Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 197
Filter
1.
Mol Psychiatry ; 28(7): 3063-3074, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36878966

ABSTRACT

Ablative procedures such as anterior capsulotomy are potentially effective in refractory obsessive-compulsive disorder (OCD). Converging evidence suggests the ventral internal capsule white matter tracts traversing the rostral cingulate and ventrolateral prefrontal cortex and thalamus is the optimal target for clinical efficacy across multiple deep brain stimulation targets for OCD. Here we ask which prefrontal regions and underlying cognitive processes might be implicated in the effects of capsulotomy by using both task fMRI and neuropsychological tests assessing OCD-relevant cognitive mechanisms known to map across prefrontal regions connected to the tracts targeted in capsulotomy. We tested OCD patients at least 6 months post-capsulotomy (n = 27), OCD controls (n = 33) and healthy controls (n = 34). We used a modified aversive monetary incentive delay paradigm with negative imagery and a within session extinction trial. Post-capsulotomy OCD subjects showed improved OCD symptoms, disability and quality of life with no differences in mood or anxiety or cognitive task performance on executive, inhibition, memory and learning tasks. Task fMRI revealed post-capsulotomy decreases in the nucleus accumbens during negative anticipation, and in the left rostral cingulate and left inferior frontal cortex during negative feedback. Post-capsulotomy patients showed attenuated accumbens-rostral cingulate functional connectivity. Rostral cingulate activity mediated capsulotomy improvement on obsessions. These regions overlap with optimal white matter tracts observed across multiple stimulation targets for OCD and might provide insights into further optimizing neuromodulation approaches. Our findings also suggest that aversive processing theoretical mechanisms may link ablative, stimulation and psychological interventions.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder , Humans , Quality of Life , Neurosurgical Procedures/methods , Treatment Outcome , Obsessive-Compulsive Disorder/surgery , Obsessive-Compulsive Disorder/psychology , Magnetic Resonance Imaging
2.
Mol Psychiatry ; 28(4): 1636-1646, 2023 04.
Article in English | MEDLINE | ID: mdl-36460724

ABSTRACT

The amygdala, orbitofrontal cortex (OFC) and medial prefrontal cortex (mPFC) form a crucial part of the emotion circuit, yet their emotion induced responses and interactions have been poorly investigated with direct intracranial recordings. Such high-fidelity signals can uncover precise spectral dynamics and frequency differences in valence processing allowing novel insights on neuromodulation. Here, leveraging the unique spatio-temporal advantages of intracranial electroencephalography (iEEG) from a cohort of 35 patients with intractable epilepsy (with 71 contacts in amygdala, 31 in OFC and 43 in mPFC), we assessed the spectral dynamics and interactions between the amygdala, OFC and mPFC during an emotional picture viewing task. Task induced activity showed greater broadband gamma activity in the negative condition compared to positive condition in all the three regions. Similarly, beta activity was increased in the negative condition in the amygdala and OFC while decreased in mPFC. Furthermore, beta activity of amygdala showed significant negative association with valence ratings. Critically, model-based computational analyses revealed unidirectional connectivity from mPFC to the amygdala and bidirectional communication between OFC-amygdala and OFC-mPFC. Our findings provide direct neurophysiological evidence for a much-posited model of top-down influence of mPFC over amygdala and a bidirectional influence between OFC and the amygdala. Altogether, in a relatively large sample size with human intracranial neuronal recordings, we highlight valence-dependent spectral dynamics and dyadic coupling within the amygdala-mPFC-OFC network with implications for potential targeted neuromodulation in emotion processing.


Subject(s)
Amygdala , Prefrontal Cortex , Humans , Neural Pathways/physiology , Prefrontal Cortex/physiology , Amygdala/physiology , Frontal Lobe , Emotions/physiology
3.
Brain ; 146(7): 2780-2791, 2023 07 03.
Article in English | MEDLINE | ID: mdl-36623929

ABSTRACT

Aberrant dynamic switches between internal brain states are believed to underlie motor dysfunction in Parkinson's disease. Deep brain stimulation of the subthalamic nucleus is a well-established treatment for the motor symptoms of Parkinson's disease, yet it remains poorly understood how subthalamic stimulation modulates the whole-brain intrinsic motor network state dynamics. To investigate this, we acquired resting-state functional magnetic resonance imaging time-series data from 27 medication-free patients with Parkinson's disease (mean age: 64.8 years, standard deviation: 7.6) who had deep brain stimulation electrodes implanted in the subthalamic nucleus, in both on and off stimulation states. Sixteen matched healthy individuals were included as a control group. We adopted a powerful data-driven modelling approach, known as a hidden Markov model, to disclose the emergence of recurring activation patterns of interacting motor regions (whole-brain intrinsic motor network states) via the blood oxygen level-dependent signal detected in the resting-state functional magnetic resonance imaging time-series data from all participants. The estimated hidden Markov model disclosed the dynamics of distinct whole-brain motor network states, including frequency of occurrence, state duration, fractional coverage and their transition probabilities. Notably, the data-driven decoding of whole-brain intrinsic motor network states revealed that subthalamic stimulation reshaped functional network expression and stabilized state transitions. Moreover, subthalamic stimulation improved motor symptoms by modulating key trajectories of state transition within whole-brain intrinsic motor network states. This modulation mechanism of subthalamic stimulation was manifested in three significant effects: recovery, relieving and remodelling effects. Significantly, recovery effects correlated with improvements in tremor and posture symptoms induced by subthalamic stimulation (P < 0.05). Furthermore, subthalamic stimulation was found to restore a relatively low level of fluctuation of functional connectivity in all motor regions to a level closer to that of healthy participants. Also, changes in the fluctuation of functional connectivity between motor regions were associated with improvements in tremor and gait symptoms (P < 0.05). These findings fill a gap in our knowledge of the role of subthalamic stimulation at the level of neural activity, revealing the regulatory effects of subthalamic stimulation on whole-brain inherent motor network states in Parkinson's disease. Our results provide mechanistic insight and explanation for how subthalamic stimulation modulates motor symptoms in Parkinson's disease.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Middle Aged , Tremor , Deep Brain Stimulation/methods , Magnetic Resonance Imaging
4.
Brain ; 146(6): 2642-2653, 2023 06 01.
Article in English | MEDLINE | ID: mdl-36445730

ABSTRACT

Neurons in the primate lateral habenula fire in response to punishments and are inhibited by rewards. Through its modulation of midbrain monoaminergic activity, the habenula is believed to play an important role in adaptive behavioural responses to punishment and underlie depressive symptoms and their alleviation with ketamine. However, its role in value-based decision-making in humans is poorly understood due to limitations with non-invasive imaging methods which measure metabolic, not neural, activity with poor temporal resolution. Here, we overcome these limitations to more closely bridge the gap between species by recording local field potentials directly from the habenula in 12 human patients receiving deep brain stimulation treatment for bipolar disorder (n = 4), chronic pain (n = 3), depression (n = 3) and schizophrenia (n = 2). This allowed us to record neural activity during value-based decision-making tasks involving monetary rewards and losses. High-frequency gamma (60-240 Hz) activity, a proxy for population-level spiking involved in cognitive computations, increased during the receipt of loss and decreased during receipt of reward. Furthermore, habenula high gamma also encoded risk during decision-making, being larger in amplitude for high compared to low risk. For both risk and aversion, differences between conditions peaked approximately between 400 and 750 ms after stimulus onset. The findings not only demonstrate homologies with the primate habenula but also extend its role to human decision-making, showing its temporal dynamics and suggesting revisions to current models. The findings suggest that habenula high gamma could be used to optimize real-time closed-loop deep brain stimulation treatment for mood disturbances and impulsivity in psychiatric disorders.


Subject(s)
Habenula , Schizophrenia , Animals , Humans , Habenula/physiology , Reward , Neurons/physiology , Punishment
5.
J Neurosci ; 42(13): 2756-2771, 2022 03 30.
Article in English | MEDLINE | ID: mdl-35149513

ABSTRACT

Neurophysiological work in primates and rodents have shown the amygdala plays a central role in reward processing through connectivity with the orbitofrontal cortex (OFC) and hippocampus. However, understanding the role of oscillations in each region and their connectivity in different stages of reward processing in humans has been hampered by limitations with noninvasive methods such as poor spatial and temporal resolution. To overcome these limitations, we recorded local field potentials (LFPs) directly from the amygdala, OFC and hippocampus simultaneously in human male and female epilepsy patients performing a monetary incentive delay (MID) task. This allowed us to dissociate electrophysiological activity and connectivity patterns related to the anticipation and receipt of rewards and losses in real time. Anticipation of reward increased high-frequency gamma (HFG; 60-250 Hz) activity in the hippocampus and theta band (4-8 Hz) synchronization between amygdala and OFC, suggesting roles in memory and motivation. During receipt, HFG in the amygdala was involved in outcome value coding, the OFC cue context-specific outcome value comparison and the hippocampus reward coding. Receipt of loss decreased amygdala-hippocampus theta and increased amygdala-OFC HFG amplitude coupling which coincided with subsequent adjustments in behavior. Increased HFG synchronization between the amygdala and hippocampus during reward receipt suggested encoding of reward information into memory for reinstatement during anticipation. These findings extend what is known about the primate brain to humans, showing key spectrotemporal coding and communication dynamics for reward and punishment related processes which could serve as more precise targets for neuromodulation to establish causality and potential therapeutic applications.SIGNIFICANCE STATEMENT Dysfunctional reward processing contributes to many psychiatric disorders. Neurophysiological work in primates has shown the amygdala, orbitofrontal cortex (OFC), and hippocampus play a synergistic role in reward processing. However, because of limitations with noninvasive imaging, it is unclear whether the same interactions occur in humans and what oscillatory mechanisms underpin them. We addressed this issue by recording local field potentials (LFPs) from all three regions in human epilepsy patients during monetary reward processing. There was increased amygdala-OFC high-frequency coupling when losing money which coincided with subsequent adjustments in behavior. In contrast, increased amygdala-hippocampus high-frequency phase-locking suggested a role in reward memory. The findings highlight amygdala networks for reward and punishment processes that could act as more precise neuromodulation targets to treat psychiatric disorders.


Subject(s)
Electrocorticography , Reward , Amygdala , Animals , Female , Hippocampus/physiology , Humans , Male , Motivation , Prefrontal Cortex/physiology
6.
J Neurol Neurosurg Psychiatry ; 94(5): 379-388, 2023 05.
Article in English | MEDLINE | ID: mdl-36585242

ABSTRACT

BACKGROUND: Though deep brain stimulation (DBS) shows increasing potential in treatment-resistant depression (TRD), the underlying neural mechanisms remain unclear. Here, we investigated functional and structural connectivities related to and predictive of clinical effectiveness of DBS at ventral capsule/ventral striatum region for TRD. METHODS: Stimulation effects of 71 stimulation settings in 10 TRD patients were assessed. The electric fields were estimated and combined with normative functional and structural connectomes to identify connections as well as fibre tracts beneficial for outcome. We calculated stimulation-dependent optimal connectivity and constructed models to predict outcome. Leave-one-out cross-validation was used to validate the prediction value. RESULTS: Successful prediction of antidepressant effectiveness in out-of-sample patients was achieved by the optimal connectivity profiles constructed with both the functional connectivity (R=0.49 at p<10-4; deviated by 14.4±10.9% from actual, p<0.001) and structural connectivity (R=0.51 at p<10-5; deviated by 15.2±11.5% from actual, p<10-5). Frontothalamic pathways and cortical projections were delineated for optimal clinical outcome. Similarity estimates between optimal connectivity profile from one modality (functional/structural) and individual brain connectivity in the other modality (structural/functional) significantly cross-predicted the outcome of DBS. The optimal structural and functional connectivity mainly converged at the ventral and dorsal lateral prefrontal cortex and orbitofrontal cortex. CONCLUSIONS: Connectivity profiles and fibre tracts following frontothalamic streamlines appear to predict outcome of DBS for TRD. The findings shed light on the neural pathways in depression and may be used to guide both presurgical planning and postsurgical programming after further validation.


Subject(s)
Deep Brain Stimulation , Depressive Disorder, Treatment-Resistant , Ventral Striatum , Humans , Depression , Brain , Depressive Disorder, Treatment-Resistant/therapy , Treatment Outcome
7.
Eur J Neurol ; 30(9): 2629-2640, 2023 09.
Article in English | MEDLINE | ID: mdl-37235703

ABSTRACT

BACKGROUND AND PURPOSE: Bilateral deep brain stimulation (DBS) surgery targeting the globus pallidus internus (GPi) or the subthalamic nucleus (STN) is widely used in medication-refractory dystonia. However, evidence regarding target selection considering various symptoms remains limited. This study aimed to compare the effectiveness of these two targets in patients with isolated dystonia. METHODS: This retrospective study evaluated 71 consecutive patients (GPi-DBS group, n = 32; STN-DBS group, n = 39) with isolated dystonia. Burke-Fahn-Marsden Dystonia Rating Scale scores and quality of life were evaluated preoperatively and at 1, 6, 12, and 36 months postoperatively. Cognition and mental status were assessed preoperatively and at 36 months postoperatively. RESULTS: Targeting the STN (STN-DBS) yielded effects within 1 month (65% vs. 44%; p = 0.0076) and was superior at 1 year (70% vs. 51%; p = 0.0112) and 3 years (74% vs. 59%; p = 0.0138). For individual symptoms, STN-DBS was preferable for eye involvement (81% vs. 56%; p = 0.0255), whereas targeting the GPi (GPi-DBS) was better for axis symptoms, especially for the trunk (82% vs. 94%; p = 0.015). STN-DBS was also favorable for generalized dystonia at 36-month follow-up (p = 0.04) and required less electrical energy (p < 0.0001). Disability, quality of life, and depression and anxiety measures were also improved. Neither target influenced cognition. CONCLUSIONS: We demonstrated that the GPi and STN are safe and effective targets for isolated dystonia. The STN has the benefits of fast action and low battery consumption, and is superior for ocular dystonia and generalized dystonia, while the GPi is better for trunk involvement. These findings may offer guidance for future DBS target selection for different types of dystonia.


Subject(s)
Deep Brain Stimulation , Dystonia , Dystonic Disorders , Subthalamic Nucleus , Humans , Globus Pallidus , Dystonia/therapy , Follow-Up Studies , Quality of Life , Retrospective Studies , Treatment Outcome , Dystonic Disorders/therapy
8.
BMC Neurol ; 23(1): 365, 2023 Oct 10.
Article in English | MEDLINE | ID: mdl-37817104

ABSTRACT

BACKGROUND: Gills de la Tourette syndrome (TS) is a childhood-onset neurodevelopmental disorder manifested by motor and vocal tics. Kleefstra syndrome 1 (KS1), a rare genetic disorder, is caused by haploinsufficiency of the EHMT1 gene and is characterized by intellectual disability (ID), childhood hypotonia, and distinctive facial features. Tourette-like syndrome in KS1 has rarely been reported. CASE PRESENTATION: Here we describe a 7-year-old girl presenting involuntary motor and vocal tics, intellectual disability, childhood hypotonia, and dysmorphic craniofacial appearances, as well as comorbidities including attention deficit-hyperactivity disorder (ADHD), obsessive-compulsive disorder (OCD), and self-injurious behavior (SIB). The patient's CNV-seq testing revealed a de novo 320-kb deletion in the 9q34.3 region encompassing the EHMT1 gene. CONCLUSIONS: This is the first case reporting Tourette-like syndrome secondary to KS1 with a de novo microdeletion in the EHMT1 gene. Our case suggests TS with ID and facial anomalies indicate a genetic cause and broadens the phenotypic and genotypic spectrum of both TS and KS1.


Subject(s)
Heart Defects, Congenital , Intellectual Disability , Tics , Tourette Syndrome , Child , Female , Humans , Heart Defects, Congenital/complications , Heart Defects, Congenital/genetics , Histone-Lysine N-Methyltransferase/genetics , Intellectual Disability/complications , Intellectual Disability/genetics , Muscle Hypotonia , Tourette Syndrome/complications , Tourette Syndrome/genetics
9.
Stereotact Funct Neurosurg ; 101(6): 407-415, 2023.
Article in English | MEDLINE | ID: mdl-37926091

ABSTRACT

INTRODUCTION: A bilateral anterior capsulotomy effectively treats refractory obsessive-compulsive disorder (OCD). We investigated the geometry of lesions and disruption of white matter pathways within the anterior limb of the internal capsule (ALIC) in patients with different outcomes. METHODS: In this retrospective study, we analyzed data from 18 patients with refractory OCD who underwent capsulotomies. Patients were grouped into "responders" and "nonresponders" based on the percentage of decrease in the Yale-Brown Obsessive-Compulsive Scale (YBOCS) after surgery. We investigated neurobehavioral adverse effects and analyzed the overlap between lesions and the ventromedial prefrontal (vmPFC) and dorsolateral prefrontal (dlPFC) pathways. Probabilistic maps were constructed to investigate the relationship between lesion location and clinical outcomes. RESULTS: Of the 18 patients who underwent capsulotomies, 12 were responders (>35% improvement in YBOCS), and six were nonresponders. The vmPFC pathway was more involved than the dlPFC pathway in responders (p = 0.01), but no significant difference was observed in nonresponders (p = 0.10). The probabilistic voxel-wise efficacy map showed a relationship between ventral voxels within the ALIC with symptom improvement. Weight gains occurred in 11/18 (61%) patients and could be associated with medial voxels within the ALIC. CONCLUSION: The optimal outcome after capsulotomy in refractory OCD is linked to vmPFC disruption in the ALIC. Medial voxels within the ALIC could be associated with weight gains following capsulotomy.


Subject(s)
Neurosurgical Procedures , Obsessive-Compulsive Disorder , Humans , Retrospective Studies , Obsessive-Compulsive Disorder/diagnostic imaging , Obsessive-Compulsive Disorder/surgery , Internal Capsule/diagnostic imaging , Internal Capsule/surgery , Weight Gain , Treatment Outcome
10.
Neuromodulation ; 26(2): 414-423, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35570149

ABSTRACT

BACKGROUND: The subthalamic nucleus (STN) is an effective deep brain stimulation target for Parkinson disease (PD) and obsessive-compulsive disorder and has been implicated in reward and motivational processing. In this study, we assessed the STN and prefrontal oscillatory dynamics in the anticipation and receipt of reward and loss using a task commonly used in imaging. MATERIALS AND METHODS: We recorded intracranial left subthalamic local field potentials from deep brain stimulation electrodes and prefrontal scalp electroencephalography in 17 patients with PD while they performed a monetary incentive delay task. RESULTS: During the expectation phase, enhanced left STN delta-theta activity was observed in both reward and loss vs neutral anticipation, with greater STN delta-theta activity associated with greater motivation specifically to reward. In the consummatory outcome phase, greater left STN delta activity was associated with a rewarding vs neutral outcome, particularly with more ventral contacts along with greater delta-theta coherence with the prefrontal cortex. We highlight a differential activity in the left STN to loss vs reward anticipation, demonstrating a distinct STN high gamma activity. Patients with addiction-like behaviors show lower left STN delta-theta activity to loss vs neutral outcomes, emphasizing impaired sensitivity to negative outcomes. CONCLUSIONS: Together, our findings highlight a role for the left STN in reward and loss processing and a potential role in addictive behaviors. These findings emphasize the cognitive-limbic function of the STN and its role as a physiologic target for neuropsychiatric disorders.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Motivation , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy , Subthalamic Nucleus/physiology , Reward , Electroencephalography , Deep Brain Stimulation/methods
11.
Neuromodulation ; 26(2): 443-450, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36411150

ABSTRACT

BACKGROUND: Long-term levodopa use is frequently associated with fluctuations in motor response and can have a serious adverse effect on the quality of life (QoL) of patients with Parkinson's disease (PD). Deep brain stimulation (DBS) is effective in improving symptoms of diminished levodopa responsiveness. QoL improvements with DBS have been shown in several randomized control trials, mostly in Europe and the United States; however, there is a need for evidence from regions around the world. OBJECTIVE: The study aimed to demonstrate improvement in PD-related QoL in patients undergoing DBS in a prospective, multicenter study conducted in China. MATERIALS AND METHODS: To evaluate the effect of neurostimulation on the QoL of patients with PD, a Parkinson's Disease Questionnaire (PDQ-8); Unified Parkinson's Disease Rating Scale (UPDRS) I, II, III, and IV; and EuroQol 5-dimension questionnaire (EQ-5D) were administered at baseline and 12 months after DBS implantation. The mean change and percent change from baseline were reported for these clinical outcomes. RESULTS: Assessments were completed for 85 of the 89 implanted patients. DBS substantially improved patients' QoL and function. Implanted patients showed statistically significant mean improvement in PDQ-8 and UPDRS III (on stimulation/off medication). In the patients who completed the 12-month follow-up visit, the percent change was -22.2% for PDQ-8 and -51.6% for UPDRS III (on stimulation/off medication). Percent change from baseline to 12 months for UPDRS I, II, III, and IV and EQ-5D were -16.8%, -39.4%, -18.5%, and -50.0% and 22.7%, respectively. The overall rate of incidence for adverse events was low at 15.7%. Favorable outcomes were also reported based on patient opinion; 95.3% were satisfied with DBS results. CONCLUSIONS: These data were comparable to other studies around the world and showed alignment with the ability of DBS to meaningfully improve the QoL of patients with PD. More studies investigating DBS therapy for patients with PD are necessary to accurately characterize clinical outcomes for the global PD population. CLINICAL TRIAL REGISTRATION: The ClinicalTrials.gov registration number for this study is NCT02937688.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Humans , Parkinson Disease/complications , Levodopa/therapeutic use , Quality of Life , Prospective Studies , Deep Brain Stimulation/methods , Treatment Outcome
12.
Neuroimage ; 255: 119196, 2022 07 15.
Article in English | MEDLINE | ID: mdl-35413446

ABSTRACT

The subthalamic nucleus (STN) and globus pallidus internus (GPi) are the two most common and effective target brain areas for deep brain stimulation (DBS) treatment of advanced Parkinson's disease. Although DBS has been shown to restore functional neural circuits of this disorder, the changes in topological organization associated with active DBS of each target remain unknown. To investigate this, we acquired resting-state functional magnetic resonance imaging (fMRI) data from 34 medication-free patients with Parkinson's disease that had DBS electrodes implanted in either the subthalamic nucleus or internal globus pallidus (n = 17 each), in both ON and OFF DBS states. Sixteen age-matched healthy individuals were used as a control group. We evaluated the regional information processing capacity and transmission efficiency of brain networks with and without stimulation, and recorded how stimulation restructured the brain network topology of patients with Parkinson's disease. For both targets, the variation of local efficiency in motor brain regions was significantly correlated (p < 0.05) with improvement rate of the Uniform Parkinson's Disease Rating Scale-III scores, with comparable improvements in motor function for the two targets. However, non-motor brain regions showed changes in topological organization during active stimulation that were target-specific. Namely, targeting the STN decreased the information transmission of association, limbic and paralimbic regions, including the inferior frontal gyrus angle, insula, temporal pole, superior occipital gyri, and posterior cingulate, as evidenced by the simultaneous decrease of clustering coefficient and local efficiency. GPi-DBS had a similar effect on the caudate and lenticular nuclei, but enhanced information transmission in the cingulate gyrus. These effects were not present in the DBS-OFF state for GPi-DBS, but persisted for STN-DBS. Our results demonstrate that DBS to the STN and GPi induce distinct brain network topology reconstruction patterns, providing innovative theoretical evidence for deciphering the mechanism through which DBS affects disparate targets in the human brain.


Subject(s)
Deep Brain Stimulation , Parkinson Disease , Subthalamic Nucleus , Deep Brain Stimulation/methods , Globus Pallidus , Humans , Magnetic Resonance Imaging , Parkinson Disease/diagnostic imaging , Parkinson Disease/therapy
13.
Ann Neurol ; 90(4): 670-682, 2021 10.
Article in English | MEDLINE | ID: mdl-34390280

ABSTRACT

OBJECTIVE: The subthalamic nucleus (STN) and internal globus pallidus (GPi) are the most effective targets in deep brain stimulation (DBS) for Parkinson's disease (PD). However, the common and specific effects on brain connectivity of stimulating the 2 nuclei remain unclear. METHODS: Patients with PD receiving STN-DBS (n = 27, 6 women, mean age 64.8 years) or GPi-DBS (n = 28, 13 women, mean age 64.6 years) were recruited for resting-state functional magnetic resonance imaging to assess the effects of STN-DBS and GPi-DBS on brain functional dynamics. RESULTS: The functional connectivity both between the somatosensory-motor cortices and thalamus, and between the somatosensory-motor cortices and cerebellum decreased in the DBS-on state compared with the off state (p < 0.05). The changes in thalamocortical connectivity correlated with DBS-induced motor improvement (p < 0.05) and were negatively correlated with the normalized intersection volume of tissues activated at both DBS targets (p < 0.05). STN-DBS modulated functional connectivity among a wider range of brain areas than GPi-DBS (p = 0.009). Notably, only STN-DBS affected connectivity between the postcentral gyrus and cerebellar vermis (p < 0.001) and between the somatomotor and visual networks (p < 0.001). INTERPRETATION: Our findings highlight common alterations in the motor pathway and its relationship with the motor improvement induced by both STN- and GPi-DBS. The effects on cortico-cerebellar and somatomotor-visual functional connectivity differed between groups, suggesting differentiated neural modulation of the 2 target sites. Our results provide mechanistic insight and yield the potential to refine target selection strategies for focal brain stimulation in PD. ANN NEUROL 2021;90:670-682.


Subject(s)
Deep Brain Stimulation , Globus Pallidus/physiopathology , Parkinson Disease/physiopathology , Parkinson Disease/therapy , Subthalamic Nucleus/physiopathology , Aged , Cerebellum/physiopathology , Deep Brain Stimulation/methods , Female , Globus Pallidus/surgery , Humans , Magnetic Resonance Imaging/methods , Male , Middle Aged , Subthalamic Nucleus/surgery , Thalamus/physiopathology
14.
NMR Biomed ; 35(4): e4231, 2022 04.
Article in English | MEDLINE | ID: mdl-31856431

ABSTRACT

Real-time interventional MRI (I-MRI) could help to visualize the position of the interventional feature, thus improving patient outcomes in MR-guided neurosurgery. In particular, in deep brain stimulation, real-time visualization of the intervention procedure using I-MRI could improve the accuracy of the electrode placement. However, the requirements of a high undersampling rate and fast reconstruction speed for real-time imaging pose a great challenge for reconstruction of the interventional images. Based on recent advances in deep learning (DL), we proposed a feature-based convolutional neural network (FbCNN) for reconstructing interventional images from golden-angle radially sampled data. The method was composed of two stages: (a) reconstruction of the interventional feature and (b) feature refinement and postprocessing. With only five radially sampled spokes, the interventional feature was reconstructed with a cascade CNN. The final interventional image was constructed with a refined feature and a fully sampled reference image. With a comparison of traditional reconstruction techniques and recent DL-based methods, it was shown that only FbCNN could reconstruct the interventional feature and the final interventional image. With a reconstruction time of ~ 500 ms per frame and an acceleration factor of ~ 80, it was demonstrated that FbCNN had the potential for application in real-time I-MRI.


Subject(s)
Magnetic Resonance Imaging, Interventional , Humans , Magnetic Resonance Imaging/methods , Neural Networks, Computer
15.
Mol Psychiatry ; 26(1): 60-65, 2021 01.
Article in English | MEDLINE | ID: mdl-33144712

ABSTRACT

A consensus has yet to emerge whether deep brain stimulation (DBS) for treatment-refractory obsessive-compulsive disorder (OCD) can be considered an established therapy. In 2014, the World Society for Stereotactic and Functional Neurosurgery (WSSFN) published consensus guidelines stating that a therapy becomes established when "at least two blinded randomized controlled clinical trials from two different groups of researchers are published, both reporting an acceptable risk-benefit ratio, at least comparable with other existing therapies. The clinical trials should be on the same brain area for the same psychiatric indication." The authors have now compiled the available evidence to make a clear statement on whether DBS for OCD is established therapy. Two blinded randomized controlled trials have been published, one with level I evidence (Yale-Brown Obsessive Compulsive Scale (Y-BOCS) score improved 37% during stimulation on), the other with level II evidence (25% improvement). A clinical cohort study (N = 70) showed 40% Y-BOCS score improvement during DBS, and a prospective international multi-center study 42% improvement (N = 30). The WSSFN states that electrical stimulation for otherwise treatment refractory OCD using a multipolar electrode implanted in the ventral anterior capsule region (including bed nucleus of stria terminalis and nucleus accumbens) remains investigational. It represents an emerging, but not yet established therapy. A multidisciplinary team involving psychiatrists and neurosurgeons is a prerequisite for such therapy, and the future of surgical treatment of psychiatric patients remains in the realm of the psychiatrist.


Subject(s)
Deep Brain Stimulation , Obsessive-Compulsive Disorder/therapy , Humans , Multicenter Studies as Topic , Obsessive-Compulsive Disorder/psychology , Obsessive-Compulsive Disorder/surgery , Randomized Controlled Trials as Topic , Treatment Outcome
16.
Eur Arch Psychiatry Clin Neurosci ; 272(8): 1595-1602, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35091796

ABSTRACT

Substance use disorder (SUD) is characterized by continued drug use despite adverse consequences. Methcathinone is a new type of psychoactive substance that is associated with high excitement and impulsive behaviors. However, it is unclear if individuals with methcathinone use disorders (MCUD) are with impaired decision-making ability. We analyzed the task performance in 45 male MCUD subjects and 35 male matched healthy controls (HC) with intertemporal decision-making task. Constant sensitivity discounting model was used to estimate potential changes in both discounting rate and time sensitivity. The results showed that MCUD individuals exhibited a higher delay discounting rate (p = 0.003, Cohen's d = 0.683) and reduced sensitivity to time (p < 0.001, Cohen's d = 1.662). The delay discounting rate was correlated to the first age for drug use (r = - 0.41, p = 0.004), and the time sensitivity was negatively correlated with the duration of abstinence (r = - 0.31, p = 0.036). We conclude that MCUD individuals are with impaired decision-making ability and time perception disturbances.


Subject(s)
Delay Discounting , Substance-Related Disorders , Humans , Male , Impulsive Behavior , Task Performance and Analysis , Reward , Decision Making
17.
Neuroimage ; 233: 117923, 2021 06.
Article in English | MEDLINE | ID: mdl-33662572

ABSTRACT

BACKGROUND: Intracranial electroencephalography (iEEG) recordings are used for clinical evaluation prior to surgical resection of the focus of epileptic seizures and also provide a window into normal brain function. A major difficulty with interpreting iEEG results at the group level is inconsistent placement of electrodes between subjects making it difficult to select contacts that correspond to the same functional areas. Recent work using time delay embedded hidden Markov model (HMM) applied to magnetoencephalography (MEG) resting data revealed a distinct set of brain states with each state engaging a specific set of cortical regions. Here we use a rare group dataset with simultaneously acquired resting iEEG and MEG to test whether there is correspondence between HMM states and iEEG power changes that would allow classifying iEEG contacts into functional clusters. METHODS: Simultaneous MEG-iEEG recordings were performed at rest on 11 patients with epilepsy whose intracranial electrodes were implanted for pre-surgical evaluation. Pre-processed MEG sensor data was projected to source space. Time delay embedded HMM was then applied to MEG time series. At the same time, iEEG time series were analyzed with time-frequency decomposition to obtain spectral power changes with time. To relate MEG and iEEG results, correlations were computed between HMM probability time courses of state activation and iEEG power time course from the mid contact pair for each electrode in equally spaced frequency bins and presented as correlation spectra for the respective states and iEEG channels. Association of iEEG electrodes with HMM states based on significant correlations was compared to that based on the distance to peaks in subject-specific state topographies. RESULTS: Five HMM states were inferred from MEG. Two of them corresponded to the left and the right temporal activations and had a spectral signature primarily in the theta/alpha frequency band. All the electrodes had significant correlations with at least one of the states (p < 0.05 uncorrected) and for 27/50 electrodes these survived within-subject FDR correction (q < 0.05). These correlations peaked in the theta/alpha band. There was a highly significant dependence between the association of states and electrodes based on functional correlations and that based on spatial proximity (p = 5.6e-6,χ2 test for independence). Despite the potentially atypical functional anatomy and physiological abnormalities related to epilepsy, HMM model estimated from the patient group was very similar to that estimated from healthy subjects. CONCLUSION: Epilepsy does not preclude HMM analysis of interictal data. The resulting group functional states are highly similar to those reported for healthy controls. Power changes recorded with iEEG correlate with HMM state time courses in the alpha-theta band and the presence of this correlation can be related to the spatial location of electrode contacts close to the individual peaks of the corresponding state topographies. Thus, the hypothesized relation between iEEG contacts and HMM states exists and HMM could be further explored as a method for identifying comparable iEEG channels across subjects for the purposes of group analysis.


Subject(s)
Brain/physiology , Data Analysis , Electrocorticography/methods , Epilepsy/diagnosis , Epilepsy/physiopathology , Magnetoencephalography/methods , Adolescent , Adult , Female , Humans , Male , Markov Chains , Middle Aged , Young Adult
18.
Article in English | MEDLINE | ID: mdl-33461976

ABSTRACT

OBJECTIVES: Surgical procedures targeting the anterior limb of the internal capsule (aLIC) can be effective in patients with selected treatment-refractory obsessive-compulsive disorder (OCD). The aLIC consists of white-matter tracts connecting cortical and subcortical structures and show a topographical organisation. Here we assess how aLIC streamlines are affected in OCD compared with healthy controls (HCs) and which streamlines are related with post-capsulotomy improvement. METHODS: Diffusion-weighted MRI was used to compare white-matter microstructure via the aLIC between patients with OCD (n=100, 40 women, mean of age 31.8 years) and HCs (n=88, 39 women, mean of age 29.6 years). For each individual, the fractional anisotropy (FA) and streamline counts were calculated for each white-matter fibre bundle connecting a functionally defined prefrontal and subcortical region. Correlations between tractography measures and pre-capsulotomy and post-capsulotomy clinical outcomes (in obsessive-compulsive, anxiety and depression scores 6 months after surgery) were assessed in 41 patients with OCD. RESULTS: Hierarchical clustering dendrograms show an aLIC organisation clustering lateral and dissociating ventral and dorsal prefrontal-thalamic streamlines, findings highly relevant to surgical targeting. Compared with HCs, patients with OCD had lower aLIC FA across multiple prefrontal cortical-subcortical regions (p<0.0073, false discovery rate-adjusted). Greater streamline counts of the dorsolateral prefrontal-thalamic tracts in patients with OCD predicted greater post-capsulotomy obsessive-compulsive improvement (p=0.016). In contrast, greater counts of the dorsal cingulate-thalamic streamlines predicted surgical outcomes mediated by depressive and anxiety improvements. CONCLUSIONS: These findings shed light on the critical role of the aLIC in OCD and may potentially contribute towards precision targeting to optimise outcomes in OCD.

19.
Stereotact Funct Neurosurg ; 99(6): 491-495, 2021.
Article in English | MEDLINE | ID: mdl-34218229

ABSTRACT

Anorexia nervosa (AN) is a highly disabling mental disorder with high rates of morbidity and mortality. Few psychological treatments and pharmacotherapy are proven to be effective for adult AN. Two invasive stereotactic neurosurgical interventions, deep brain stimulation (DBS) and anterior capsulotomy, are now commonly used as investigational approaches for the treatment of AN. Here, we report the long-term safety and efficacy of rescue bilateral anterior capsulotomy after the failure of bilateral nucleus accumbens (NAcc)-DBS in an 18-year-old female patient with life-threatening and treatment-resistant restricting subtype AN. Improvements in the neuropsychiatric assessment were not documented 6 months after the NAcc-DBS. Rescue bilateral anterior capsulotomy was proposed and performed, resulting in a long-lasting restoration of body weight and a significant and sustained remission in AN core symptoms. The DBS pulse generator was exhausted 2 years after capsulotomy and removed 3 years postoperatively. No relapse was reported at the last follow-up (7 years after the first intervention). From this case, we suggest that capsulotomy could be a rescue treatment for patients with treatment-resistant AN after NAcc-DBS failure. Further well-controlled studies are warranted to validate our findings.


Subject(s)
Anorexia Nervosa , Deep Brain Stimulation , Adolescent , Adult , Anorexia Nervosa/psychology , Anorexia Nervosa/surgery , Deep Brain Stimulation/methods , Female , Humans , Neurosurgical Procedures/methods , Nucleus Accumbens/surgery
20.
Stereotact Funct Neurosurg ; 99(2): 140-149, 2021.
Article in English | MEDLINE | ID: mdl-33207348

ABSTRACT

INTRODUCTION: Globus pallidus internus (GPi) deep brain stimulation (DBS) combined with anterior capsulotomy offers a promising treatment option for severe medication-refractory cases of Tourette's syndrome (TS) with psychiatric comorbidities. Several patients treated with this combined surgery experienced sustained relief after discontinuation of stimulation over the course of treatment. METHODS: Retrospectively, the medical records and clinical outcomes were reviewed of 8 patients (6 men; 2 women with mean age of 20.3 years) who had undergone bilateral GPi-DBS combined with anterior capsulotomy for medically intractable TS and psychiatric comorbidities. All patients had experienced an accidental interruption or intentional withdrawal of pallidal stimulation during treatment. RESULTS: The widespread clinical benefits achieved during the combined treatment were fully maintained after intentional or accidental DBS discontinuation. The improvement in overall tic symptoms achieved was on average 78% at the follow-up or close to the DBS discontinuation, while it was 83% at last follow-up (LFU). At LFU, most patients had functionally recovered; exhibited only mild tics; displayed minor or no obsessive-compulsive disorder symptoms, anxiety, or depression; and experienced a much better quality of life. CONCLUSION: Bilateral GPi-DBS combined with anterior capsulotomy appears to result in marked and sustained improvements in TS symptoms and psychiatric comorbidities, which are fully maintained over time, even without pallidal stimulation.


Subject(s)
Deep Brain Stimulation , Tourette Syndrome , Adult , Female , Globus Pallidus , Humans , Male , Quality of Life , Retrospective Studies , Tourette Syndrome/surgery , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL