Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
Int J Mol Sci ; 24(1)2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36614173

ABSTRACT

The present study aimed to investigate the relationship between the concentrations of bisphenols residues in the amniotic fluid (AF) samples collected during amniocentesis and fetal chromosomal abnormalities in pregnant women. A total of 33 pregnant Polish women aged between 24 and 44 years, and screened to detect high risk for chromosomal defects in the first trimester, were included in this study. Samples were collected from these patients during routine diagnostic and treatment procedures at mid-gestation. The concentrations of various bisphenols residues in the samples were determined by liquid chromatography coupled with triple quadrupole tandem mass spectrometry (LC-ESI-QqQ-MS/MS). Residues of eight analytes (BPS, BPF, BPA, BPAF, BADGE, BADGE•2H2O, BADGE•H2O•HCl and BADGE•2HCl) were detected in amniotic fluid samples in the range 0.69 ng/mL to 3.38 ng/mL. Fetuses with chromosomal abnormalities showed a slightly higher frequency of occurrence of selected bisphenols residues in the AF samples collected between 15-26 weeks of pregnancies. Finally, the proposed method was applied in the simultaneous determination of several endocrine-disrupting chemicals from bisphenol group in 33 human AF samples. BADGE•H2O•HCl has been identified in the AF samples taken from women older than average in the examined group. The number of detected compounds has been significant for the following analytes: BPS, BPAF, BADGE•H2O•HCl and BADGE. The proposed method may be an attractive alternative for application in large-scale human biomonitoring studies.


Subject(s)
Pregnant Women , Tandem Mass Spectrometry , Female , Humans , Pregnancy , Young Adult , Adult , Tandem Mass Spectrometry/methods , Poland , Amniotic Fluid/chemistry , Benzhydryl Compounds/chemistry
2.
Molecules ; 28(3)2023 Feb 02.
Article in English | MEDLINE | ID: mdl-36771098

ABSTRACT

Plastic pollution, where bisphenol A (BPA) is widely used in its production, has gained popularity. BPA omnipresence and toxicity, especially for infants, has led food safety authorities to place restrictions on BPA usage. It has led to the introduction of the marked 'BPA-free'-labelled products, where BPA is often replaced by other bisphenols (BPs) which are suspected of being similar or even more toxic than BPA. Moreover, the free forms of BPs are more dangerous than their conjugated forms and the conjugation of BPs is less effective in infants than in adults. Considering that human breast milk is the main source of nutrition for infants, the constant biomonitoring not only of BPA, but the wider group of BPs in such crucial matrices seems to be vital. In this study, a fast, simple, 'green' and cost-effective DLLME-based extraction technique combined with HPLC-FLD was optimized for the determination of seven selected bisphenols simultaneously. The procedure has satisfactory recovery values of 67-110% with the most RSD% at 17%. The LODs and LOQs ranged from 0.5 ng/mL to 2.1 ng/mL and 1.4 ng/mL to 6.3 ng/mL, respectively. The procedure was successfully applied to the biomonitoring of free forms of BPs in 10 real human breast milk samples.


Subject(s)
Milk, Human , Tandem Mass Spectrometry , Adult , Female , Humans , Chromatography, High Pressure Liquid/methods , Milk, Human/chemistry , Tandem Mass Spectrometry/methods , Phenols/analysis , Benzhydryl Compounds/analysis
3.
Molecules ; 26(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34443517

ABSTRACT

In this study, we propose a simple, cost-effective, and sensitive high-performance liquid chromatography with fluorescence detection (HPLC-FLD) for the simultaneous determination of seven bisphenols (bisphenol F (BPF), bisphenol E (BPE), bisphenol B (BPB), BADGE (bisphenol A diglycidyl ether), BADGE∙2H2O, BADGE∙H2O, BADGE∙2HCl) in human breast milk samples. The dispersive solid phase extraction (d-SPE) coupled with solid phase extraction (SPE) procedure performed well for the majority of the analytes with recoveries in the range 57-88% and relative standard deviations (RSD%) of less than 9.4%. During the d-SPE stage, no significant matrix effect was observed thanks to the application of different pairs of salts such as zirconium-dioxide-based sorbents (Z-Sep or Z-Sep +) and primary secondary amine (PSA) or QuEChERS Enhanced Matrix Removal-Lipid (EMR-Lipid) and PSA. The method limits of quantification (mLOQs) for all investigated analytes were set at satisfactory low values in the range 171.89-235.11 ng mL-1. Analyte concentrations were determined as the average value from human breast milk matrix samples. The results show that the d-SPE/SPE procedure, especially with the application of EMR-Lipid and PSA, could be used for further bisphenol analyses in human breast milk samples.


Subject(s)
Amines/chemistry , Food Contamination , Milk, Human/chemistry , Solid Phase Extraction , Benzhydryl Compounds/chemistry , Benzhydryl Compounds/isolation & purification , Chromatography, High Pressure Liquid , Female , Humans , Phenols/chemistry , Phenols/isolation & purification , Tandem Mass Spectrometry
4.
Molecules ; 24(11)2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31159388

ABSTRACT

Background: Identification and quantitative determination of analytes released from the packaging material is undoubtedly a difficult and tricky task, requiring the chemical analyst to develop an individual approach to obtain reliable analytical information. Unfortunately, it is still challenging for scientists to determine bisphenols at trace or even ultra-trace levels in samples characterized by a very complex, and often variable, matrix composition. Objective: Optimization and application of QuEChERS/d-SPE coupled with HPLC-DAD (and LC-QqQ-MS) method for the simultaneous determination of bisphenols (A, S, F, B, BADGE and derivatives) in milk samples from a can and breast milk samples have been performed. Methods: Concerning the analysis of unconjugated analytes, after the thawing and shaking the sample (5 mL breast milk or 10 mL milk samples from a can), it was transferred into a 50 mL polypropylene centrifuge tube. For the analysis of the total amount of analytes, prior to the extraction with acetonitrile, a deconjugation step was implemented in a tube by adding to sample, the an Isotopically Labelled Internal Standard (IS) solution (50 ng/mL) and 1 mL of the enzymatic solution with the ß-Glucuronidase (3500 U/mL). The mix was homogenized and incubated for 16-18 h at 37 °C. Next, 10 mL of acetonitrile, and a QuEChERS salt packet (4 g anhydrous MgSO4, 1 g NaCl) were added. After shaking and centrifugation, the total acetonitrile layer was isolated in a polypropylene tube evaporate to dryness, and reconstitute in 1.2 mL acetonitrile. During d-SPE step the extract was transferred into a 15 mL polypropylene tube with Z-Sep and primary secondary amine (PSA). Next, shake the tube, store in fridge, and centrifuge for 15 min. The acetonitrile supernatant was obtained with a pipette and evaporated to dryness. Mixture MeOH: water (20:80, v/v) were added to the dry residue and the extract was reconstitute in 200 µL and analyzed by HPLC-DAD and HPLC-QqQ-MS equipment. Conclusion: Six different salts during d-SPE step were evaluated such as: zirconium dioxide-based sorbent (Z-Sep, Z-Sep Plus), primary secondary amine (PSA), octadecyl (C18), EMR-Lipid, Chitin and also their mixtures. Negligible matrix interference was observed for most of the analytes due to application of Z-Sep and PSA in dispersive-solid phase extraction clean-up step. Extraction of target analytes was performed using QuEChERS/d-SPE cleanup, and presents good performance for selected analytes with recoveries in the range of 15-103% and relative standard deviations (RSD) less than 10% in breast milk samples.


Subject(s)
Benzhydryl Compounds/analysis , Benzhydryl Compounds/chemistry , Milk, Human/chemistry , Phenols/analysis , Phenols/chemistry , Benzhydryl Compounds/isolation & purification , Chromatography, High Pressure Liquid , Female , Humans , Phenols/isolation & purification , Reproducibility of Results , Solid Phase Extraction , Sweetening Agents , Tandem Mass Spectrometry
5.
Article in English | MEDLINE | ID: mdl-35206500

ABSTRACT

Amniocentesis involves taking a sample of the amniotic fluid in order to perform a karyotype test and diagnose any genetic defects that may affect the fetus. Amniotic fluid has been collected from patients with an indication for amniocentesis in the 15-26th week of pregnancy. A simple and sensitive high-performance liquid chromatography with fluorescence detection (HPLC-FLD) method for identification and quantification of eleven selected bisphenols in amniotic fluid samples is proposed. The proposed method involved protein precipitation using acetonitrile, and next the extraction and concentration of analytes by solid-phase extraction (SPE). The solid-phase extraction (SPE) procedure with application of Oasis HLB SPE columns performed well for the majority of the analytes, with recoveries in the range of 67-121% and relative standard deviations (RSD%) less than 16%. The limits of detection (LODs) and quantification (LOQs) of all the investigated analytes were in the range of 0.8-2.5 ng mL-1 and 2.4-7.5 ng mL-1 (curves constructed in methanol) and 1.1-5.2 ng mL-1 and 3.2-15.6 ng mL-1 (curves constructed in the amniotic fluid), respectively. The method was validated at the following two concentration levels: 10 ng mL-1 (2 × LOQ) and 20 ng mL-1 (4 LOQ). The results confirm the validity of the SPE procedure and HPLC-FLD method for identification and quantification of bisphenols in amniotic fluid samples collected during an amniocentesis. The result obtained show that HPLC-FLD is a useful method for determination of bisphenol residues at nanogram per milliliter concentrations in amniotic fluid samples. Residues of five analytes (BADGE·2H2O, BPAF, BADGE, BADGE·H2O·HCl and BADGE·2HCl) were detected in amniotic fluid samples. Additionally, the harmfulness of bisphenols as potential pathogens that may cause karyotype disorders and contribute to preterm birth was estimated.


Subject(s)
Amniocentesis , Premature Birth , Amniotic Fluid , Chromatography, High Pressure Liquid , Female , Humans , Infant, Newborn , Pregnancy , Solid Phase Extraction , Tandem Mass Spectrometry
6.
Article in English | MEDLINE | ID: mdl-36612618

ABSTRACT

Bisphenol A (BPA) is a widely produced chemical worldwide found in numerous everyday products. Its endocrine-disrupting properties and omnipresence have aroused concern and led to several restrictions on its use. These restrictions and growing public awareness about the toxicity of BPA have resulted in market products labeled "BPA-free", with BPAs often being replaced by other bisphenols. This is why constant biomonitoring of bisphenol levels in various body fluids and tissues is essential. In this study, we propose the use of simple, cost-effective high-performance liquid chromatography coupled with the fluorescence detector (HPLC-FLD) method for the determination of simultaneously selected bisphenols in amniotic fluid. For the sample preparation, a fast, simple, and "green" dispersive liquid-liquid microextraction (DLLME) method was used, achieving mean recovery values in the range of 80.9-115.9% with relative standard deviations below 12% for all analytes. Limits of quantification (LOQs) determined in the amniotic fluid matrix ranged from 6.17 to 22.72 ng/mL and were obtained from a calibration curve constructed using least-squares linear regression analysis for all cases. The presented sample preparation procedure can be easily adopted for LC-MS analysis.


Subject(s)
Liquid Phase Microextraction , Humans , Chromatography, High Pressure Liquid , Liquid Phase Microextraction/methods , Amniotic Fluid/chemistry , Benzhydryl Compounds/analysis , Tandem Mass Spectrometry
7.
Article in English | MEDLINE | ID: mdl-34639606

ABSTRACT

In this study, we propose a simple, cost-effective, and sensitive high-performance liquid chromatography method with fluorescence detection (HPLC-FLD) for the simultaneous determination of the three bisphenols (BPs): bisphenol A bis (2,3-dihydroxypropyl) ether (BADGE 2H2O), bisphenol F (BPF), and bisphenol E (BPE) in human urine samples. The dispersive solid phase extraction (d-SPE) coupled with solid phase extraction (SPE) procedure performed well for the analytes with recoveries in the range of 74.3-86.5% and relative standard deviations (RSD%) less than 10%. The limits of quantification (LOQs) for all investigated analytes were in the range of 11.42-22.35 ng mL-1. The method was validated at three concentration levels (1 × LOQ, 1.5 × LOQ, and 3 LOQ). During the bisphenols HPLC-FLD analysis, from 6 min a reinforcement (10 or 12) was used, therefore analytes might be identified in the small volume human urine samples. The results demonstrated clearly that the approach developed provides reliable, simple, and rapid quantification and identification of three bisphenols in a urine matrix and could be used for monitoring these analytes.


Subject(s)
Ether , Tandem Mass Spectrometry , Benzhydryl Compounds/analysis , Chromatography, High Pressure Liquid , Ethers , Humans , Phenols , Solid Phase Extraction
8.
J AOAC Int ; 103(4): 1029-1042, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33241324

ABSTRACT

BACKGROUND: Determination of bisphenols released from packaging material is undoubtedly a difficult and tricky task, requiring the chemical analyst to develop an individual approach to obtain reliable analytical information. OBJECTIVE: QuECHERS (Quick, Easy, Cheap, Effective, Rugged, and Safe)/dispersive solid-phase extraction (d-SPE) technique and high performance liquid chromatography (HPLC) coupled with modern detection techniques such as diode-array detector (DAD), fluorescence detector (FLD) or tandem mass spectrometry (MS/MS) for the determination of bisphenols such as bisphenol A (BPA), bisphenol S (BPS), bisphenol F (BPF), bisphenol B (BPB), 2-[[4-[2-[4-(Oxiran-2-ylmethoxy)phenyl]propan-2yl]phenoxy] methyl]oxirane (BADGE), 3-[4-[2-[4-(Oxiran-2-ylmethoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol (BADGE*H2O), 3-[4-[2-[4-(2,3-Dihydroxypropoxy)phenyl]propan-2-yl]phenoxy]propane-1,2-diol (BADGE*2H2O), 1-Chloro-3-[4-[2-[4-(3-chloro-2-hydroxypropoxy)phenyl] propan-2-yl]phenoxy]propan-2-ol (BADGE*2HCl) in human breast milk samples have been performed. METHODS: For the analysis of total analytes, prior to the extraction with acetonitrile, a deconjugation step was implemented in a tube by adding 1 mL of the enzymatic solution with the ß-Glucuronidase to 5 mL of sample. The mix was homogenized and incubated for 17 h at 37°C. Ten milliliters of acetonitrile, and a QuEChERS salt packet with 4 g anhydrous MgSO4 and 1 g NaCl were added. During the d-SPE step the extract was transferred into tube with 30 mg Z-Sep and 50 mg PSA (and also 150 mg MgSO4 for LC-MS/MS analysis). MeOH-water (20:80, v/v) were added to the dry residue and the extract was reconstituted in 150 µL (25-fold analytes pre-concentration is achieved). Next bisphenols were identified by HPLC-DAD-FLD and quantified by LC-MS/MS equipment. CONCLUSIONS: During the bisphenols HPLC-DAD-FLD analysis, from 6 min a reinforcement of 15 was used, which allowed analytes to be identified at 750 pg/mL. Application of LC-MS/MS allowed quantification of bisphenols in the range from 2.12 to 116.22 ng/mL in a total 27 human breast milk samples. HIGHLIGHTS: First QuEChERS/d-SPE coupled with HPLC-DAD-FLD or LC-MS/MS method for the quantification of bisphenols and its analogues in breast milk Faster and cheaper alternative to traditional extraction methods The method was applied for the first biomonitoring of bisphenols and its analogues in breast milk.


Subject(s)
Milk, Human , Tandem Mass Spectrometry , Benzhydryl Compounds/analysis , Chromatography, Liquid , Female , Humans , Milk, Human/chemistry , Phenols , Solid Phase Extraction
SELECTION OF CITATIONS
SEARCH DETAIL