Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 115
Filter
1.
Biochem Cell Biol ; 102(2): 159-168, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-37339521

ABSTRACT

Glioma is still an incurable disease with high invasiveness. Heat shock 70 kDa protein 4 (HSPA4) is a member of the HSP110 family, and is associated with the development and progression of various cancers. In the current study, we assessed the expression of HSPA4 in clinical samples, and found that HSPA4 was up-regulated in glioma tissues and correlated with tumor recurrence and grade. Survival analyses demonstrated that glioma patients with high HSPA4 expression had lower overall survival and disease-free survival times. In vitro knockdown of HSPA4 inhibited glioma cell proliferation, mediated cell cycle arrest at G2 phase and apoptosis, and reduced the migration ability. In vivo, the growth of HSPA4-knockdown xenografts was markedly suppressed compared to the tumors formed by HSPA4-positive control cells. Additionally, Gene set enrichment analyses disclosed that HSPA4 was associated with the PI3K/Akt signaling pathway. The regulatory effect of the AKT activator SC79 on cell proliferation and apoptosis was suppressed by HSPA4 knockdown, indicating that HSPA4 is capable of promoting glioma development. In summary, these data showed that HSPA4 is likely to play a pivotal role in the progression of glioma, and consequently may be a promising therapeutic target for glioma therapy.


Subject(s)
Glioma , Proto-Oncogene Proteins c-akt , Humans , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction , Glioma/genetics , Glioma/pathology , Cell Cycle Checkpoints , Cell Proliferation , Cell Line, Tumor , Apoptosis , Cell Movement/genetics , Gene Expression Regulation, Neoplastic , HSP110 Heat-Shock Proteins/genetics , HSP110 Heat-Shock Proteins/metabolism
2.
J Transl Med ; 22(1): 468, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760813

ABSTRACT

BACKGROUND: Gastric intestinal metaplasia (GIM) is an essential precancerous lesion. Although the reversal of GIM is challenging, it potentially brings a state-to-art strategy for gastric cancer therapeutics (GC). The lack of the appropriate in vitro model limits studies of GIM pathogenesis, which is the issue this work aims to address for further studies. METHOD: The air-liquid interface (ALI) model was adopted for the long-term culture of GIM cells in the present work. This study conducted Immunofluorescence (IF), quantitative real-time polymerase chain reaction (qRT-PCR), transcriptomic sequencing, and mucoproteomic sequencing (MS) techniques to identify the pathways for differential expressed genes (DEGs) enrichment among different groups, furthermore, to verify novel biomarkers of GIM cells. RESULT: Our study suggests that GIM-ALI model is analog to the innate GIM cells, which thus can be used for mucus collection and drug screening. We found genes MUC17, CDA, TRIM15, TBX3, FLVCR2, ONECUT2, ACY3, NMUR2, and MAL2 were highly expressed in GIM cells, while GLDN, SLC5A5, MAL, and MALAT1 showed down-regulated, which can be used as potential biomarkers for GIM cells. In parallel, these genes that highly expressed in GIM samples were mainly involved in cancer-related pathways, such as the MAPK signal pathway and oxidative phosphorylation signal pathway. CONCLUSION: The ALI model is validated for the first time for the in vitro study of GIM. GIM-ALI model is a novel in vitro model that can mimic the tissue micro-environment in GIM patients and further provide an avenue for studying the characteristics of GIM mucus. Our study identified new markers of GIM as well as pathways associated with GIM, which provides outstanding insight for exploring GIM pathogenesis and potentially other related conditions.


Subject(s)
Metaplasia , Humans , Air , Models, Biological , Gastric Mucosa/pathology , Gastric Mucosa/metabolism , Stomach/pathology , Organoids/pathology , Stomach Neoplasms/pathology , Stomach Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Transcriptome/genetics , Intestines/pathology
3.
Mol Psychiatry ; 28(3): 1219-1231, 2023 03.
Article in English | MEDLINE | ID: mdl-36604604

ABSTRACT

ATP9A, a lipid flippase of the class II P4-ATPases, is involved in cellular vesicle trafficking. Its homozygous variants are linked to neurodevelopmental disorders in humans. However, its physiological function, the underlying mechanism as well as its pathophysiological relevance in humans and animals are still largely unknown. Here, we report two independent families in which the nonsense mutations c.433C>T/c.658C>T/c.983G>A (p. Arg145*/p. Arg220*/p. Trp328*) in ATP9A (NM_006045.3) cause autosomal recessive hypotonia, intellectual disability (ID) and attention deficit hyperactivity disorder (ADHD). Atp9a null mice show decreased muscle strength, memory deficits and hyperkinetic movement disorder, recapitulating the symptoms observed in patients. Abnormal neurite morphology and impaired synaptic transmission are found in the primary motor cortex and hippocampus of the Atp9a null mice. ATP9A is also required for maintaining neuronal neurite morphology and the viability of neural cells in vitro. It mainly localizes to endosomes and plays a pivotal role in endosomal recycling pathway by modulating small GTPase RAB5 and RAB11 activation. However, ATP9A pathogenic mutants have aberrant subcellular localization and cause abnormal endosomal recycling. These findings provide strong evidence that ATP9A deficiency leads to neurodevelopmental disorders and synaptic dysfunctions in both humans and mice, and establishes novel regulatory roles for ATP9A in RAB5 and RAB11 activity-dependent endosomal recycling pathway and neurological diseases.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Animals , Humans , Mice , Attention Deficit Disorder with Hyperactivity/metabolism , Endosomes/metabolism , Protein Transport , rab5 GTP-Binding Proteins/genetics , rab5 GTP-Binding Proteins/metabolism
4.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Article in English | MEDLINE | ID: mdl-33850017

ABSTRACT

Epilepsy, a common neurological disorder, is featured with recurrent seizures. Its underlying pathological mechanisms remain elusive. Here, we provide evidence for loss of neogenin (NEO1), a coreceptor for multiple ligands, including netrins and bone morphological proteins, in the development of epilepsy. NEO1 is reduced in hippocampi from patients with epilepsy based on transcriptome and proteomic analyses. Neo1 knocking out (KO) in mouse brains displays elevated epileptiform spikes and seizure susceptibility. These phenotypes were undetectable in mice, with selectively depleted NEO1 in excitatory (NeuroD6-Cre+) or inhibitory (parvalbumin+) neurons, but present in mice with specific hippocampal astrocytic Neo1 KO. Additionally, neurons in hippocampal dentate gyrus, a vulnerable region in epilepsy, in mice with astrocyte-specific Neo1 KO show reductions in inhibitory synaptic vesicles and the frequency of miniature inhibitory postsynaptic current(mIPSC), but increase of the duration of miniature excitatory postsynaptic current and tonic NMDA receptor currents, suggesting impairments in both GABAergic transmission and extracellular glutamate clearance. Further proteomic and cell biological analyses of cell-surface proteins identified GLAST, a glutamate-aspartate transporter that is marked reduced in Neo1 KO astrocytes and the hippocampus. NEO1 interacts with GLAST and promotes GLAST surface distribution in astrocytes. Expressing NEO1 or GLAST in Neo1 KO astrocytes in the hippocampus abolishes the epileptic phenotype. Taken together, these results uncover an unrecognized pathway of NEO1-GLAST in hippocampal GFAP+ astrocytes, which is critical for GLAST surface distribution and function, and GABAergic transmission, unveiling NEO1 as a valuable therapeutic target to protect the brain from epilepsy.


Subject(s)
Astrocytes/metabolism , Hippocampus/metabolism , Membrane Proteins/metabolism , Animals , Astrocytes/physiology , Biological Transport/physiology , Epilepsy/physiopathology , Epilepsy/prevention & control , Excitatory Amino Acid Transporter 1/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Female , Glutamic Acid/metabolism , Male , Membrane Proteins/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Seizures/metabolism , Signal Transduction , Synaptic Potentials/physiology
5.
J Neurosci ; 42(11): 2356-2370, 2022 03 16.
Article in English | MEDLINE | ID: mdl-35105676

ABSTRACT

Anxiety disorders are debilitating psychiatric diseases that affect ∼16% of the world's population. Although it has been proposed that the central nucleus of the amygdala (CeA) plays a role in anxiety, the molecular and circuit mechanisms through which CeA neurons modulate anxiety-related behaviors are largely uncharacterized. Soluble epoxide hydrolase (sEH) is a key enzyme in the metabolism of polyunsaturated fatty acids (PUFAs), and has been shown to play a role in psychiatric disorders. Here, we reported that sEH was enriched in neurons in the CeA and regulated anxiety-related behaviors in adult male mice. Deletion of sEH in CeA neurons but not astrocytes induced anxiety-like behaviors. Mechanistic studies indicated that sEH was required for maintaining the the excitability of sEH positive neurons (sEHCeA neurons) in the CeA. Using chemogenetic manipulations, we found that sEHCeA neurons bidirectionally regulated anxiety-related behaviors. Notably, we identified that sEHCeA neurons directly projected to the bed nucleus of the stria terminalis (BNST; sEHCeA-BNST). Optogenetic activation and inhibition of the sEHCeA-BNST pathway produced anxiolytic and anxiogenic effects, respectively. In summary, our studies reveal a set of molecular and circuit mechanisms of sEHCeA neurons underlying anxiety.SIGNIFICANCE STATEMENT Soluble epoxide hydrolase (sEH), a key enzyme that catalyzes the degradation of EETs, is shown to play a key role in mood disorders. It is well known that sEH is mostly localized in astrocytes in the prefrontal cortex and regulates depressive-like behaviors. Notably, sEH is also expressed in central nucleus of the amygdala (CeA) neurons. While the CeA has been studied for its role in the regulation of anxiety, the molecular and circuit mechanism is quite complex. In the present study, we explored a previously unknown cellular and circuitry mechanism that guides sEHCeA neurons response to anxiety. Our findings reveal a critical role of sEH in the CeA, sEHCeA neurons and CeA-bed nucleus of the stria terminalis (BNST) pathway in regulation of anxiety-related behaviors.


Subject(s)
Central Amygdaloid Nucleus , Septal Nuclei , Amygdala/metabolism , Animals , Anxiety/psychology , Central Amygdaloid Nucleus/metabolism , Cerebellar Nuclei/metabolism , Epoxide Hydrolases , Humans , Male , Mice , Septal Nuclei/physiology
6.
Cardiovasc Diabetol ; 22(1): 283, 2023 10 21.
Article in English | MEDLINE | ID: mdl-37865782

ABSTRACT

BACKGROUND: Early diagnosis and treatment effectiveness of early-onset coronary artery disease (EOCAD) are crucial, and non-invasive predictive biomarkers are needed for young adults. We aimed to evaluate the usefulness of the triglyceride-glucose (TyG) index, a novel marker of insulin resistance, in identifying young CAD patients and predicting their risk of developing target lesion failure (TLF). METHODS: We recruited EOCAD patients (luminal narrowing ≥ 70%) and controls free from CAD (luminal narrowing < 30%), both aged 45 years or younger, from 38 hospitals in China between 2017 and 2020. EOCAD patients who underwent successful percutaneous coronary intervention were followed for incident TLF. TyG index was defined as Ln [fasting triglyceride (mg/dL) × fasting blood glucose (mg/dL)/2]. We used logistic regression and Cox proportional hazards modeling to evaluate the association of TyG index with prevalent EOCAD and incident TLF, respectively. The discriminatory ability of TyG index was assessed by the area under the receiver-operating characteristic curve (AUC). RESULTS: Among the included 1513 EOCAD patients (39.6 ± 4.4 years, 95.4% male) and 1513 age-matched controls (39.0 ± 4.4 years, 46.4% male), TyG index was positively associated with the prevalence of EOCAD (adjusted odds ratio: 1.40, 95% confidence interval [CI] 1.23-1.60, per standard deviation [SD] increase in TyG index). The addition of TyG index to an empirical risk model provided an improvement in diagnostic ability for EOCAD, with a net reclassification improvement of 0.10 (95% CI 0.03-0.17, p = 0.005). During a medium of 33 month (IQR: 31-34 months) follow-up, 43 (3.3%) patients experienced TLF. Multivariate Cox regression model revealed that TyG index was an independent risk factor for TLF (adjusted hazard ratio [HR]: 2.410, 95% CI 1.07-5.42 comparing the top to bottom TyG index tertile groups; HR: 1.30, 95% CI 1.01-1.73, per SD increase in TyG index). Compared with a model of conventional risk factors alone, the addition of the TyG index modestly improved the AUC (0.722-0.734, p = 0.04) to predict TLF. CONCLUSIONS: TyG index is positively associated with prevalent EOCAD and incident TLF. TyG index appeared to be a valuable component of future efforts to improve CAD risk stratification and TLF outcome prediction among young adults.


Subject(s)
Atherosclerosis , Coronary Artery Disease , Humans , Male , Young Adult , Female , Coronary Artery Disease/diagnostic imaging , Coronary Artery Disease/epidemiology , Coronary Artery Disease/therapy , Glucose , Blood Glucose , Triglycerides , Risk Factors , Biomarkers , Risk Assessment
7.
J Theor Biol ; 526: 110798, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34097915

ABSTRACT

African swine fever virus (ASFV) leads to a highly contagious, lethal and economically devastating disease among pigs. Since no effective treatment for the disease, it is crucial to investigate its transmission mechanism and control strategies in large-scale pig farms. We first established a toy model to explore ASFV spread in one pig unit. Then a switching patch model was developed to capture its spread from one initial epidemic pig house consecutively to others, even the whole farm. Assessing innocent culling rates of three large-scale epidemic pig farms in Jiangsu Province showed that it is unnecessary to slaughter all pigs in the farms compulsively. Then we explored how the disinfection and fixation of employees impact ASFV spread in the farms. To control ASFV, we can block or slow down its spreading by improving the efficiency of disinfection and decreasing employee population to some extend. We can also shrink potential areas to be infected by properly improving the matching refinement degree among employees and houses. Some essential requirements for large-scale pig farms are presented to reduce their ASFV spreading risk, which can be helpful for animal health authorities in establishing regulation to standardize large-scale pig farms.


Subject(s)
African Swine Fever Virus , African Swine Fever , Epidemics , African Swine Fever/epidemiology , African Swine Fever/prevention & control , Animals , Disease Outbreaks/prevention & control , Disease Outbreaks/veterinary , Farms , Swine
8.
Vet Res ; 52(1): 85, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34116710

ABSTRACT

Trichinellosis, which is caused by nematodes of the genus Trichinella, is one of the most important zoonotic parasite diseases in the world. A rapid and sensitive immunochromatographic strip (ICS) based on Eu (III) nanoparticles (EuNPs) was developed for the detection of Trichinella spiralis (T. spiralis) infection in pigs. T. spiralis muscle larvae excretory secretory or preadult worm excretory secretory (ML-ES or PAW-ES) antigens were conjugated with EuNPs probes to capture T. spiralis-specific antibodies in pig sera, after which the complex bound to mouse anti-pig IgG deposited on the test line (T-line), producing a fluorescent signal. In the pigs infected with 100, 1000 and 10 000 ML, seroconversion was first detectable for the EuNPs-ML-ES ICS at 30, 25 and 21 days post-infection (dpi) and for the EuNPs-PAW-ES ICS at 25, 21 and 17 dpi. These results show that EuNPs-PAW-ES ICS detects anti-Trichinella IgG in pigs 4-5 days earlier that test using ML-ES antigens. Our ICS have no cross reaction with other parasite infection sera. Furthermore, the detection process could be completed in 10 min. This study indicated that our ICS can be used for the detection of the circulating antibodies in early T. spiralis infection and provide a novel method for on-site detection of T. spiralis infection in pigs.


Subject(s)
Antibodies, Helminth/analysis , Fluorescent Dyes/chemistry , Immunoassay/veterinary , Immunoglobulin G/analysis , Swine Diseases/diagnosis , Trichinella spiralis/isolation & purification , Trichinellosis/veterinary , Animals , Immunoassay/methods , Sus scrofa , Swine , Swine Diseases/parasitology , Trichinellosis/diagnosis , Trichinellosis/parasitology
9.
Proc Natl Acad Sci U S A ; 115(51): 13105-13110, 2018 12 18.
Article in English | MEDLINE | ID: mdl-30498032

ABSTRACT

Neurotrophic factor NRG1 and its receptor ErbB4 play a role in GABAergic circuit assembly during development. ErbB4 null mice possess fewer interneurons, have decreased GABA release, and show impaired behavior in various paradigms. In addition, NRG1 and ErbB4 have also been implicated in regulating GABAergic transmission and plasticity in matured brains. However, current ErbB4 mutant strains are unable to determine whether phenotypes in adult mutant mice result from abnormal neural development. This important question, a glaring gap in understanding NRG1-ErbB4 function, was addressed by using two strains of mice with temporal control of ErbB4 deletion and expression, respectively. We found that ErbB4 deletion in adult mice impaired behavior and GABA release but had no effect on neuron numbers and morphology. On the other hand, some deficits due to the ErbB4 null mutation during development were alleviated by restoring ErbB4 expression at the adult stage. Together, our results indicate a critical role of NRG1-ErbB4 signaling in GABAergic transmission and behavior in adulthood and suggest that restoring NRG1-ErbB4 signaling at the postdevelopmental stage might benefit relevant brain disorders.


Subject(s)
Behavior, Animal , Brain/pathology , Interneurons/pathology , Neuregulin-1/metabolism , Receptor, ErbB-4/physiology , Synapses/physiology , Synaptic Transmission , Animals , Brain/metabolism , Interneurons/metabolism , Mice , Mice, Knockout , Neuregulin-1/genetics , Signal Transduction , gamma-Aminobutyric Acid/metabolism
10.
Proc Natl Acad Sci U S A ; 115(10): 2508-2513, 2018 03 06.
Article in English | MEDLINE | ID: mdl-29463705

ABSTRACT

Neuregulin3 (NRG3) is a growth factor of the neuregulin (NRG) family and a risk gene of various severe mental illnesses including schizophrenia, bipolar disorders, and major depression. However, the physiological function of NRG3 remains poorly understood. Here we show that loss of Nrg3 in GFAP-Nrg3f/f mice increased glutamatergic transmission, but had no effect on GABAergic transmission. These phenotypes were observed in Nex-Nrg3f/f mice, where Nrg3 was specifically knocked out in pyramidal neurons, indicating that Nrg3 regulates glutamatergic transmission by a cell-autonomous mechanism. Consequently, in the absence of Nrg3 in pyramidal neurons, mutant mice displayed various behavioral deficits related to mental illnesses. We show that the Nrg3 mutation decreased paired-pulse facilitation, increased decay of NMDAR currents when treated with MK801, and increased minimal stimulation-elicited response, providing evidence that the Nrg3 mutation increases glutamate release probability. Notably, Nrg3 is a presynaptic protein that regulates the SNARE-complex assembly. Finally, increased Nrg3 levels, as observed in patients with severe mental illnesses, suppressed glutamatergic transmission. Together, these observations indicate that, unlike the prototype Nrg1, the effect of which is mediated by activating ErbB4 in interneurons, Nrg3 is critical in controlling glutamatergic transmission by regulating the SNARE complex at the presynaptic terminals, identifying a function of Nrg3 and revealing a pathophysiological mechanism for hypofunction of the glutamatergic pathway in Nrg3-related severe mental illnesses.


Subject(s)
Glutamic Acid/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , SNARE Proteins/metabolism , Animals , Behavior, Animal/physiology , Intracellular Signaling Peptides and Proteins/genetics , Mental Disorders/genetics , Mice , Mice, Transgenic , Neuregulins , Pyramidal Cells/metabolism
11.
Heart Surg Forum ; 24(2): E282-E292, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33798050

ABSTRACT

BACKGROUND: Acute kidney injury (AKI) is a common complication of cardiovascular surgery. The aim of this study was to investigate the correlation between Vasoactive-Inotropic Score (VIS) and postoperative acute kidney injury in adult patients with cardiovascular surgery. METHODS: We retrospectively reviewed the data of 1935 adult patients who underwent cardiovascular surgery between September 2017 and May 2019. The data of patients included demographic data, laboratory findings, intraoperative details, and postoperative clinical outcomes. We calculated VIS-max by using the highest doses of vasoactive and inotropic medications during the first 24h after cardiovascular surgery. Logistic regression model was used to evaluate whether the VIS-max was independently associated with postoperative AKI. Additionally, improvements in risk reclassification and discrimination were evaluated by calculating the net reclassification improvement (NRI), C-index and the integrated discrimination improvement (IDI) with the addition of the VIS-max to a baseline model of the Society of Thoracic Surgeons (STS) score for analyzing the association of VIS-max with postoperative AKI. RESULTS: In 1935 patients, 291 patients (15.0%) developed postoperative AKI from the second to seventh day after cardiovascular surgery, and 30 patients (1.6%) needed renal replacement therapy (RRT). In 291 patients with AKI, 3 patients (0.2%) with AKI class 1, 12 patients (0.6%) with AKI class 2, and 15 patients (0.8%) with AKI class 3 needed RRT. Multivariate logistic regression analysis showed that VIS-max was associated with postoperative AKI (odds ratio [OR]: 1.19, 95% confidence interval [CI]: 1.11-1.34, P < 0.001) and the need for RRT in AKI patients (OR: 1.29, 95%CI: 1.01-1.83, P = 0.007). The area under the ROC curves (AUROC) of VIS-max combining STS score for predicting postoperative AKI (AUROC: 0.84, 95%CI: 0.81-0.87, P < 0.001) and need of RRT (AUROC: 0.91, 95%CI: 0.86-0.96, P < 0.001) significantly were higher than the AUC of VIS-max, STS score and EuroSCORE. Inclusion of VIS-max into basic risk model of STS score provided an increase in all indexes of prognostic accuracy for postoperative AKI and need of RRT: C-statistic: 0.721, NRI: 21.8%, IDI: 4.9%; and C-statistic: 0.745, NRI: 24.7%, IDI: 5.6%, respectively. CONCLUSION: VIS-max is an independent predictor of postoperative AKI in adult patients after cardiovascular surgery and increases prognostic accuracy of STS score, allowing a risk reclassification.


Subject(s)
Acute Kidney Injury/etiology , Cardiac Surgical Procedures/adverse effects , Postoperative Complications , Risk Assessment/methods , Vasoconstriction/physiology , Acute Kidney Injury/physiopathology , Aged , Female , Follow-Up Studies , Humans , Male , Middle Aged , ROC Curve , Retrospective Studies , Risk Factors , Severity of Illness Index
12.
J Cell Physiol ; 235(3): 2738-2752, 2020 03.
Article in English | MEDLINE | ID: mdl-31498430

ABSTRACT

Gastric cancer has the fifth highest incidence of disease and is the third leading cause of cancer-associated mortality in the world. The etiology of gastric cancer is complex and needs to be fully elucidated. Thus, it is necessary to explore potential pathogenic genes and pathways that contribute to gastric cancer. Gene expression profiles of the GSE33335 and GSE54129 datasets were downloaded from the Gene Expression Omnibus database. The differentially expressed genes (DEGs) were compared and identified using R software. The DEGs were then subjected to gene set enrichment analysis and Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses. Survival analyses based on The Cancer Genome Atlas database were used to further screen the essential DEGs. A knockdown assay was performed to determine the function of the candidate gene in gastric cancer. Finally, the association between the candidate gene and immune-related genes was investigated. We found that GPNMB serves as an essential gene, with a high expression level, and predicts a worse outcome of gastric cancer. Knockdown of GPNMB inhibited gastric cancer cell proliferation and migration. In addition, GPNMB may augment the immunosuppressive ability of gastric cancer by recruiting immunosuppressive cells and promoting immune cell exhaustion through PI3K/AKT/CCL4 signaling axis. Collectively, these data suggest that GPNMB acts as an important positive mediator of tumor progression in gastric cancer, and GPNMB could exert multimodality modulation of gastric cancer-mediated immune suppression.


Subject(s)
Immune Tolerance/genetics , Membrane Glycoproteins/genetics , Stomach Neoplasms/genetics , Adenocarcinoma/pathology , Biomarkers, Tumor/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Chemokine CCL4/metabolism , Computational Biology , Databases, Genetic , Disease Progression , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , Humans , Immune Tolerance/immunology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , RNA Interference , RNA, Small Interfering/genetics , Signal Transduction , Stomach Neoplasms/pathology , Tumor Microenvironment/immunology
13.
Brain Behav Immun ; 88: 748-762, 2020 08.
Article in English | MEDLINE | ID: mdl-32413556

ABSTRACT

Depression is a severe neuropsychiatric disorder, of which the underlying pathological mechanisms remain unclear. The ketogenic diet (KD) has been reported to exhibit preventative effects on depressive-like behaviors in rodents. However, the therapeutic effects of KD on depressive-like behaviors have not been illustrated thus far. Here, we found that KD treatment dramatically ameliorated depressive-like behaviors in both repeated social defeat stress (R-SDS) and lipopolysaccharide (LPS) models, indicating the potential therapeutic effects of KD on depression. Our electrophysiological studies further showed that neuronal excitability was increased in the lateral habenula (LHb) of mice exposed to R-SDS or LPS, which can be reversed in the presence of KD treatment. Moreover, R-SDS and LPS were also found to induce robust microglial inflammatory activation in the LHb. Importantly, these phenotypes were rescued in mice fed with KD. In addition, we found that the protein level of innate immune receptor Trem2 in the LHb was significantly decreased in depression models. Specific knockdown of Trem2 in LHb microglia induced depressive-like behaviors, increased neuronal excitability as well as robust microglial inflammatory activation. Altogether, we demonstrated the therapeutic effects of KD on depressive-like behaviors, which are probably mediated via the restoration of microglial inflammatory activation and neuronal excitability. Besides, we also proposed an unrecognized function of Trem2 in the LHb for depression. Our study sheds light on the pathogenesis of depression and thereby offers a potential therapeutic intervention.


Subject(s)
Diet, Ketogenic , Habenula , Neurons , Animals , Depression , Membrane Glycoproteins , Mice , Receptors, Immunologic
14.
Proc Natl Acad Sci U S A ; 114(5): 1177-1182, 2017 01 31.
Article in English | MEDLINE | ID: mdl-28096412

ABSTRACT

Neurotransmission in dentate gyrus (DG) is critical for spatial coding, learning memory, and emotion processing. Although DG dysfunction is implicated in psychiatric disorders, including schizophrenia, underlying pathological mechanisms remain unclear. Here we report that transmembrane protein 108 (Tmem108), a novel schizophrenia susceptibility gene, is highly enriched in DG granule neurons and its expression increased at the postnatal period critical for DG development. Tmem108 is specifically expressed in the nervous system and enriched in the postsynaptic density fraction. Tmem108-deficient neurons form fewer and smaller spines, suggesting that Tmem108 is required for spine formation and maturation. In agreement, excitatory postsynaptic currents of DG granule neurons were decreased in Tmem108 mutant mice, indicating a hypofunction of glutamatergic activity. Further cell biological studies indicate that Tmem108 is necessary for surface expression of AMPA receptors. Tmem108-deficient mice display compromised sensorimotor gating and cognitive function. Together, these observations indicate that Tmem108 plays a critical role in regulating spine development and excitatory transmission in DG granule neurons. When Tmem108 is mutated, mice displayed excitatory/inhibitory imbalance and behavioral deficits relevant to schizophrenia, revealing potential pathophysiological mechanisms of schizophrenia.


Subject(s)
Cognition Disorders/genetics , Dentate Gyrus/physiology , Sensory Gating/genetics , Vesicular Transport Proteins/physiology , Animals , Animals, Newborn , Cognition Disorders/physiopathology , Dentate Gyrus/metabolism , Disease Models, Animal , Electroporation , Excitatory Postsynaptic Potentials/physiology , Fear , Genes, Reporter , Glutamic Acid/physiology , HEK293 Cells , Humans , Male , Maze Learning , Mice , Mice, Knockout , Neurons/physiology , Neurons/ultrastructure , Post-Synaptic Density/chemistry , RNA Interference , RNA, Small Interfering/genetics , Receptors, AMPA/biosynthesis , Schizophrenia/genetics , Sensory Gating/physiology , Synaptic Transmission/physiology , Vesicular Transport Proteins/deficiency , Vesicular Transport Proteins/genetics
15.
J Neurosci ; 38(44): 9600-9613, 2018 10 31.
Article in English | MEDLINE | ID: mdl-30228230

ABSTRACT

Fear learning and memory are vital for livings to survive, dysfunctions in which have been implicated in various neuropsychiatric disorders. Appropriate neuronal activation in amygdala is critical for fear memory. However, the underlying regulatory mechanisms are not well understood. Here we report that Neogenin, a DCC (deleted in colorectal cancer) family receptor, which plays important roles in axon navigation and adult neurogenesis, is enriched in excitatory neurons in BLA (Basolateral amygdala). Fear memory is impaired in male Neogenin mutant mice. The number of cFos+ neurons in response to tone-cued fear training was reduced in mutant mice, indicating aberrant neuronal activation in the absence of Neogenin. Electrophysiological studies show that Neogenin mutation reduced the cortical afferent input to BLA pyramidal neurons and compromised both induction and maintenance of Long-Term Potentiation evoked by stimulating cortical afferent, suggesting a role of Neogenin in synaptic plasticity. Concomitantly, there was a reduction in spine density and in frequency of miniature excitatory postsynaptic currents (mEPSCs), but not miniature inhibitory postsynaptic currents, suggesting a role of Neogenin in forming excitatory synapses. Finally, ablating Neogenin in the BLA in adult male mice impaired fear memory likely by reducing mEPSC frequency in BLA excitatory neurons. These results reveal an unrecognized function of Neogenin in amygdala for information processing by promoting and maintaining neurotransmission and synaptic plasticity and provide insight into molecular mechanisms of neuronal activation in amygdala.SIGNIFICANCE STATEMENT Appropriate neuronal activation in amygdala is critical for information processing. However, the underlying regulatory mechanisms are not well understood. Neogenin is known to regulate axon navigation and adult neurogenesis. Here we show that it is critical for neurotransmission and synaptic plasticity in the amygdala and thus fear memory by using a combination of genetic, electrophysiological, behavioral techniques. Our studies identify a novel function of Neogenin and provide insight into molecular mechanisms of neuronal activation in amygdala for fear processing.


Subject(s)
Basolateral Nuclear Complex/metabolism , Fear/physiology , Learning/physiology , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neurons/metabolism , Animals , Excitatory Postsynaptic Potentials/physiology , Fear/psychology , Male , Mice , Mice, Transgenic , Organ Culture Techniques
16.
J Neurosci ; 38(41): 8860-8873, 2018 10 10.
Article in English | MEDLINE | ID: mdl-30171091

ABSTRACT

During aging, acetylcholine receptor (AChR) clusters become fragmented and denervated at the neuromuscular junction (NMJ). Underpinning molecular mechanisms are not well understood. We showed that LRP4, a receptor for agrin and critical for NMJ formation and maintenance, was reduced at protein level in aged mice, which was associated with decreased MuSK tyrosine phosphorylation, suggesting compromised agrin-LRP4-MuSK signaling in aged muscles. Transgenic expression of LRP4 in muscles alleviated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. LRP4 ubiquitination was augmented in aged muscles, suggesting increased LRP4 degradation as a mechanism for reduced LRP4. We found that sarcoglycan α (SGα) interacted with LRP4 and delayed LRP4 degradation in cotransfected cells. AAV9-mediated expression of SGα in muscles mitigated AChR fragmentation and denervation and improved neuromuscular transmission in aged mice. These observations support a model where compromised agrin-LRP4-MuSK signaling serves as a pathological mechanism of age-related NMJ decline and identify a novel function of SGα in stabilizing LRP4 for NMJ stability in aged mice.SIGNIFICANCE STATEMENT This study provides evidence that LRP4, a receptor of agrin that is critical for NMJ formation and maintenance, is reduced at protein level in aged muscles. Transgenic expression of LRP4 in muscles ameliorates AChR fragmentation and denervation and improves neuromuscular transmission in aged mice, demonstrating a critical role of the agrin-LRP4-MuSK signaling. Our study also reveals a novel function of SGα to prevent LRP4 degradation in aged muscles. Finally, we show that NMJ decline in aged mice can be mitigated by AAV9-mediated expression of SGα in muscles. These observations provide insight into pathological mechanisms of age-related NMJ decline and suggest that improved agrin-LRP4-MuSK signaling may be a target for potential therapeutic intervention.


Subject(s)
Aging , Muscle, Skeletal/metabolism , Neuromuscular Junction/metabolism , Receptors, Cholinergic/metabolism , Receptors, LDL/metabolism , Sarcoglycans/metabolism , Animals , Female , LDL-Receptor Related Proteins , Male , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/innervation , Phosphorylation , Receptor Protein-Tyrosine Kinases/metabolism
17.
J Neuroinflammation ; 16(1): 62, 2019 Mar 14.
Article in English | MEDLINE | ID: mdl-30871577

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by an abnormal accumulation of amyloid-ß (Aß) plaques, neuroinflammation, and impaired neurogenesis. Urolithin A (UA), a gut-microbial metabolite of ellagic acid, has been reported to exert anti-inflammatory effects in the brain. However, it is unknown whether UA exerts its properties of anti-inflammation and neuronal protection in the APPswe/PS1ΔE9 (APP/PS1) mouse model of AD. METHODS: Morris water maze was used to detect the cognitive function. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assay was performed to detect neuronal apoptosis. Immunohistochemistry analyzed the response of glia, Aß deposition, and neurogenesis. The expression of inflammatory mediators were measured by enzyme-linked immunosorbent assay (ELISA) and quantitative real-time polymerase chain reaction (qRT-PCR). The modulating effects of UA on cell signaling pathways were assayed by Western blotting. RESULTS: We demonstrated that UA ameliorated cognitive impairment, prevented neuronal apoptosis, and enhanced neurogenesis in APP/PS1 mice. Furthermore, UA attenuated Aß deposition and peri-plaque microgliosis and astrocytosis in the cortex and hippocampus. We also found that UA affected critical cell signaling pathways, specifically by enhancing cerebral AMPK activation, decreasing the activation of P65NF-κB and P38MAPK, and suppressing Bace1 and APP degradation. CONCLUSIONS: Our results indicated that UA imparted cognitive protection by protecting neurons from death and triggering neurogenesis via anti-inflammatory signaling in APP/PS1 mice, suggesting that UA might be a promising therapeutic drug to treat AD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Coumarins/therapeutic use , Cytokines/metabolism , Encephalitis/drug therapy , Gene Expression Regulation/drug effects , Memory Disorders/drug therapy , Alzheimer Disease/complications , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Brain/drug effects , Brain/metabolism , Brain/pathology , Cytokines/genetics , Disease Models, Animal , Encephalitis/etiology , Female , Gene Expression Regulation/genetics , Gliosis/drug therapy , Gliosis/genetics , Maze Learning/drug effects , Memory Disorders/etiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Nerve Tissue Proteins/metabolism , Neurogenesis/drug effects , Neurogenesis/genetics , Plaque, Amyloid/drug therapy , Plaque, Amyloid/etiology , Presenilin-1/genetics , Presenilin-1/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics
18.
Brain Behav Immun ; 79: 159-173, 2019 07.
Article in English | MEDLINE | ID: mdl-30763768

ABSTRACT

Neuroinflammation, considered as a pathological hallmark of Alzheimer's disease (AD), has been demonstrated to affect hippocampal neurogenesis and cognitive function. Interleukin-6 (IL-6) is a proinflammatory cytokine known to modulate neurogenesis. However, the mechanisms are still largely unknown. Here, we reported that IL-6 suppressed neurogenesis via a JAK2/STAT3 signaling in neural stem cells (NSCs). Importantly, we found that NeuroD1 (Neurogenic differentiation 1) gene expression, which drives NSCs neurodifferentiation, was regulated by TET3 and DNMT1 in a JAK2/STAT3-dependent manner. We further found that JAK2/STAT3 inhibition enhanced demethylation of NeuroD1 regulatory elements in IL-6-treated cells, which is related to the significant upregulation of TET3 expression as well as the decreased expression of DNMT1. Furthermore, Inhibiting JAK2/STAT3 significantly rescued the memory deficits and hippocampal neurogenesis dysfunction in APP/PS1 mice. Our data suggest that JAK2/STAT3 signaling plays a vital role in suppressing neurogenesis of NSCs exposed to IL-6 at the epigenetic level, by regulating DNA methylation/demethylation.


Subject(s)
Janus Kinase 2/metabolism , Neurogenesis/physiology , STAT3 Transcription Factor/metabolism , Alzheimer Disease/metabolism , Alzheimer Disease/physiopathology , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , DNA (Cytosine-5-)-Methyltransferase 1/genetics , DNA (Cytosine-5-)-Methyltransferase 1/metabolism , DNA Demethylation , DNA Methylation , Dioxygenases/genetics , Dioxygenases/metabolism , Hippocampus/metabolism , Humans , Interleukin-6/metabolism , Male , Mice , Mice, Transgenic , Neural Stem Cells/metabolism , Neurogenesis/immunology , Neuroimmunomodulation , Signal Transduction/immunology
20.
Cell Commun Signal ; 17(1): 115, 2019 09 06.
Article in English | MEDLINE | ID: mdl-31492173

ABSTRACT

BACKGROUND: Gastric cancer (GC) has high incidence and mortality worldwide. However, the underlying mechanisms that regulate gastric carcinogenesis are largely undefined. 4.1B is an adaptor protein found at the interface of membrane and the cytoskeleton. Previous studies demonstrated that 4.1B serves as tumor suppressor. RESULTS: We showed that 4.1B expression was decreased or lost in most GC patients. The expression pattern of it was tightly correlated with tumor size, TNM stage and overall survival (OS). We further showed that 4.1B inhibited the proliferation of two GC cell lines, MGC-803 and MKN-45, by impeding the EGFR/MAPK/ERK1/2 and PI3K/AKT pathways. A similar phenotype was also observed in immortalized mouse embryonic fibroblasts (MEF) derived from wild type (WT) and 4.1B knock-out (BKO) mice. Additionally, immunofluorescence (IF) staining and Co-IP showed that protein 4.1B bound to EGFR. Furthermore, the FERM domain of 4.1B interacted with EGFR through the initial 13 amino acids (P13) of the intracellular juxtamembrane (JM) segment of EGFR. The binding of 4.1B to EGFR inhibited dimerization and autophosphorylation of EGFR. CONCLUSION: Our present work revealed that 4.1B plays important regulatory roles in the proliferation of GC cells by binding to EGFR and inhibiting EGFR function through an EGFR/MAPK/ERK1/2 pathway. Our results provide novel insight into the mechanism of the development and progression of GC.


Subject(s)
ErbB Receptors/metabolism , Intracellular Membranes/metabolism , Membrane Proteins/metabolism , Adult , Aged , Animals , Cell Line, Tumor , Cell Proliferation , Female , Humans , Male , Mice , Mice, Inbred C57BL , Middle Aged , Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Mitogen-Activated Protein Kinases/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Protein Binding , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL