41 as key regulators of AM self-renewal and guardians of their identity.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Gene Expression Profiling/methods , Homeodomain Proteins/genetics , Macrophages, Alveolar/cytology , Acetylation , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Cell Differentiation , Cell Proliferation , Cell Self Renewal , Cell Survival , Down-Regulation , Gene Knockdown Techniques , Histones/metabolism , Homeodomain Proteins/metabolism , Macrophages, Alveolar/metabolism , Mice , Organ Specificity , Phenotype , Sequence Analysis, RNA
3.
Methods Mol Biol ; 2713: 231-251, 2024.
Article in English | MEDLINE | ID: mdl-37639127

ABSTRACT

Alveolar macrophages (AM) are resident macrophages of the lung and play important roles in the maintenance of tissue homeostasis as well as host defense. Here, we describe how they can be harvested from murine lungs, expanded in vitro, and transduced with lentiviral vectors.


Subject(s)
Macrophages, Alveolar , Macrophages , Animals , Mice , Thorax
SELECTION OF CITATIONS
SEARCH DETAIL