Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 49
Filter
1.
Cell ; 185(14): 2422-2433.e13, 2022 07 07.
Article in English | MEDLINE | ID: mdl-35772405

ABSTRACT

The Omicron lineage of SARS-CoV-2, which was first described in November 2021, spread rapidly to become globally dominant and has split into a number of sublineages. BA.1 dominated the initial wave but has been replaced by BA.2 in many countries. Recent sequencing from South Africa's Gauteng region uncovered two new sublineages, BA.4 and BA.5, which are taking over locally, driving a new wave. BA.4 and BA.5 contain identical spike sequences, and although closely related to BA.2, they contain further mutations in the receptor-binding domain of their spikes. Here, we study the neutralization of BA.4/5 using a range of vaccine and naturally immune serum and panels of monoclonal antibodies. BA.4/5 shows reduced neutralization by the serum from individuals vaccinated with triple doses of AstraZeneca or Pfizer vaccine compared with BA.1 and BA.2. Furthermore, using the serum from BA.1 vaccine breakthrough infections, there are, likewise, significant reductions in the neutralization of BA.4/5, raising the possibility of repeat Omicron infections.


Subject(s)
COVID-19 , Viral Vaccines , Antibodies, Neutralizing , Antibodies, Viral , COVID-19/prevention & control , Humans , Neutralization Tests , SARS-CoV-2/genetics , South Africa
2.
Cell ; 185(12): 2116-2131.e18, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35662412

ABSTRACT

Highly transmissible Omicron variants of SARS-CoV-2 currently dominate globally. Here, we compare neutralization of Omicron BA.1, BA.1.1, and BA.2. BA.2 RBD has slightly higher ACE2 affinity than BA.1 and slightly reduced neutralization by vaccine serum, possibly associated with its increased transmissibility. Neutralization differences between sub-lineages for mAbs (including therapeutics) mostly arise from variation in residues bordering the ACE2 binding site; however, more distant mutations S371F (BA.2) and R346K (BA.1.1) markedly reduce neutralization by therapeutic antibody Vir-S309. In-depth structure-and-function analyses of 27 potent RBD-binding mAbs isolated from vaccinated volunteers following breakthrough Omicron-BA.1 infection reveals that they are focused in two main clusters within the RBD, with potent right-shoulder antibodies showing increased prevalence. Selection and somatic maturation have optimized antibody potency in less-mutated epitopes and recovered potency in highly mutated epitopes. All 27 mAbs potently neutralize early pandemic strains, and many show broad reactivity with variants of concern.


Subject(s)
Antibodies, Monoclonal , COVID-19 Vaccines/immunology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Angiotensin-Converting Enzyme 2 , Antibodies, Monoclonal/chemistry , Antibodies, Monoclonal/genetics , Antibodies, Viral , COVID-19 , COVID-19 Vaccines/administration & dosage , Epitopes , Humans , Neutralization Tests , SARS-CoV-2/classification , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/chemistry
3.
Cell ; 185(3): 467-484.e15, 2022 02 03.
Article in English | MEDLINE | ID: mdl-35081335

ABSTRACT

On 24th November 2021, the sequence of a new SARS-CoV-2 viral isolate Omicron-B.1.1.529 was announced, containing far more mutations in Spike (S) than previously reported variants. Neutralization titers of Omicron by sera from vaccinees and convalescent subjects infected with early pandemic Alpha, Beta, Gamma, or Delta are substantially reduced, or the sera failed to neutralize. Titers against Omicron are boosted by third vaccine doses and are high in both vaccinated individuals and those infected by Delta. Mutations in Omicron knock out or substantially reduce neutralization by most of the large panel of potent monoclonal antibodies and antibodies under commercial development. Omicron S has structural changes from earlier viruses and uses mutations that confer tight binding to ACE2 to unleash evolution driven by immune escape. This leads to a large number of mutations in the ACE2 binding site and rebalances receptor affinity to that of earlier pandemic viruses.

4.
Cell ; 184(9): 2348-2361.e6, 2021 04 29.
Article in English | MEDLINE | ID: mdl-33730597

ABSTRACT

The race to produce vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began when the first sequence was published, and this forms the basis for vaccines currently deployed globally. Independent lineages of SARS-CoV-2 have recently been reported: UK, B.1.1.7; South Africa, B.1.351; and Brazil, P.1. These variants have multiple changes in the immunodominant spike protein that facilitates viral cell entry via the angiotensin-converting enzyme-2 (ACE2) receptor. Mutations in the receptor recognition site on the spike are of great concern for their potential for immune escape. Here, we describe a structure-function analysis of B.1.351 using a large cohort of convalescent and vaccinee serum samples. The receptor-binding domain mutations provide tighter ACE2 binding and widespread escape from monoclonal antibody neutralization largely driven by E484K, although K417N and N501Y act together against some important antibody classes. In a number of cases, it would appear that convalescent and some vaccine serum offers limited protection against this variant.


Subject(s)
COVID-19 Vaccines/blood , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , COVID-19/immunology , COVID-19/therapy , COVID-19/virology , Chlorocebus aethiops , Clinical Trials as Topic , HEK293 Cells , Humans , Immunization, Passive , Models, Molecular , Mutation/genetics , Neutralization Tests , Protein Binding , SARS-CoV-2/chemistry , SARS-CoV-2/genetics , Vero Cells , COVID-19 Serotherapy
5.
Cell ; 184(11): 2939-2954.e9, 2021 05 27.
Article in English | MEDLINE | ID: mdl-33852911

ABSTRACT

Terminating the SARS-CoV-2 pandemic relies upon pan-global vaccination. Current vaccines elicit neutralizing antibody responses to the virus spike derived from early isolates. However, new strains have emerged with multiple mutations, including P.1 from Brazil, B.1.351 from South Africa, and B.1.1.7 from the UK (12, 10, and 9 changes in the spike, respectively). All have mutations in the ACE2 binding site, with P.1 and B.1.351 having a virtually identical triplet (E484K, K417N/T, and N501Y), which we show confer similar increased affinity for ACE2. We show that, surprisingly, P.1 is significantly less resistant to naturally acquired or vaccine-induced antibody responses than B.1.351, suggesting that changes outside the receptor-binding domain (RBD) impact neutralization. Monoclonal antibody (mAb) 222 neutralizes all three variants despite interacting with two of the ACE2-binding site mutations. We explain this through structural analysis and use the 222 light chain to largely restore neutralization potency to a major class of public antibodies.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Binding Sites , COVID-19/therapy , COVID-19/virology , Cell Line , Humans , Immune Evasion , Immunization, Passive , Mutation , Protein Binding , Protein Domains , SARS-CoV-2/genetics , Sequence Deletion , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vaccination , Vaccines/immunology , COVID-19 Serotherapy
6.
Cell ; 184(8): 2201-2211.e7, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33743891

ABSTRACT

SARS-CoV-2 has caused over 2 million deaths in little over a year. Vaccines are being deployed at scale, aiming to generate responses against the virus spike. The scale of the pandemic and error-prone virus replication is leading to the appearance of mutant viruses and potentially escape from antibody responses. Variant B.1.1.7, now dominant in the UK, with increased transmission, harbors 9 amino acid changes in the spike, including N501Y in the ACE2 interacting surface. We examine the ability of B.1.1.7 to evade antibody responses elicited by natural SARS-CoV-2 infection or vaccination. We map the impact of N501Y by structure/function analysis of a large panel of well-characterized monoclonal antibodies. B.1.1.7 is harder to neutralize than parental virus, compromising neutralization by some members of a major class of public antibodies through light-chain contacts with residue 501. However, widespread escape from monoclonal antibodies or antibody responses generated by natural infection or vaccination was not observed.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , CHO Cells , COVID-19/epidemiology , Chlorocebus aethiops , Cricetulus , HEK293 Cells , Humans , Pandemics , Protein Binding , Structure-Activity Relationship , Vero Cells
7.
Cell ; 184(8): 2183-2200.e22, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33756110

ABSTRACT

Antibodies are crucial to immune protection against SARS-CoV-2, with some in emergency use as therapeutics. Here, we identify 377 human monoclonal antibodies (mAbs) recognizing the virus spike and focus mainly on 80 that bind the receptor binding domain (RBD). We devise a competition data-driven method to map RBD binding sites. We find that although antibody binding sites are widely dispersed, neutralizing antibody binding is focused, with nearly all highly inhibitory mAbs (IC50 < 0.1 µg/mL) blocking receptor interaction, except for one that binds a unique epitope in the N-terminal domain. Many of these neutralizing mAbs use public V-genes and are close to germline. We dissect the structural basis of recognition for this large panel of antibodies through X-ray crystallography and cryoelectron microscopy of 19 Fab-antigen structures. We find novel binding modes for some potently inhibitory antibodies and demonstrate that strongly neutralizing mAbs protect, prophylactically or therapeutically, in animal models.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , Spike Glycoprotein, Coronavirus/immunology , Animals , Binding Sites, Antibody , CHO Cells , Chlorocebus aethiops , Cricetulus , Epitopes , Female , HEK293 Cells , Humans , Male , Mice , Mice, Transgenic , Models, Molecular , Protein Binding , Protein Structure, Tertiary , SARS-CoV-2/immunology , Vero Cells
8.
Cell ; 184(16): 4220-4236.e13, 2021 08 05.
Article in English | MEDLINE | ID: mdl-34242578

ABSTRACT

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has undergone progressive change, with variants conferring advantage rapidly becoming dominant lineages, e.g., B.1.617. With apparent increased transmissibility, variant B.1.617.2 has contributed to the current wave of infection ravaging the Indian subcontinent and has been designated a variant of concern in the United Kingdom. Here we study the ability of monoclonal antibodies and convalescent and vaccine sera to neutralize B.1.617.1 and B.1.617.2, complement this with structural analyses of Fab/receptor binding domain (RBD) complexes, and map the antigenic space of current variants. Neutralization of both viruses is reduced compared with ancestral Wuhan-related strains, but there is no evidence of widespread antibody escape as seen with B.1.351. However, B.1.351 and P.1 sera showed markedly more reduction in neutralization of B.1.617.2, suggesting that individuals infected previously by these variants may be more susceptible to reinfection by B.1.617.2. This observation provides important new insights for immunization policy with future variant vaccines in non-immune populations.


Subject(s)
Antibodies, Viral/immunology , COVID-19 Vaccines/immunology , SARS-CoV-2/immunology , Animals , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/immunology , Antigen-Antibody Complex/chemistry , COVID-19/pathology , COVID-19/therapy , COVID-19/virology , COVID-19 Vaccines/administration & dosage , Chlorocebus aethiops , Crystallography, X-Ray , Humans , Immunization, Passive , Neutralization Tests , Protein Domains/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/immunology , Vero Cells , COVID-19 Serotherapy
9.
Cell ; 184(23): 5699-5714.e11, 2021 11 11.
Article in English | MEDLINE | ID: mdl-34735795

ABSTRACT

Extension of the interval between vaccine doses for the BNT162b2 mRNA vaccine was introduced in the United Kingdom to accelerate population coverage with a single dose. At this time, trial data were lacking, and we addressed this in a study of United Kingdom healthcare workers. The first vaccine dose induced protection from infection from the circulating alpha (B.1.1.7) variant over several weeks. In a substudy of 589 individuals, we show that this single dose induces severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) neutralizing antibody (NAb) responses and a sustained B and T cell response to the spike protein. NAb levels were higher after the extended dosing interval (6-14 weeks) compared with the conventional 3- to 4-week regimen, accompanied by enrichment of CD4+ T cells expressing interleukin-2 (IL-2). Prior SARS-CoV-2 infection amplified and accelerated the response. These data on dynamic cellular and humoral responses indicate that extension of the dosing interval is an effective immunogenic protocol.


Subject(s)
COVID-19 Vaccines/immunology , Vaccines, Synthetic/immunology , Adult , Aged , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/virology , Cross-Priming/immunology , Dose-Response Relationship, Immunologic , Ethnicity , Female , Humans , Immunity , Immunoglobulin G/immunology , Linear Models , Male , Middle Aged , Reference Standards , SARS-CoV-2/immunology , T-Lymphocytes/immunology , Treatment Outcome , Young Adult , mRNA Vaccines
11.
Nat Immunol ; 21(11): 1336-1345, 2020 11.
Article in English | MEDLINE | ID: mdl-32887977

ABSTRACT

The development of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines and therapeutics will depend on understanding viral immunity. We studied T cell memory in 42 patients following recovery from COVID-19 (28 with mild disease and 14 with severe disease) and 16 unexposed donors, using interferon-γ-based assays with peptides spanning SARS-CoV-2 except ORF1. The breadth and magnitude of T cell responses were significantly higher in severe as compared with mild cases. Total and spike-specific T cell responses correlated with spike-specific antibody responses. We identified 41 peptides containing CD4+ and/or CD8+ epitopes, including six immunodominant regions. Six optimized CD8+ epitopes were defined, with peptide-MHC pentamer-positive cells displaying the central and effector memory phenotype. In mild cases, higher proportions of SARS-CoV-2-specific CD8+ T cells were observed. The identification of T cell responses associated with milder disease will support an understanding of protective immunity and highlights the potential of including non-spike proteins within future COVID-19 vaccine design.


Subject(s)
Antigens, Viral/immunology , Betacoronavirus/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Immunologic Memory/immunology , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/immunology , Coronavirus Infections/pathology , Coronavirus Infections/prevention & control , Epitopes, T-Lymphocyte/immunology , Humans , Immunodominant Epitopes/immunology , Pandemics , Pneumonia, Viral/immunology , Pneumonia, Viral/pathology , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/immunology , United Kingdom , Viral Vaccines/immunology
12.
Nat Immunol ; 19(11): 1248-1256, 2018 11.
Article in English | MEDLINE | ID: mdl-30323338

ABSTRACT

Dengue virus is a major pathogen, and severe infections can lead to life-threatening dengue hemorrhagic fever. Dengue virus exists as four serotypes, and dengue hemorrhagic fever is often associated with secondary heterologous infections. Antibody-dependent enhancement (ADE) may drive higher viral loads in these secondary infections and is purported to result from antibodies that recognize dengue virus but fail to fully neutralize it. Here we characterize two antibodies, 2C8 and 3H5, that bind to the envelope protein. Antibody 3H5 is highly unusual as it not only is potently neutralizing but also promotes little if any ADE, whereas antibody 2C8 has strong capacity to promote ADE. We show that 3H5 shows resilient binding in endosomal pH conditions and neutralizes at low occupancy. Immunocomplexes of 3H5 and dengue virus do not efficiently interact with Fcγ receptors, which we propose is due to the binding mode of 3H5 and constitutes the primary mechanism of how ADE is avoided.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Antibody-Dependent Enhancement/immunology , Dengue Virus/immunology , Humans
13.
Nat Immunol ; 18(11): 1261-1269, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28945244

ABSTRACT

The Zika virus (ZIKV) epidemic has resulted in congenital abnormalities in fetuses and neonates. Although some cross-reactive dengue virus (DENV)-specific antibodies can enhance ZIKV infection in mice, those recognizing the DENV E-dimer epitope (EDE) can neutralize ZIKV infection in cell culture. We evaluated the therapeutic activity of human monoclonal antibodies to DENV EDE for their ability to control ZIKV infection in the brains, testes, placentas, and fetuses of mice. A single dose of the EDE1-B10 antibody given 3 d after ZIKV infection protected against lethality, reduced ZIKV levels in brains and testes, and preserved sperm counts. In pregnant mice, wild-type or engineered LALA variants of EDE1-B10, which cannot engage Fcg receptors, diminished ZIKV burden in maternal and fetal tissues, and protected against fetal demise. Because neutralizing antibodies to EDE have therapeutic potential against ZIKV, in addition to their established inhibitory effects against DENV, it may be possible to develop therapies that control disease caused by both viruses.


Subject(s)
Antibodies, Monoclonal/immunology , Antibodies, Viral/immunology , Dengue Virus/immunology , Epitopes/immunology , Viral Envelope Proteins/immunology , Zika Virus Infection/immunology , Animals , Brain/immunology , Brain/virology , Chlorocebus aethiops , Cross Reactions/immunology , Dengue Virus/classification , Dengue Virus/metabolism , Female , Fetus/immunology , Fetus/virology , Host-Pathogen Interactions/immunology , Humans , Male , Mice , Neutralization Tests , Pregnancy , Protein Multimerization/immunology , Testis/immunology , Testis/virology , Vero Cells , Viral Envelope Proteins/chemistry , Viral Load/immunology , Zika Virus/immunology , Zika Virus/physiology , Zika Virus Infection/virology
14.
Nat Immunol ; 17(9): 1102-8, 2016 09.
Article in English | MEDLINE | ID: mdl-27339099

ABSTRACT

Zika virus (ZIKV) was discovered in 1947 and was thought to lead to relatively mild disease. The recent explosive outbreak of ZIKV in South America has led to widespread concern, with reports of neurological sequelae ranging from Guillain Barré syndrome to microcephaly. ZIKV infection has occurred in areas previously exposed to dengue virus (DENV), a flavivirus closely related to ZIKV. Here we investigated the serological cross-reaction between the two viruses. Plasma immune to DENV showed substantial cross-reaction to ZIKV and was able to drive antibody-dependent enhancement (ADE) of ZIKV infection. Using a panel of human monoclonal antibodies (mAbs) to DENV, we showed that most antibodies that reacted to DENV envelope protein also reacted to ZIKV. Antibodies to linear epitopes, including the immunodominant fusion-loop epitope, were able to bind ZIKV but were unable to neutralize the virus and instead promoted ADE. Our data indicate that immunity to DENV might drive greater ZIKV replication and have clear implications for disease pathogenesis and future vaccine programs for ZIKV and DENV.


Subject(s)
Antibody-Dependent Enhancement , Cross Reactions , Dengue Virus/physiology , Dengue/immunology , Zika Virus Infection/immunology , Zika Virus/physiology , Adolescent , Antibodies, Monoclonal/blood , Antibodies, Monoclonal/immunology , Antibodies, Neutralizing/blood , Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Antibodies, Viral/immunology , Cells, Cultured , Child , Child, Preschool , Dengue/epidemiology , Epitope Mapping , Female , Guillain-Barre Syndrome/epidemiology , Humans , Immunodominant Epitopes/immunology , Immunodominant Epitopes/metabolism , Male , Microcephaly/epidemiology , Protein Binding , South America/epidemiology , Viral Envelope Proteins/immunology , Viral Envelope Proteins/metabolism , Virus Replication , Zika Virus Infection/epidemiology
15.
Proc Natl Acad Sci U S A ; 121(40): e2403260121, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39298475

ABSTRACT

Cellular processes are controlled by the thermodynamics of the underlying biomolecular interactions. Frequently, structural investigations use one monomeric binding partner, while ensemble measurements of binding affinities generally yield one affinity representative of a 1:1 interaction, despite the majority of the proteome consisting of oligomeric proteins. For example, viral entry and inhibition in SARS-CoV-2 involve a trimeric spike surface protein, a dimeric angiotensin-converting enzyme 2 (ACE2) cell-surface receptor and dimeric antibodies. Here, we reveal that cooperativity correlates with infectivity and inhibition as opposed to 1:1 binding strength. We show that ACE2 oligomerizes spike more strongly for more infectious variants, while exhibiting weaker 1:1 affinity. Furthermore, we find that antibodies use induced oligomerization both as a primary inhibition mechanism and to enhance the effects of receptor-site blocking. Our results suggest that naive affinity measurements are poor predictors of potency, and introduce an antibody-based inhibition mechanism for oligomeric targets. More generally, they point toward a much broader role of induced oligomerization in controlling biomolecular interactions.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Protein Binding , Protein Multimerization , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/metabolism , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Spike Glycoprotein, Coronavirus/chemistry , Humans , COVID-19/virology , COVID-19/metabolism , COVID-19/immunology , Virus Internalization/drug effects , Antibodies, Viral/immunology , Antibodies, Viral/metabolism , Thermodynamics
16.
Lancet ; 399(10324): 521-529, 2022 02 05.
Article in English | MEDLINE | ID: mdl-35074136

ABSTRACT

INTRODUCTION: The inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac, Sinovac) has been widely used in a two-dose schedule. We assessed whether a third dose of the homologous or a different vaccine could boost immune responses. METHODS: RHH-001 is a phase 4, participant masked, two centre, safety and immunogenicity study of Brazilian adults (18 years and older) in São Paulo or Salvador who had received two doses of CoronaVac 6 months previously. The third heterologous dose was of either a recombinant adenoviral vectored vaccine (Ad26.COV2-S, Janssen), an mRNA vaccine (BNT162b2, Pfizer-BioNTech), or a recombinant adenoviral-vectored ChAdOx1 nCoV-19 vaccine (AZD1222, AstraZeneca), compared with a third homologous dose of CoronaVac. Participants were randomly assigned (5:6:5:5) by a RedCAP computer randomisation system stratified by site, age group (18-60 years or 61 years and over), and day of randomisation, with a block size of 42. The primary outcome was non-inferiority of anti-spike IgG antibodies 28 days after the booster dose in the heterologous boost groups compared with homologous regimen, using a non-inferiority margin for the geometric mean ratio (heterologous vs homologous) of 0·67. Secondary outcomes included neutralising antibody titres at day 28, local and systemic reactogenicity profiles, adverse events, and serious adverse events. This study was registered with Registro Brasileiro de Ensaios Clínicos, number RBR-9nn3scw. FINDINGS: Between Aug 16, and Sept 1, 2021, 1240 participants were randomly assigned to one of the four groups, of whom 1239 were vaccinated and 1205 were eligible for inclusion in the primary analysis. Antibody concentrations were low before administration of a booster dose with detectable neutralising antibodies of 20·4% (95% CI 12·8-30·1) in adults aged 18-60 years and 8·9% (4·2-16·2) in adults 61 years or older. From baseline to day 28 after the booster vaccine, all groups had a substantial rise in IgG antibody concentrations: the geometric fold-rise was 77 (95% CI 67-88) for Ad26.COV2-S, 152 (134-173) for BNT162b2, 90 (77-104) for ChAdOx1 nCoV-19, and 12 (11-14) for CoronaVac. All heterologous regimens had anti-spike IgG responses at day 28 that were superior to homologous booster responses: geometric mean ratios (heterologous vs homologous) were 6·7 (95% CI 5·8-7·7) for Ad26.COV2-S, 13·4 (11·6-15·3) for BNT162b2, and 7·0 (6·1-8·1) for ChAdOx1 nCoV-19. All heterologous boost regimens induced high concentrations of pseudovirus neutralising antibodies. At day 28, all groups except for the homologous boost in the older adults reached 100% seropositivity: geometric mean ratios (heterologous vs homologous) were 8·7 (95% CI 5·9-12·9) for Ad26.COV2-S vaccine, 21·5 (14·5-31·9) for BNT162b2, and 10·6 (7·2-15·6) for ChAdOx1 nCoV-19. Live virus neutralising antibodies were also boosted against delta (B.1.617.2) and omicron variants (B.1.1.529). There were five serious adverse events. Three of which were considered possibly related to the vaccine received: one in the BNT162b2 group and two in the Ad26.COV2-S group. All participants recovered and were discharged home. INTERPRETATION: Antibody concentrations were low at 6 months after previous immunisation with two doses of CoronaVac. However, all four vaccines administered as a third dose induced a significant increase in binding and neutralising antibodies, which could improve protection against infection. Heterologous boosting resulted in more robust immune responses than homologous boosting and might enhance protection. FUNDING: Ministry of Health, Brazil.


Subject(s)
COVID-19 Vaccines , COVID-19/prevention & control , Adult , Aged , Antibodies, Neutralizing , Antibodies, Viral , BNT162 Vaccine , Brazil , ChAdOx1 nCoV-19 , Female , Humans , Immunization, Secondary , Immunoglobulin G/immunology , Male , Middle Aged , SARS-CoV-2 , Single-Blind Method , Vaccines, Inactivated
17.
Transfus Med ; 31(3): 167-175, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33333627

ABSTRACT

INTRODUCTION: The lack of approved specific therapeutic agents to treat coronavirus disease (COVID-19) associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection has led to the rapid implementation of convalescent plasma therapy (CPT) trials in many countries, including the United Kingdom. Effective CPT is likely to require high titres of neutralising antibody (nAb) in convalescent donations. Understanding the relationship between functional neutralising antibodies and antibody levels to specific SARS-CoV-2 proteins in scalable assays will be crucial for the success of a large-scale collection. We assessed whether neutralising antibody titres correlated with reactivity in a range of enzyme-linked immunosorbent assays (ELISA) targeting the spike (S) protein, the main target for human immune response. METHODS: Blood samples were collected from 52 individuals with a previous laboratory-confirmed SARS-CoV-2 infection. These were assayed for SARS-CoV-2 nAbs by microneutralisation and pseudo-type assays and for antibodies by four different ELISAs. Receiver operating characteristic (ROC) analysis was used to further identify sensitivity and specificity of selected assays to identify samples containing high nAb levels. RESULTS: All samples contained SARS-CoV-2 antibodies, whereas neutralising antibody titres of greater than 1:20 were detected in 43 samples (83% of those tested) and >1:100 in 22 samples (42%). The best correlations were observed with EUROimmun immunoglobulin G (IgG) reactivity (Spearman Rho correlation coefficient 0.88; p < 0.001). Based on ROC analysis, EUROimmun would detect 60% of samples with titres of >1:100 with 100% specificity using a reactivity index of 9.1 (13/22). DISCUSSION: Robust associations between nAb titres and reactivity in several ELISA-based antibody tests demonstrate their possible utility for scaled-up production of convalescent plasma containing potentially therapeutic levels of anti-SARS-CoV-2 nAbs.


Subject(s)
Antibodies, Neutralizing/blood , COVID-19/therapy , SARS-CoV-2/immunology , Antibodies, Viral/blood , Blood Donors , COVID-19/diagnosis , COVID-19 Testing , Enzyme-Linked Immunosorbent Assay/methods , Humans , Immunization, Passive/methods , Male , ROC Curve , Sensitivity and Specificity , COVID-19 Serotherapy
18.
Euro Surveill ; 25(42)2020 10.
Article in English | MEDLINE | ID: mdl-33094713

ABSTRACT

BackgroundThe progression and geographical distribution of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection in the United Kingdom (UK) and elsewhere is unknown because typically only symptomatic individuals are diagnosed. We performed a serological study of blood donors in Scotland in the spring of 2020 to detect neutralising antibodies to SARS-CoV-2 as a marker of past infection and epidemic progression.AimOur objective was to determine if sera from blood bank donors can be used to track the emergence and progression of the SARS-CoV-2 epidemic.MethodsA pseudotyped SARS-CoV-2 virus microneutralisation assay was used to detect neutralising antibodies to SARS-CoV-2. The study comprised samples from 3,500 blood donors collected in Scotland between 17 March and 18 May 2020. Controls were collected from 100 donors in Scotland during 2019.ResultsAll samples collected on 17 March 2020 (n = 500) were negative in the pseudotyped SARS-CoV-2 virus microneutralisation assay. Neutralising antibodies were detected in six of 500 donors from 23 to 26 March. The number of samples containing neutralising antibodies did not significantly rise after 5-6 April until the end of the study on 18 May. We found that infections were concentrated in certain postcodes, indicating that outbreaks of infection were extremely localised. In contrast, other areas remained comparatively untouched by the epidemic.ConclusionAlthough blood donors are not representative of the overall population, we demonstrated that serosurveys of blood banks can serve as a useful tool for tracking the emergence and progression of an epidemic such as the SARS-CoV-2 outbreak.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Betacoronavirus/immunology , Blood Donors , Coronavirus Infections/epidemiology , Pandemics , Pneumonia, Viral/epidemiology , Population Surveillance , Adult , COVID-19 , Cluster Analysis , Coronavirus Infections/blood , Enzyme-Linked Immunosorbent Assay , Female , Geography, Medical , Humans , Inhibitory Concentration 50 , Male , Models, Immunological , Neutralization Tests , Pneumonia, Viral/blood , Prevalence , SARS-CoV-2 , Scotland/epidemiology , Sensitivity and Specificity , Seroepidemiologic Studies , Urban Population
19.
J Infect Dis ; 218(4): 536-545, 2018 07 13.
Article in English | MEDLINE | ID: mdl-29618091

ABSTRACT

Background: The 4 dengue virus serotypes (DENV1-4) and Zika virus (ZIKV) are related mosquito-borne flaviviruses of major importance globally. While monoclonal antibodies and plasma from DENV-immune donors can neutralize or enhance ZIKV in vitro and in small-animal models, and vice versa, the extent, duration, and significance of cross-reactivity in humans remains unknown, particularly in flavivirus-endemic regions. Methods: We studied neutralizing antibodies to ZIKV and DENV1-4 in longitudinal serologic specimens collected through 3 years after infection from people in Latin America and Asia with laboratory-confirmed DENV infections. We also evaluated neutralizing antibodies to ZIKV and DENV1-4 in patients with Zika through 6 months after infection. Results: In patients with Zika, the highest neutralizing antibody titers were to ZIKV, with low-level cross-reactivity to DENV1-4 that was greater in DENV-immune individuals. We found that, in primary and secondary DENV infections, neutralizing antibody titers to ZIKV were markedly lower than to the infecting DENV and heterologous DENV serotypes. Cross-neutralization was greatest in early convalescence, then ZIKV neutralization decreased, remaining at low levels over time. Conclusions: Patterns of antibody cross-neutralization suggest that ZIKV lies outside the DENV serocomplex. Neutralizing antibody titers can distinguish ZIKV from DENV infections when all viruses are analyzed simultaneously. These findings have implications for understanding natural immunity and vaccines.


Subject(s)
Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Cross Reactions , Dengue Virus/immunology , Dengue/immunology , Zika Virus Infection/immunology , Zika Virus/immunology , Adolescent , Americas , Asia , Child , Child, Preschool , Female , Humans , Immunologic Factors , Infant , Longitudinal Studies , Male , Neutralization Tests
SELECTION OF CITATIONS
SEARCH DETAIL