Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
J Colloid Interface Sci ; 669: 477-485, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38723536

ABSTRACT

Solar-light photosynthesis of ammonia form N2 reduction in ultrapure water over the artificial photocatalysts is attractive but still challenging compared with Haber-Bosch process. In this work, ultrathin Fe-Ta2O5-x nanobelts were fabricated via the controllable solvothermal process for ammonia photosynthesis. The formed oxygen vacancies and Fe doping narrowed their bandgap energies and promoted the carriers' separation and transfer for Fe-Ta2O5-x nanobelts. In addition, Fe doping also resulted in the reduced working functions of the samples, indicating a weaker electron binding restriction and stronger separation and transfer of photo-induced carriers. The experimental results showed that Fe-Ta2O5-x nanobelts showed remarkably enhanced photocatalytic ammonia production performance under simulated sunlight irradiation, and the relevant ammonia production rate reached approximately 3030.86 µM g-1 h-1, which was 9.63 times of pristine Ta2O5-x and 491.0 times of commercial Ta2O5, and a relatively stable photocatalytic ammonia production performance under simulated sunlight irradiation for Fe-Ta2O5-x nanobelts. Meanwhile, it was also found that Fe doping has great influences on the photocatalytic performance under visible light and simulated sunlight irradiation, mainly because of their suitable bandgap energies and enhanced solar-light harvesting capacity. Current work indicates the great potentials of ultrathin tantalum-based functional materials for high-efficiency ammonia photosynthesis.

2.
Chemosphere ; 350: 141020, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38141668

ABSTRACT

Step-scheme (S-scheme) AgI decorated Ta2O5-x heterojunctions have been designed and synthesized via a combination of solvothermal and chemical deposition methods for enhanced visible-light harvesting and high-performance photocatalysis. The AgI nanoparticles showed great influences on the visible-light absorption and charge separation between AgI and Ta2O5-x microspheres. The experimental results indicated that the as-prepare AgI/Ta2O5-x composites achieved enhanced photocatalytic performance towards tetracycline degradation under visible light, and the AgI/Ta2O5-x-11 sample displayed the highest photocatalytic performance and the maximum rate constant of approximately 0.09483 min-1, which was 7.22 times that of Ta2O5-x microspheres and 2.56 times that of AgI, respectively. The highly enhanced photocatalytic performance was mainly attributed to the construction of S-scheme heterostructure and formation of oxygen vacancies in Ta2O5-x microspheres. In addition, the trapping experimental and DMPO spin-trapping ESR spectra confirmed the ⸱O2- and ⸱OH species as the main radicals during tetracycline degradation. Current work indicates an S-scheme tantalum-based composites for high-performance environmental photocatalysis.


Subject(s)
Environmental Pollutants , Tantalum , Photolysis , Anti-Bacterial Agents , Oxygen , Tetracycline
3.
Dis Markers ; 2022: 5791471, 2022.
Article in English | MEDLINE | ID: mdl-35280441

ABSTRACT

Hepatocellular carcinoma (HCC) is one of the most common tumors worldwide, with high incidence and mortality rate. There is an urgent need to identify effective diagnostic and prognostic biomarkers for HCC. Members of the acidic leucine-rich nucleophosphoprotein 32 (ANP32) family, which mainly includes ANP32A, ANP32B, and ANP32E, are abnormally expressed and have prognostic value in certain cancers. However, the diagnostic, prognostic, and therapeutic value of ANP32 family members in HCC has not yet been fully studied. In this study, we identified the diagnostic and prognostic value of ANP32 family members in HCC. Transcriptome data from public databases, such as the Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases, suggested that ANP32A, ANP32B, and ANP32E were upregulated in HCC tissues, and high expression of ANP32 family members was associated with advanced pathologic stage and histologic grade. Our immunohistochemistry and western blot results further verified the differential expression of ANP32 family members. ANP32A, ANP32B, and ANP32E had an outstanding diagnostic potential. Survival analysis of HCC patients in TCGA databases demonstrated that ANP32A, ANP32B, and ANP32E were associated with poor overall survival (OS) and disease-specific survival (DSS). Univariate and multivariate Cox analyses suggested the capability of ANP32B and ANP32E to independently predict the OS and DSS of HCC patients. Gene set enrichment analysis (GSEA) showed that ANP32 family members were associated with immune response, epidermal cell differentiation, and stem cell proliferation. Expression of ANP32 family members was associated with immune cell infiltration and immune status in the tumor microenvironment of HCC, and patients with high ANP32 family expression had poor sensitivity to immunotherapy. Finally, we identified potential chemotherapy drugs for HCC patients with high ANP32 family expression by CellMiner database. This study suggested the diagnostic, prognostic, and therapeutic roles of the ANP32 family in HCC patients, providing potential therapeutic targets for HCC.


Subject(s)
Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/immunology , Liver Neoplasms/diagnosis , Liver Neoplasms/drug therapy , Liver Neoplasms/immunology , Nuclear Proteins/physiology , RNA-Binding Proteins/physiology , Biomarkers, Tumor , Carcinoma, Hepatocellular/mortality , Female , Humans , Liver Neoplasms/mortality , Male , Middle Aged , Prognosis , Survival Rate
SELECTION OF CITATIONS
SEARCH DETAIL