Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
1.
Ann Intern Med ; 177(7): JC77, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38950395

ABSTRACT

SOURCE CITATION: Nielsen FM, Klitgaard TL, Siegemund M, et al; HOT-COVID Trial Group. Lower vs higher oxygenation target and days alive without life support in COVID-19: the HOT-COVID randomized clinical trial. JAMA. 2024;331:1185-1194. 38501214.


Subject(s)
COVID-19 , Hypoxia , SARS-CoV-2 , Humans , COVID-19/complications , Oxygen Inhalation Therapy , Oxygen/blood , Oxygen/therapeutic use , Male , Middle Aged , Female , Life Support Care , Adult
2.
Clin Infect Dis ; 78(3): 505-513, 2024 03 20.
Article in English | MEDLINE | ID: mdl-37831591

ABSTRACT

The Centers for Medicare & Medicaid Services (CMS) introduced the Severe Sepsis/Septic Shock Management Bundle (SEP-1) as a pay-for-reporting measure in 2015 and is now planning to make it a pay-for-performance measure by incorporating it into the Hospital Value-Based Purchasing Program. This joint IDSA/ACEP/PIDS/SHEA/SHM/SIPD position paper highlights concerns with this change. Multiple studies indicate that SEP-1 implementation was associated with increased broad-spectrum antibiotic use, lactate measurements, and aggressive fluid resuscitation for patients with suspected sepsis but not with decreased mortality rates. Increased focus on SEP-1 risks further diverting attention and resources from more effective measures and comprehensive sepsis care. We recommend retiring SEP-1 rather than using it in a payment model and shifting instead to new sepsis metrics that focus on patient outcomes. CMS is developing a community-onset sepsis 30-day mortality electronic clinical quality measure (eCQM) that is an important step in this direction. The eCQM preliminarily identifies sepsis using systemic inflammatory response syndrome (SIRS) criteria, antibiotic administrations or diagnosis codes for infection or sepsis, and clinical indicators of acute organ dysfunction. We support the eCQM but recommend removing SIRS criteria and diagnosis codes to streamline implementation, decrease variability between hospitals, maintain vigilance for patients with sepsis but without SIRS, and avoid promoting antibiotic use in uninfected patients with SIRS. We further advocate for CMS to harmonize the eCQM with the Centers for Disease Control and Prevention's (CDC) Adult Sepsis Event surveillance metric to promote unity in federal measures, decrease reporting burden for hospitals, and facilitate shared prevention initiatives. These steps will result in a more robust measure that will encourage hospitals to pay more attention to the full breadth of sepsis care, stimulate new innovations in diagnosis and treatment, and ultimately bring us closer to our shared goal of improving outcomes for patients.


Subject(s)
Sepsis , Shock, Septic , Aged , Adult , Humans , United States , Reimbursement, Incentive , Medicare , Sepsis/diagnosis , Sepsis/drug therapy , Systemic Inflammatory Response Syndrome , Anti-Bacterial Agents/therapeutic use , Shock, Septic/diagnosis , Shock, Septic/therapy
3.
N Engl J Med ; 384(9): 795-807, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33306283

ABSTRACT

BACKGROUND: Severe coronavirus disease 2019 (Covid-19) is associated with dysregulated inflammation. The effects of combination treatment with baricitinib, a Janus kinase inhibitor, plus remdesivir are not known. METHODS: We conducted a double-blind, randomized, placebo-controlled trial evaluating baricitinib plus remdesivir in hospitalized adults with Covid-19. All the patients received remdesivir (≤10 days) and either baricitinib (≤14 days) or placebo (control). The primary outcome was the time to recovery. The key secondary outcome was clinical status at day 15. RESULTS: A total of 1033 patients underwent randomization (with 515 assigned to combination treatment and 518 to control). Patients receiving baricitinib had a median time to recovery of 7 days (95% confidence interval [CI], 6 to 8), as compared with 8 days (95% CI, 7 to 9) with control (rate ratio for recovery, 1.16; 95% CI, 1.01 to 1.32; P = 0.03), and a 30% higher odds of improvement in clinical status at day 15 (odds ratio, 1.3; 95% CI, 1.0 to 1.6). Patients receiving high-flow oxygen or noninvasive ventilation at enrollment had a time to recovery of 10 days with combination treatment and 18 days with control (rate ratio for recovery, 1.51; 95% CI, 1.10 to 2.08). The 28-day mortality was 5.1% in the combination group and 7.8% in the control group (hazard ratio for death, 0.65; 95% CI, 0.39 to 1.09). Serious adverse events were less frequent in the combination group than in the control group (16.0% vs. 21.0%; difference, -5.0 percentage points; 95% CI, -9.8 to -0.3; P = 0.03), as were new infections (5.9% vs. 11.2%; difference, -5.3 percentage points; 95% CI, -8.7 to -1.9; P = 0.003). CONCLUSIONS: Baricitinib plus remdesivir was superior to remdesivir alone in reducing recovery time and accelerating improvement in clinical status among patients with Covid-19, notably among those receiving high-flow oxygen or noninvasive ventilation. The combination was associated with fewer serious adverse events. (Funded by the National Institute of Allergy and Infectious Diseases; ClinicalTrials.gov number, NCT04401579.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Azetidines/therapeutic use , COVID-19 Drug Treatment , Purines/therapeutic use , Pyrazoles/therapeutic use , Sulfonamides/therapeutic use , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Adult , Aged , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/adverse effects , Azetidines/adverse effects , COVID-19/mortality , COVID-19/therapy , Double-Blind Method , Drug Therapy, Combination , Female , Hospital Mortality , Hospitalization , Humans , Janus Kinase Inhibitors/adverse effects , Janus Kinase Inhibitors/therapeutic use , Male , Middle Aged , Oxygen Inhalation Therapy , Purines/adverse effects , Pyrazoles/adverse effects , Respiration, Artificial , Sulfonamides/adverse effects , Treatment Outcome
4.
Curr Opin Crit Care ; 30(5): 420-426, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-39150024

ABSTRACT

PURPOSE OF REVIEW: The development and use of immunomodulators and other therapies during the coronavirus disease 2019 (COVID-19) pandemic provided several lessons with respect to these therapies, and to how medical researchers and clinicians should approach the next pandemic. RECENT FINDINGS: New or repurposed therapies, particularly immunomodulator treatments, for the treatment of an infectious disease will always be associated with inherent patient risk and this was the case during the COVID-19 pandemic. The concomitant development and use of effective antimicrobial therapies along with close monitoring for secondary infections is paramount for patient safety and treatment success. The development of immunomodulators and other therapies during the COVID-19 pandemic further highlighted the importance of maintaining high standards for medical research for all potential treatment with large double-blind placebo-controlled trials and peer review being the best mode of disseminating medical results rather than social media outlets. SUMMARY: The next new and emerging pandemic will undoubtedly share many of the same challenges posed by COVID-19. It is important that researchers and clinicians learn from this experience, adhere to tried and true clinical care, all the while conducting high quality research aimed at developing definitive treatments.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/epidemiology , Immunomodulating Agents/therapeutic use , Pandemics , COVID-19 Drug Treatment , Immunologic Factors/therapeutic use , Biomedical Research
5.
N Engl J Med ; 383(19): 1813-1826, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32445440

ABSTRACT

BACKGROUND: Although several therapeutic agents have been evaluated for the treatment of coronavirus disease 2019 (Covid-19), no antiviral agents have yet been shown to be efficacious. METHODS: We conducted a double-blind, randomized, placebo-controlled trial of intravenous remdesivir in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. Patients were randomly assigned to receive either remdesivir (200 mg loading dose on day 1, followed by 100 mg daily for up to 9 additional days) or placebo for up to 10 days. The primary outcome was the time to recovery, defined by either discharge from the hospital or hospitalization for infection-control purposes only. RESULTS: A total of 1062 patients underwent randomization (with 541 assigned to remdesivir and 521 to placebo). Those who received remdesivir had a median recovery time of 10 days (95% confidence interval [CI], 9 to 11), as compared with 15 days (95% CI, 13 to 18) among those who received placebo (rate ratio for recovery, 1.29; 95% CI, 1.12 to 1.49; P<0.001, by a log-rank test). In an analysis that used a proportional-odds model with an eight-category ordinal scale, the patients who received remdesivir were found to be more likely than those who received placebo to have clinical improvement at day 15 (odds ratio, 1.5; 95% CI, 1.2 to 1.9, after adjustment for actual disease severity). The Kaplan-Meier estimates of mortality were 6.7% with remdesivir and 11.9% with placebo by day 15 and 11.4% with remdesivir and 15.2% with placebo by day 29 (hazard ratio, 0.73; 95% CI, 0.52 to 1.03). Serious adverse events were reported in 131 of the 532 patients who received remdesivir (24.6%) and in 163 of the 516 patients who received placebo (31.6%). CONCLUSIONS: Our data show that remdesivir was superior to placebo in shortening the time to recovery in adults who were hospitalized with Covid-19 and had evidence of lower respiratory tract infection. (Funded by the National Institute of Allergy and Infectious Diseases and others; ACTT-1 ClinicalTrials.gov number, NCT04280705.).


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , Coronavirus Infections/drug therapy , Pneumonia, Viral/drug therapy , Adenosine Monophosphate/administration & dosage , Adenosine Monophosphate/adverse effects , Adenosine Monophosphate/therapeutic use , Administration, Intravenous , Adult , Aged , Alanine/administration & dosage , Alanine/adverse effects , Alanine/therapeutic use , Antiviral Agents/administration & dosage , Antiviral Agents/adverse effects , Betacoronavirus , COVID-19 , Coronavirus Infections/mortality , Coronavirus Infections/therapy , Double-Blind Method , Extracorporeal Membrane Oxygenation , Female , Humans , Kaplan-Meier Estimate , Male , Middle Aged , Oxygen Inhalation Therapy , Pandemics , Pneumonia, Viral/mortality , Pneumonia, Viral/therapy , Respiration, Artificial , SARS-CoV-2 , Time Factors , Young Adult , COVID-19 Drug Treatment
6.
Ann Intern Med ; 175(12): 1716-1727, 2022 12.
Article in English | MEDLINE | ID: mdl-36442063

ABSTRACT

BACKGROUND: The COVID-19 standard of care (SOC) evolved rapidly during 2020 and 2021, but its cumulative effect over time is unclear. OBJECTIVE: To evaluate whether recovery and mortality improved as SOC evolved, using data from ACTT (Adaptive COVID-19 Treatment Trial). DESIGN: ACTT is a series of phase 3, randomized, double-blind, placebo-controlled trials that evaluated COVID-19 therapeutics from February 2020 through May 2021. ACTT-1 compared remdesivir plus SOC to placebo plus SOC, and in ACTT-2 and ACTT-3, remdesivir plus SOC was the control group. This post hoc analysis compared recovery and mortality between these comparable sequential cohorts of patients who received remdesivir plus SOC, adjusting for baseline characteristics with propensity score weighting. The analysis was repeated for participants in ACTT-3 and ACTT-4 who received remdesivir plus dexamethasone plus SOC. Trends in SOC that could explain outcome improvements were analyzed. (ClinicalTrials.gov: NCT04280705 [ACTT-1], NCT04401579 [ACTT-2], NCT04492475 [ACTT-3], and NCT04640168 [ACTT-4]). SETTING: 94 hospitals in 10 countries (86% U.S. participants). PARTICIPANTS: Adults hospitalized with COVID-19. INTERVENTION: SOC. MEASUREMENTS: 28-day mortality and recovery. RESULTS: Although outcomes were better in ACTT-2 than in ACTT-1, adjusted hazard ratios (HRs) were close to 1 (HR for recovery, 1.04 [95% CI, 0.92 to 1.17]; HR for mortality, 0.90 [CI, 0.56 to 1.40]). Comparable patients were less likely to be intubated in ACTT-2 than in ACTT-1 (odds ratio, 0.75 [CI, 0.53 to 0.97]), and hydroxychloroquine use decreased. Outcomes improved from ACTT-2 to ACTT-3 (HR for recovery, 1.43 [CI, 1.24 to 1.64]; HR for mortality, 0.45 [CI, 0.21 to 0.97]). Potential explanatory factors (SOC trends, case surges, and variant trends) were similar between ACTT-2 and ACTT-3, except for increased dexamethasone use (11% to 77%). Outcomes were similar in ACTT-3 and ACTT-4. Antibiotic use decreased gradually across all stages. LIMITATION: Unmeasured confounding. CONCLUSION: Changes in patient composition explained improved outcomes from ACTT-1 to ACTT-2 but not from ACTT-2 to ACTT-3, suggesting improved SOC. These results support excluding nonconcurrent controls from analysis of platform trials in rapidly changing therapeutic areas. PRIMARY FUNDING SOURCE: National Institute of Allergy and Infectious Diseases.


Subject(s)
Antiviral Agents , COVID-19 Drug Treatment , Adult , Humans , Antiviral Agents/therapeutic use , Clinical Trials, Phase III as Topic , Dexamethasone , Double-Blind Method , Randomized Controlled Trials as Topic , Treatment Outcome
7.
Clin Infect Dis ; 74(12): 2209-2217, 2022 07 06.
Article in English | MEDLINE | ID: mdl-34409989

ABSTRACT

BACKGROUND: The Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1 (ACTT-1) found that remdesivir therapy hastened recovery in patients hospitalized with COVID-19, but the pathway for this improvement was not explored. We investigated how the dynamics of clinical progression changed along 4 pathways: recovery, improvement in respiratory therapy requirement, deterioration in respiratory therapy requirement, and death. METHODS: We analyzed trajectories of daily ordinal severity scores reflecting oxygen requirements of 1051 patients hospitalized with COVID-19 who participated in ACTT-1. We developed competing risks models that estimate the effect of remdesivir therapy on cumulative incidence of clinical improvement and deterioration, and multistate models that utilize the entirety of each patient's clinical course to characterize the effect of remdesivir on progression along the 4 pathways above. RESULTS: Based on a competing risks analysis, remdesivir reduced clinical deterioration (hazard ratio [HR], 0.73; 95% confidence interval [CI]: .59-.91) and increased clinical improvement (HR, 1.22; 95% CI: 1.08, 1.39) relative to baseline. Our multistate models indicate that remdesivir inhibits worsening to ordinal scores of greater clinical severity among patients on room air or low-flow oxygen (HR, 0.74; 95% CI: .57-.94) and among patients receiving mechanical ventilation or high-flow oxygen/noninvasive positive-pressure ventilation (HR, 0.73; 95% CI: .53-1.00) at baseline. We also find that remdesivir reduces expected intensive care respiratory therapy utilization among patients not mechanically ventilated at baseline. CONCLUSIONS: Remdesivir speeds time to recovery by preventing worsening to clinical states that would extend the course of hospitalization and increase intensive respiratory support, thereby reducing the overall demand for hospital care.


Subject(s)
COVID-19 Drug Treatment , Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents , Critical Care , Humans , Oxygen , SARS-CoV-2
8.
Am J Emerg Med ; 54: 36-40, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35104712

ABSTRACT

Procalcitonin (PCT) is a biomarker with greater specificity for bacterial infection than other current laboratory markers. However, PCT can also be elevated in the setting of several noninfectious conditions. A recent case report describes a patient with elevated PCT in the context of acute methamphetamine intoxication, but without evidence of infection. Thus far, no studies have evaluated the diagnostic utility of PCT in patients with active methamphetamine use. We seek to test the hypothesis that PCT has diminished utility in patients who use methamphetamine presenting to the Emergency Department (ED). We performed a retrospective cohort study of patients presenting to an academic ED between May 2017 and July 2019. We included patients ≥18 years of age with a positive urine methamphetamine test and at least two PCT results. Pregnant patients were excluded. Cases were classified as microbiologically documented infection, clinically documented infection, possible infection, or no infection by clinician review. A positive PCT value was defined as ≥0.5 ng/ml. The performance of PCT as a diagnostic test for bacterial infection in this population was then evaluated using sensitivity, specificity, false positive rate, false negative rate, and area under the receiver operating characteristic curve. We identified 143 patients, including 75 with recorded PCT levels ≥0.5 ng/ml and 93 with microbiologically or clinically documented bacterial infection. The sensitivity and specificity of PCT for bacterial infection in this study population was 60% and 64%, respectively. The false positive rate was 36% while the false negative rate was 40%. The area under the ROC curve was 0.65. Additionally, we describe 8 patients with confirmed absence of infection but with elevated PCT, 4 of whom had serum values >10 ng/ml. The results suggest that PCT has poor diagnostic utility for bacterial infection in patients with active methamphetamine use presenting to the ED.


Subject(s)
Bacterial Infections , Methamphetamine , Bacterial Infections/diagnosis , Biomarkers , Humans , Procalcitonin , ROC Curve , Retrospective Studies
9.
Clin Infect Dis ; 72(4): 541-552, 2021 02 16.
Article in English | MEDLINE | ID: mdl-32374861

ABSTRACT

The Centers for Medicare & Medicaid Services' Severe Sepsis and Septic Shock Early Management Bundle (SEP-1) measure has appropriately established sepsis as a national priority. However, the Infectious Diseases Society of America (IDSA and five additional endorsing societies) is concerned about SEP-1's potential to drive antibiotic overuse because it does not account for the high rate of sepsis overdiagnosis and encourages aggressive antibiotics for all patients with possible sepsis, regardless of the certainty of diagnosis or severity of illness. IDSA is also concerned that SEP-1's complex "time zero" definition is not evidence-based and is prone to inter-observer variation. In this position paper, IDSA outlines several recommendations aimed at reducing the risk of unintended consequences of SEP-1 while maintaining focus on its evidence-based elements. IDSA's core recommendation is to limit SEP-1 to septic shock, for which the evidence supporting the benefit of immediate antibiotics is greatest. Prompt empiric antibiotics are often appropriate for suspected sepsis without shock, but IDSA believes there is too much heterogeneity and difficulty defining this population, uncertainty about the presence of infection, and insufficient data on the necessity of immediate antibiotics to support a mandatory treatment standard for all patients in this category. IDSA believes guidance on managing possible sepsis without shock is more appropriate for guidelines that can delineate the strengths and limitations of supporting evidence and allow clinicians discretion in applying specific recommendations to individual patients. Removing sepsis without shock from SEP-1 will mitigate the risk of unnecessary antibiotic prescribing for noninfectious syndromes, simplify data abstraction, increase measure reliability, and focus attention on the population most likely to benefit from immediate empiric broad-spectrum antibiotics.


Subject(s)
Communicable Diseases , Sepsis , Shock, Septic , Aged , Anti-Bacterial Agents/therapeutic use , Communicable Diseases/drug therapy , Humans , Medicare , Quality Indicators, Health Care , Reproducibility of Results , Sepsis/diagnosis , Sepsis/drug therapy , Shock, Septic/diagnosis , Shock, Septic/drug therapy , United States
10.
Curr Opin Crit Care ; 27(5): 462-467, 2021 10 01.
Article in English | MEDLINE | ID: mdl-34310373

ABSTRACT

PURPOSE OF REVIEW: Currently, there is no cure for SARS-CoV-2 infection, yet hospital mortality rates for COVID-19 have improved over the course of the pandemic and may be due in part to improved supportive care in the ICU. This review highlights the evidence for and against various ICU supportive therapies for the treatment of critically ill patients with COVID-19. RECENT FINDINGS: Early in the pandemic, there was great interest in novel ICU supportive care, both for the benefit of the patient, and the safety of clinicians. With a few exceptions (e.g. prone ventilation of nonintubated patients), clinicians abandoned most of these approaches (e.g. early intubation, avoidance of high flow or noninvasive ventilation). Standard critical care measures, especially for the treatment of severe viral respiratory infection including acute respiratory distress syndrome (ARDS) were applied to patients with COVID-19 with apparent success. SUMMARY: In general, the COVID-19 pandemic reaffirmed the benefits of standard supportive care for respiratory failure and in particular, recent advances in ARDS treatment. Prone ventilation of nonintubated patients, an approach that was adopted early in the pandemic, is associated with improvement in oxygenation, but its impact on clinical outcome remains unclear. Otherwise, prone mechanical ventilation and avoidance of excessive tidal volumes, conservative fluid management, antibiotic stewardship and early evaluation for extracorporeal membrane oxygenation (ECMO) -- basic tenants of severe respiratory infections and ARDS care -- remain at the core of management of patients with severe COVID-19.


Subject(s)
COVID-19 , Respiratory Insufficiency , Humans , Intensive Care Units , Pandemics , Respiration, Artificial , Respiratory Insufficiency/therapy , SARS-CoV-2 , Treatment Outcome
11.
Semin Respir Crit Care Med ; 42(5): 641-649, 2021 10.
Article in English | MEDLINE | ID: mdl-34544181

ABSTRACT

Despite decades of research, the mortality rate of sepsis and septic shock remains unacceptably high. Delays in diagnosis, identification of an infectious source, and the challenge of providing patient-tailored resuscitation measures routinely result in suboptimal patient outcomes. Bedside ultrasound improves a clinician's ability to both diagnose and manage the patient with sepsis. Indeed, multiple point-of-care ultrasound (POCUS) protocols have been developed to evaluate and treat various subsets of critically ill patients. These protocols mostly target patients with undifferentiated shock and have been shown to improve clinical outcomes. Other studies have shown that POCUS can improve a clinician's ability to identify a source of infection. Once a diagnosis of septic shock has been made, serial POCUS exams can be used to continuously guide resuscitative efforts. In this review, we advocate that the patient with suspected sepsis or septic shock undergo a comprehensive POCUS exam in which sonographic information across organ systems is synthesized and used in conjunction with traditional data gleaned from the patient's history, physical exam, and laboratory studies. This harmonization of information will hasten an accurate diagnosis and assist with hemodynamic management.


Subject(s)
Sepsis , Shock, Septic , Hemodynamics , Humans , Resuscitation , Sepsis/diagnostic imaging , Sepsis/therapy , Shock, Septic/diagnostic imaging , Shock, Septic/therapy , Ultrasonography
12.
Curr Opin Crit Care ; 24(1): 49-54, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29257783

ABSTRACT

PURPOSE OF REVIEW: Advances in the understanding of the human microbiome outside of the ICU have led investigators to consider the role of the microbiome in critical illness. The picture that is being elucidated is one of dysbiosis occurring at multiple sites in the critically ill patient. This review describes the changes that occur in the various microbiomes of a critically ill patient, the implications of these changes and shows how advances in the understanding of dysbiosis may lead to microbiome-targeted therapies. RECENT FINDINGS: Critically ill patients undergo dysbiosis at several organ sites including the skin, gastrointestinal system and the lungs with loss of microbial diversity and a propensity for potentially pathogenic organisms to dominate a particular microbiome. These microbiome changes appear to be predictive of clinical outcome. While the use of fecal microbial transplantation has been demonstrated to be an effective treatment for recurrent Clostridium difficile infection, the use of fecal microbial transplantation and other microbiome modifying therapies may have a role in managing critical illness in the ICU. SUMMARY: A growing understanding of the microbiome in the critically ill may modify current dogma regarding the pathogenesis of sepsis and other life-threatening conditions seen in the ICU, thereby fundamentally changing antibiotic stewardship and the management of the critically ill patient.


Subject(s)
Critical Illness , Dysbiosis/microbiology , Microbiota/physiology , Clostridium Infections/microbiology , Clostridium Infections/therapy , Colitis, Ulcerative/microbiology , Colitis, Ulcerative/therapy , Critical Illness/therapy , Dysbiosis/etiology , Dysbiosis/therapy , Fecal Microbiota Transplantation , Humans , Intensive Care Units , Pneumonia, Ventilator-Associated/microbiology , Pneumonia, Ventilator-Associated/therapy , Probiotics/therapeutic use , Treatment Outcome
15.
Clin Infect Dis ; 63(5): 575-82, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27521441

ABSTRACT

It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.


Subject(s)
Cross Infection/diagnosis , Cross Infection/therapy , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/therapy , Pneumonia, Ventilator-Associated/diagnosis , Pneumonia, Ventilator-Associated/therapy , Adult , Anti-Bacterial Agents/therapeutic use , Bacteriological Techniques , Drug Resistance, Multiple, Bacterial , Humans , Practice Guidelines as Topic , United States
16.
Clin Infect Dis ; 63(5): e61-e111, 2016 Sep 01.
Article in English | MEDLINE | ID: mdl-27418577

ABSTRACT

It is important to realize that guidelines cannot always account for individual variation among patients. They are not intended to supplant physician judgment with respect to particular patients or special clinical situations. IDSA considers adherence to these guidelines to be voluntary, with the ultimate determination regarding their application to be made by the physician in the light of each patient's individual circumstances.These guidelines are intended for use by healthcare professionals who care for patients at risk for hospital-acquired pneumonia (HAP) and ventilator-associated pneumonia (VAP), including specialists in infectious diseases, pulmonary diseases, critical care, and surgeons, anesthesiologists, hospitalists, and any clinicians and healthcare providers caring for hospitalized patients with nosocomial pneumonia. The panel's recommendations for the diagnosis and treatment of HAP and VAP are based upon evidence derived from topic-specific systematic literature reviews.


Subject(s)
Cross Infection/diagnosis , Cross Infection/therapy , Pneumonia, Bacterial/diagnosis , Pneumonia, Bacterial/therapy , Pneumonia, Ventilator-Associated/diagnosis , Pneumonia, Ventilator-Associated/therapy , Adult , Anti-Bacterial Agents/therapeutic use , Bacteriological Techniques , Drug Resistance, Multiple, Bacterial , Humans , United States
SELECTION OF CITATIONS
SEARCH DETAIL