Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters

Database
Language
Publication year range
1.
Anal Biochem ; 659: 114947, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36216144

ABSTRACT

The research in the field of biosensors has recently been focused on the design and development of functional electrode materials that can respond to changes in their biochemical environment. Here, we report the synthesis of dicalcium phosphate dihydrate (DCPD), also known as brushite (CaHPO4·2H2O) by soft chemical method and its application for electrochemical sensing of four different analytes. Phase purity, structure, chemical composition and surface morphology of the synthesized nanoparticles have been investigated using powder XRD, FTIR, SEM, XPS and HRTEM methods. Electrochemical sensor was prepared by modifying GCE with brushite and the modified electrodes were successfully used for either independent or simultaneous determination of uric acid, xanthine, hypoxanthine and caffeine in their mixture. The brushite/GCE exhibited four strong well-defined separate peaks corresponding to the oxidation of UA, XN, HXN and CF in phosphate buffer saline (PBS) at pH 7.4. The fabricated electrode showed low detection limits (S/N = 3) of 0.576, 1.0, 0.076 and 1.26 µM for UA, XN, HXN and CF respectively. Practical application of the fabricated electrode has been demonstrated by determining UA, XN, HXN and CF in human urine and coffee samples by direct method. The brushite offers scope for fabrication of sensor systems for implantable medical applications.


Subject(s)
Nanoparticles , Uric Acid , Humans , Xanthine/chemistry , Xanthine/urine , Hypoxanthine/chemistry , Hypoxanthine/urine , Uric Acid/urine , Caffeine , Electrodes , Electrochemical Techniques , Ascorbic Acid
2.
J Nanosci Nanotechnol ; 19(4): 2034-2043, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30486944

ABSTRACT

Manganese (Mn) doped hydroxyapatite (HA) nanoparticles were synthesized by a simple microwave irradiation method and characterized using XRD, SEM, micro-Raman, FTIR, XPS and vibrating sample magnetometer (VSM) methods. The as prepared 3 M% Mn doped HA (3 M% Mn-HA) nanoparticles modified glassy carbon electrode (GCE) showed an excellent electrocatalytic activity towards the oxidation of hydroquinone (HQ). The electrochemical studies demonstrated that the 3 M% Mn-HA nanoparticles modified GCE detects HQ linearly over a wide concentration range of 1.0×10-8 to 1.6×10-4 M with the lowest detection limit of 11 nM at neutral pH (7.0) in PBS. Furthermore, Mn-HA modified GCE exhibited an excellent stability, reproducibility and anti-interference ability against a number of potential electroactive species and metal ions and proved to be useful for the estimation of the HQ in tap water and industry waste water with satisfactory recovery.

3.
Nanotechnology ; 27(38): 385502, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27532479

ABSTRACT

In recent years, SnO2 nanoparticles (NPs) have been subjected to various modifications in order to improve their performance in sensing and other applications. Here, we report the synthesis of SnO2 NPs by microwave irradiation, and subsequent exposure to gamma (γ) radiation at different doses (0-150 kGy) to induce desirable physico-chemical properties. The irradiated samples were characterized by x-ray powder diffraction (XRD), transmission electron microscopy (TEM and HR-TEM), and photoluminescence (PL) to evaluate the effect of γ-ray irradiation on their morphology and microstructure. The results revealed that the bulk crystal structure remained unchanged after irradiation, while the existence of defects and a damaged over-layer have been confirmed by PL and HR-TEM respectively. The influence of γ-irradiation on the electrical and CO sensing characteristics was also investigated in the temperature range between 150 and 400 °C. γ-irradiated SnO2 NP based resistive sensors showed better CO sensing characteristics (i.e. higher response and lower working temperature) compared to non-irradiated SnO2. Upon optimizing the γ-ray dose irradiation level and working temperature, a ten-fold enhancement in the response to CO has been achieved (R/R 0 = 12 to 50 ppm of CO in air) in 50 kGy irradiated SnO2 NP based sensors operating at 150 °C. A possible mechanism for the enhanced sensing performance of γ-irradiated SnO2 NPs has been proposed.

4.
Nanotechnology ; 25(29): 295501, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-24981704

ABSTRACT

A novel folic acid biosensor has been fabricated using Cu doped SnO2 nanoparticles (NPs) synthesized by a simple microwave irradiation method. Powder XRD and TEM studies confirmed that both the pure and Cu doped SnO2 (Cu: 0, 10, 20wt%) crystallized in tetragonal rutile-type structure with spherical morphology. The average crystallite size of pure SnO2 was estimated to be around 16 nm. Upon doping, the crystallite sizes decreased to 9 nm and 5 nm for 10 and 20wt% Cu doped SnO2 respectively. XPS studies confirmed the electronic state of Sn and Cu to be 4+ and 2+ respectively. Cu (20wt%) doped SnO2 NPs are proved to be a good sensing element for the determination of folic acid (FA). Cu-SnO2 NPs (20wt%) modified glassy carbon electrode (GCE) exhibited the lowest detection limit of 0.024 nM over a wide folic acid concentration range of 1.0 × 10(-10) to 6.7 × 10(-5) M at physiological pH of 7.0. The fabricated sensor is highly selective towards the determination of FA even in the presence of a 100 fold excess of common interferent ascorbic acid. The sensor proved to be useful for the estimation of FA content in pharmaceutical sample with satisfactory recovery.


Subject(s)
Biosensing Techniques/instrumentation , Carbon/chemistry , Copper/chemistry , Folic Acid/analysis , Metal Nanoparticles/chemistry , Tin Compounds/chemistry , Biosensing Techniques/methods , Electrochemical Techniques , Humans , Limit of Detection , Metal Nanoparticles/ultrastructure , Microelectrodes , Microwaves
5.
ACS Appl Mater Interfaces ; 8(51): 35191-35202, 2016 Dec 28.
Article in English | MEDLINE | ID: mdl-27977134

ABSTRACT

Materials which possess high specific capacitance in device configuration with low cost are essential for viable application in supercapacitors. Herein, a flexible high-energy supercapacitor device was fabricated using porous activated high-surface-area carbon derived from aloe leaf (Aloe vera) as a precursor. The A. vera derived activated carbon showed mesoporous nature with high specific surface area of ∼1890 m2/g. A high specific capacitance of 410 and 306 F/g was achieved in three-electrode and symmetric two-electrode system configurations in aqueous electrolyte, respectively. The fabricated all-solid-state device showed a high specific capacitance of 244 F/g with an energy density of 8.6 Wh/kg. In an ionic liquid electrolyte, the fabricated device showed a high specific capacitance of 126 F/g and a wide potential window up to 3 V, which results in a high energy density of 40 Wh/kg. Furthermore, it was observed that the activation temperature has significant role in the electrochemical performance, as the activated sample at 700 °C showed best activity than the samples activated at 600 and 800 °C. The electron microscopic images (FE-SEM and HR-TEM) confirmed the formation of pores by the chemical activation. A fabricated supercapacitor device in ionic liquid with 3 V could power up a red LED for 30 min upon charging for 20s. Also, it is shown that the operation voltage and capacitance of flexible all-solid-state symmetric supercapacitors fabricated using aloe-derived activated carbon could be easily tuned by series and parallel combinations. The performance of fabricated supercapacitor devices using A. vera derived activated carbon in all-solid-state and ionic liquid indicates their viable applications in flexible devices and energy storage.

SELECTION OF CITATIONS
SEARCH DETAIL