Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
1.
Toxicol Appl Pharmacol ; 470: 116548, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37182749

ABSTRACT

Nowadays, more and more new synthetic cannabinoids (SCs) appearing on the illicit market present challenges to analytical, forensic, and toxicology experts. For a better understanding of the physiological effect of SCs, the key issue is studying their metabolomic and psychoactive properties. In this study, our validated targeted reversed phase UHPLC-MS/MS method was used for determination of urinary concentration of 5F-MDMB-PICA, 4F-MDMB-BICA, and their primary metabolites. The liquid-liquid extraction procedure was applied for the enrichment of SCs. The pharmacological characterization of investigated SCs were studied by radioligand competition binding and ligand stimulated [35S]GTPγS binding assays. For 5F-MDMB-PICA and 4F-MDMB-BICA, the median urinary concentrations were 0.076 and 0.312 ng/mL. For primary metabolites, the concentration range was 0.029-881.02* ng/mL for 5F-MDMB-PICA-COOH, and 0.396-4579* ng/mL for 4F-MDMB-BICA-COOH. In the polydrug aspect, the 22 urine samples were verified to be abused with 6 illicit drugs. The affinity of the metabolites to CB1R significantly decreased compared to the parent ligands. In the GTPγS functional assay, both 5F-MDMB-PICA and 4F-MDMB-BICA were acting as full agonists, while the metabolites were found as weak inverse agonists. Additionally, the G-protein stimulatory effects of the full agonist 5F-MDMB-PICA and 4F-MDMB-BICA were reduced by metabolites. These results strongly indicate the dose-dependent CB1R-mediated weak inverse agonist effects of the two butanoic acid metabolites. The obtained high concentration of main urinary metabolites of 5F-MDMB-PICA and 4F-MDMB-BICA confirmed the relevance of their routine analysis in forensic and toxicological practices. Based on in vitro binding assays, the metabolites presumably might cause a lower psychoactive effect than parent compounds.


Subject(s)
Cannabinoids , Tandem Mass Spectrometry , Tandem Mass Spectrometry/methods , Drug Inverse Agonism , Guanosine 5'-O-(3-Thiotriphosphate) , Cannabinoids/pharmacology
2.
Am J Physiol Renal Physiol ; 321(3): F305-F321, 2021 09 01.
Article in English | MEDLINE | ID: mdl-34282956

ABSTRACT

Although vasopressin V1B receptor (V1BR) mRNA has been detected in the kidney, the precise renal localization as well as pharmacological and physiological properties of this receptor remain unknown. Using the selective V1B agonist d[Leu4, Lys8]VP, either fluorescent or radioactive, we showed that V1BR is mainly present in principal cells of the inner medullary collecting duct (IMCD) in the male rat kidney. Protein and mRNA expression of V1BR were very low compared with the V2 receptor (V2R). On the microdissected IMCD, d[Leu4, Lys8]VP had no effect on cAMP production but induced a dose-dependent and saturable intracellular Ca2+ concentration increase mobilization with an EC50 value in the nanomolar range. This effect involved both intracellular Ca2+ mobilization and extracellular Ca2+ influx. The selective V1B antagonist SSR149415 strongly reduced the ability of vasopressin to increase intracellular Ca2+ concentration but also cAMP, suggesting a cooperation between V1BR and V2R in IMCD cells expressing both receptors. This cooperation arises from a cross talk between second messenger cascade involving PKC rather than receptor heterodimerization, as supported by potentiation of arginine vasopressin-stimulated cAMP production in human embryonic kidney-293 cells coexpressing the two receptor isoforms and negative results obtained by bioluminescence resonance energy transfer experiments. In vivo, only acute administration of high doses of V1B agonist triggered significant diuretic effects, in contrast with injection of selective V2 agonist. This study brings new data on the localization and signaling pathways of V1BR in the kidney, highlights a cross talk between V1BR and V2R in the IMCD, and suggests that V1BR may counterbalance in some pathophysiological conditions the antidiuretic effect triggered by V2R activation.NEW & NOTEWORTHY Although V1BR mRNA has been detected in the kidney, the precise renal localization as well as pharmacological and physiological properties of this receptor remain unknown. Using original pharmaceutical tools, this study brings new data on the localization and signaling pathways of V1BR, highlights a cross talk between V1BR and V2 receptor (V2R) in the inner medullary collecting duct, and suggests that V1BR may counterbalance in some pathophysiological conditions the antidiuretic effect triggered by V2R activation.


Subject(s)
Receptors, Vasopressin/drug effects , Signal Transduction/drug effects , Vasopressins/pharmacology , Animals , Arginine Vasopressin/pharmacology , Male , Neurophysins/drug effects , Protein Precursors/drug effects , Rats , Rats, Sprague-Dawley , Receptors, Vasopressin/metabolism , Vasopressins/drug effects
3.
Toxicol Appl Pharmacol ; 429: 115704, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34474082

ABSTRACT

Organic anion-transporting polypeptide 2B1 (OATP2B1) is a multispecific transporter mediating the cellular uptake of steroids and numerous drugs. OATP2B1 is abundantly expressed in the intestine and is also present in various tumors. Increased steroid hormone uptake by OATP2B1 has been suggested to promote progression of hormone dependent tumors. 13α-estrones are effective inhibitors of endogenous estrogen formation and are potential candidates to inhibit proliferation of hormone dependent cancers. Recently, we have identified a variety of 13α/ß-estrone-based inhibitors of OATP2B1. However, the nature of this interaction, whether these inhibitors are potential transported substrates of OATP2B1 and hence may be enriched in OATP2B1-overexpressing cells, has not yet been investigated. In the current study we explored the antiproliferative effect of the most effective OATP2B1 inhibitor 13α/ß-estrones in control and OATP2B1-overexpressing A431 carcinoma cells. We found an increased antiproliferative effect of 3-O-benzyl 13α/ß-estrones in both mock transfected and OATP2B1-overexpressing cells. However, C-2 halogenated 13α-estrones had a selective OATP2B1-mediated cell growth inhibitory effect. In order to demonstrate that increased sensitization can be attributed to OATP2B1-mediated cellular uptake, tritium labeled 2-bromo-13α-estrone was synthesized for direct transport measurements. These experiments revealed increased accumulation of [3H]2-bromo-13α-estrone due to OATP2B1 function. Our results indicate that C-2 halogenated 13α-estrones are good candidates in the design of anti-cancer drugs targeting OATP2B1.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Squamous Cell/drug therapy , Cell Proliferation/drug effects , Estrone/pharmacology , Membrane Transport Modulators/pharmacology , Organic Anion Transporters/antagonists & inhibitors , Skin Neoplasms/drug therapy , Antineoplastic Agents/metabolism , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/metabolism , Carcinoma, Squamous Cell/pathology , Cell Line, Tumor , Estrone/analogs & derivatives , Estrone/metabolism , Humans , Membrane Transport Modulators/metabolism , Organic Anion Transporters/genetics , Organic Anion Transporters/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/pathology
4.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34072767

ABSTRACT

Substance use/abuse is one of the main causes of depressive symptoms. Cannabis and synthetic cannabinoids in particular gained significant popularity in the past years. There is an increasing amount of clinical data associating such compounds with the inflammatory component of depression, indicated by the up-regulation of pro-inflammatory cytokines. Pro-inflammatory cytokines are also well-known to regulate the enzymes of the kynurenine pathway (KP), which is responsible for metabolizing tryptophan, a precursor in serotonin synthesis. Enhanced pro-inflammatory cytokine levels may over-activate the KP, leading to tryptophan depletion and reduced serotonin levels, which can subsequently precipitate depressive symptoms. Therefore, such mechanism might represent a possible link between the endocannabinoid system (ECS) and the KP in depression, via the inflammatory and dysregulated serotonergic component of the disorder. This review will summarize the data regarding those natural and synthetic cannabinoids that increase pro-inflammatory cytokines. Furthermore, the data on such cytokines associated with KP activation will be further reviewed accordingly. The interaction of the ECS and the KP has been postulated and demonstrated in some studies previously. This review will further contribute to this yet less explored connection and propose the KP to be the missing link between cannabinoid-induced inflammation and depressive symptoms.


Subject(s)
Cytokines/metabolism , Depression/etiology , Depression/metabolism , Inflammation Mediators/metabolism , Animals , Biomarkers , Depression/psychology , Disease Susceptibility , Endocannabinoids/metabolism , Humans , Inflammation/complications , Inflammation/etiology , Inflammation/metabolism , Kynurenine/metabolism , Metabolic Networks and Pathways , Serotonin/metabolism , Signal Transduction
5.
Int J Mol Sci ; 22(15)2021 Jul 29.
Article in English | MEDLINE | ID: mdl-34360878

ABSTRACT

Sigma-1 receptor (S1R) is an intracellular, multi-functional, ligand operated protein that also acts as a chaperone. It is considered as a pluripotent drug target in several pathologies. The publication of agonist and antagonist bound receptor structures has paved the way for receptor-based in silico drug design. However, recent studies on this subject payed no attention to the structural differences of agonist and antagonist binding. In this work, we have developed a new ensemble docking-based virtual screening protocol utilizing both agonist and antagonist bound S1R structures. This protocol was used to screen our in-house compound library. The S1R binding affinities of the 40 highest ranked compounds were measured in competitive radioligand binding assays and the sigma-2 receptor (S2R) affinities of the best S1R binders were also determined. This way three novel high affinity S1R ligands were identified and one of them exhibited a notable S1R/S2R selectivity.


Subject(s)
Isoxazoles/chemistry , Molecular Docking Simulation/methods , Pentazocine/chemistry , Pyridines/chemistry , Receptors, sigma/chemistry , Binding Sites , Hydrophobic and Hydrophilic Interactions , Isoxazoles/analysis , Isoxazoles/pharmacology , Ligands , Molecular Structure , Pentazocine/analysis , Pentazocine/pharmacology , Protein Binding , Pyridines/analysis , Pyridines/pharmacology , Radioligand Assay/methods , Receptors, sigma/agonists , Receptors, sigma/analysis , Receptors, sigma/antagonists & inhibitors , Sigma-1 Receptor
6.
Int J Mol Sci ; 21(11)2020 Jun 05.
Article in English | MEDLINE | ID: mdl-32516975

ABSTRACT

Inflammatory Bowel Disease (IBD) is an autoimmune ailment of the gastrointestinal (GI) tract, which is characterized by enhanced activation of proinflammatory cytokines. It is suggested that the sigma-1 receptor (σ1R) confers anti-inflammatory effects. As the exact pathogenesis of IBD is still unknown and treatment options are limited, we aimed to investigate the effects of σ1R in 2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced experimental colitis. To this end, male Wistar-Harlan rats were used to model colitic inflammation through the administration of TNBS. To investigate the effects of σ1R, Fluvoxamine (FLV, σ1R agonist) and BD1063 (σ1R antagonist) were applied via intracolonic administration to the animals once a day for three days. Our radioligand binding studies indicated the existence of σ1Rs as [3H](+)-pentazocine binding sites, and FLV treatment increased the reduced σ1R maximum binding capacity in TNBS-induced colitis. Furthermore, FLV significantly attenuated the colonic damage, the effect of which was abolished by the administration of BD1063. Additionally, FLV potentially increased the expression of ubiquitin C-terminal hydrolase ligase-1 (UCHL-1) and the levels of endothelial nitric oxide synthase (eNOS), and decreased the levels of interleukin-6 (IL-6) and inducible NOS (iNOS) expression. In summary, our study offers evidence for the anti-inflammatory potential of FLV and σ1R in experimental colitis, and our results present a promising approach to the development of new σ1R-targeted treatment options against IBD.


Subject(s)
Colitis/etiology , Colitis/metabolism , Interleukin-6/metabolism , Receptors, sigma/metabolism , Signal Transduction , Trinitrobenzenesulfonic Acid/adverse effects , Ubiquitin Thiolesterase/metabolism , Animals , Colitis/pathology , Cytokines/genetics , Cytokines/metabolism , Disease Models, Animal , Disease Susceptibility , Fluvoxamine/pharmacology , Gene Expression Regulation/drug effects , Heme Oxygenase (Decyclizing)/metabolism , Inflammation Mediators/metabolism , Ligands , NF-kappa B/metabolism , Nitric Oxide Synthase Type II/metabolism , Peroxidase/metabolism , Protein Binding , Rats , Receptors, sigma/agonists , Receptors, sigma/genetics , Severity of Illness Index , Sigma-1 Receptor
7.
Molecules ; 24(20)2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31619006

ABSTRACT

Schizophrenia, which affects around 1% of the world's population, has been described as a complex set of symptoms triggered by multiple factors. However, the exact background mechanisms remain to be explored, whereas therapeutic agents with excellent effectivity and safety profiles have yet to be developed. Kynurenines and the endocannabinoid system (ECS) play significant roles in both the development and manifestation of schizophrenia, which have been extensively studied and reviewed previously. Accordingly, kynurenines and the ECS share multiple features and mechanisms in schizophrenia, which have yet to be reviewed. Thus, the present study focuses on the main common points and potential interactions between kynurenines and the ECS in schizophrenia, which include (i) the regulation of glutamatergic/dopaminergic/γ-aminobutyric acidergic neurotransmission, (ii) their presence in astrocytes, and (iii) their role in inflammatory mechanisms. Additionally, promising pharmaceutical approaches involving the kynurenine pathway and the ECS will be reviewed herein.


Subject(s)
Endocannabinoids/metabolism , Kynurenine/metabolism , Schizophrenia/etiology , Schizophrenia/metabolism , Animals , Biomarkers , Disease Susceptibility , Humans , Metabolic Networks and Pathways , Molecular Targeted Therapy , Schizophrenia/drug therapy , Synaptic Transmission
8.
Amino Acids ; 50(11): 1595-1605, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30145711

ABSTRACT

The discovery of novel modulators of the cannabinoid system is a current topic in medicinal chemistry. In this paper, we report nine novel carboxamides designed as hybrids of Fubinaca family compounds and Rimonabant. These hybrids were obtained by linking the 1-benzyl-2,5-dichloroindazole-3-carboxylic acid to different amino acids bearing a hydrophobic side chain and three different C-terminus. The new chemical entities were tested in vitro to evaluate their bioactivity by means of receptor binding assays and [35S]GTPγS stimulation assays to reveal their affinity and potency. We found that all compounds were able to bind to the cannabinoid receptors in the low nanomolar range with a marked selectivity towards the CB1 cannabinoid receptor. Some of them are full agonists, whereas the others act as partial agonists. These molecules could be potentially used as anti-obesity agents, antiemetic and analgesics.


Subject(s)
Cannabinoid Receptor Antagonists , Piperidines , Pyrazoles , Animals , Cannabinoid Receptor Antagonists/chemical synthesis , Cannabinoid Receptor Antagonists/chemistry , Cannabinoid Receptor Antagonists/pharmacology , Piperidines/chemical synthesis , Piperidines/chemistry , Piperidines/pharmacology , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrazoles/pharmacology , Rats , Rats, Wistar , Rimonabant
9.
Gen Comp Endocrinol ; 258: 15-32, 2018 03 01.
Article in English | MEDLINE | ID: mdl-29155265

ABSTRACT

It is now accepted that vasopressin, through V1A/V1B receptors, centrally regulates cognitive functions such as memory, affiliation, stress, fear and depression. However, the respective roles of these receptor isoforms and their contribution to stress-related pathologies remain uncertain. The development of new therapeutic treatments requires a precise knowledge of the distribution of these receptors within the brain, which has been so far hampered by the lack of selective V1B markers. In the present study, we have determined the pharmacological properties of three new potent rat V1B fluorescent ligands and demonstrated that they constitute valuable tools for simultaneous visualization and activation of native V1B receptors in living rat brain tissue. Thus, d[Leu4,Lys-Alexa 647)8]VP (analogue 3), the compound with the best affinity-selectivity/fluorescence ratio for the V1B receptor emerged as the most promising. The rat brain regions most concerned by stress such as hippocampus, olfactory bulbs, cortex and amygdala display the highest V1B fluorescent labelling with analogue 3. In the hippocampus CA2, V1B receptors are located on glutamatergic, not GABAergic neurones, and are absent from astrocytes. Using AVP-EGFP rats, we demonstrate the presence of V1B autoreceptors on AVP-secreting neurones not only in the hypothalamus, but also sparsely in the hippocampus. Finally, using both electrophysiology and visualization of ERK phosphorylation, we show analogue 3-induced activation of the V1B receptor in situ. This will help to analyse expression and functionality of V1B receptors in the brain and contribute to further explore the AVPergic circuitry in normal and pathological conditions.


Subject(s)
Brain/anatomy & histology , Brain/metabolism , Fluorescent Dyes/metabolism , Receptors, Vasopressin/metabolism , Animals , Arginine Vasopressin/metabolism , Astrocytes/metabolism , CHO Cells , Cricetinae , Cricetulus , HEK293 Cells , Humans , Hypothalamus/metabolism , Ligands , Male , Neuroanatomy , Neurons/metabolism , Pituitary Gland/cytology , Rats, Sprague-Dawley , Receptors, GABA/metabolism , Staining and Labeling , Vasopressins/metabolism
10.
J Enzyme Inhib Med Chem ; 33(1): 1271-1282, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30230387

ABSTRACT

Ring A halogenated 13α-, 13ß-, and 17-deoxy-13α-estrone derivatives were synthesised with N-halosuccinimides as electrophile triggers. Substitutions occurred at positions C-2 and/or C-4. The potential inhibitory action of the halogenated estrones on human aromatase, steroid sulfatase, or 17ß-hydroxysteroid dehydrogenase 1 activity was investigated via in vitro radiosubstrate incubation. Potent submicromolar or low micromolar inhibitors were identified with occasional dual or multiple inhibitory properties. Valuable structure-activity relationships were established from the comparison of the inhibitory data obtained. Kinetic experiments performed with selected compounds revealed competitive reversible inhibition mechanisms against 17ß-hydroxysteroid dehydrogenase 1 and competitive irreversible manner in the inhibition of the steroid sulfatase enzyme.


Subject(s)
Aromatase/metabolism , Enzyme Inhibitors/pharmacology , Estradiol Dehydrogenases/antagonists & inhibitors , Estrogens/biosynthesis , Estrone/pharmacology , Steryl-Sulfatase/antagonists & inhibitors , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Estradiol Dehydrogenases/metabolism , Estrone/chemical synthesis , Estrone/chemistry , Halogenation , Humans , Molecular Conformation , Steryl-Sulfatase/metabolism , Structure-Activity Relationship
11.
Bioorg Med Chem Lett ; 27(8): 1644-1648, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28318942

ABSTRACT

In this study we report the in vitro activities of four cyclic opioid peptides with various sequence length/macrocycle size and N-methylamino acid residue content. N-Methylated amino acids were incorporated and cyclization was employed to enhance conformational rigidity to various extent. The effect of such modifications on ligand structure and binding properties were studied. The pentapeptide containing one endocyclic and one exocyclic N-methylated amino acid displayed the highest affinity to the mu-opioid receptor. This peptide was also shown to be a full agonist, while the other analogs failed to activate the mu opioid receptor. Results of molecular docking studies provided rationale for the explanation of binding properties on a structural basis.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Opioid Peptides/chemistry , Opioid Peptides/pharmacology , Receptors, Opioid, mu/agonists , Receptors, Opioid, mu/metabolism , Amino Acid Sequence , Amino Acids/chemistry , Amino Acids/pharmacology , Animals , Cyclization , Humans , Ligands , Methylation , Molecular Docking Simulation , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Rats , Structure-Activity Relationship
12.
J Pept Sci ; 23(12): 864-870, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29110363

ABSTRACT

Three novel morphiceptin analogs, in which Pro in position 2 and/or 4 was replaced by cis-4-aminoproline connected with the preceding amino acid through the primary amino group, were synthesized. The opioid receptor affinities, functional assay results, enzymatic degradation studies and experimental and in silico structural analysis of such analogs are presented. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.


Subject(s)
Endorphins/chemistry , Peptides/chemical synthesis , Peptides/pharmacology , Receptors, Opioid/metabolism , Animals , Computer Simulation , Humans , Molecular Dynamics Simulation , Peptides/chemistry , Protein Binding , Structure-Activity Relationship
13.
J Enzyme Inhib Med Chem ; 32(1): 444-451, 2017 Dec.
Article in English | MEDLINE | ID: mdl-28097916

ABSTRACT

Cannabinoid (CB) and opioid systems are both involved in analgesia, food intake, mood and behavior. Due to the co-localization of µ-opioid (MOR) and CB1 receptors in various regions of the central nervous system (CNS) and their ability to form heterodimers, bivalent ligands targeting to both these systems may be good candidates to investigate the existence of possible cross-talking or synergistic effects, also at sub-effective doses. In this work, we selected from a small series of new Rimonabant analogs one CB1R reverse agonist to be conjugated to the opioid fragment Tyr-D-Ala-Gly-Phe-NH2. The bivalent compound (9) has been used for in vitro binding assays, for in vivo antinociception models and in vitro hypothalamic perfusion test, to evaluate the neurotransmitters release.


Subject(s)
Opioid Peptides/pharmacology , Piperidines/pharmacology , Pyrazoles/pharmacology , Receptor, Cannabinoid, CB1/metabolism , Receptors, Opioid/metabolism , Animals , Humans , Ligands , Mice , Opioid Peptides/chemistry , Opioid Peptides/metabolism , Piperidines/metabolism , Pyrazoles/metabolism , Rimonabant
14.
Int J Mol Sci ; 18(8)2017 Jul 30.
Article in English | MEDLINE | ID: mdl-28758944

ABSTRACT

Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.


Subject(s)
Endocannabinoids/metabolism , Kynurenine/metabolism , Migraine Disorders/metabolism , Receptors, Cannabinoid/metabolism , Receptors, N-Methyl-D-Aspartate/metabolism , Animals , Humans , Migraine Disorders/therapy
15.
Biopolymers ; 106(3): 309-17, 2016 May.
Article in English | MEDLINE | ID: mdl-27038094

ABSTRACT

The study reports the synthesis and biological evaluation of two opioid analogs, a monomer and a dimer, obtained as products of the solid-phase, side-chain to side-chain cyclization of the pentapeptide Tyr-d-Lys-Phe-Phe-AspNH2 . The binding affinities to the mu, delta, and kappa opioid receptors, as well as results obtained in a calcium mobilization functional assay are reported. Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 1 was a potent and selective full agonist of mu with sub-nanomolar affinity, while the dimer (Tyr-[d-Lys-Phe-Phe-Asp]2 -NH2 )2 2 showed a significant mixed mu/kappa affinity, acting as an agonist at the mu. Molecular docking computations were utilized to explain the ability of the dimeric cyclopeptide 2 to interact with the receptor. Interestingly, in spite of the increased ring size, the higher flexibility allowed 2 to fold and fit into the mu receptor binding pocket. Both cyclopeptides were shown to elicit strong antinociceptive activity after intraventricular injection but only cyclomonomer 1 was able to cross the blood-brain barrier. However, the cyclodimer 2 displayed a potent peripheral antinociceptive activity in a mouse model of visceral inflammatory pain. © 2016 Wiley Periodicals, Inc. Biopolymers (Pept Sci) 106: 309-317, 2016.


Subject(s)
Analgesics, Opioid/chemical synthesis , Analgesics/chemical synthesis , Oligopeptides/chemical synthesis , Pain/drug therapy , Peptides, Cyclic/chemical synthesis , Receptors, Opioid, mu/agonists , Amino Acid Sequence , Analgesics/pharmacology , Analgesics, Opioid/pharmacology , Animals , Binding Sites , Biological Assay , Blood-Brain Barrier/drug effects , Blood-Brain Barrier/metabolism , Calcium/metabolism , Cyclization , Dimerization , Humans , Injections, Intraventricular , Male , Mice , Models, Molecular , Molecular Docking Simulation , Oligopeptides/chemistry , Oligopeptides/pharmacology , Pain/metabolism , Pain/physiopathology , Peptides, Cyclic/pharmacology , Protein Binding , Receptors, Opioid, delta/chemistry , Receptors, Opioid, delta/metabolism , Receptors, Opioid, kappa/chemistry , Receptors, Opioid, kappa/metabolism , Receptors, Opioid, mu/chemistry , Receptors, Opioid, mu/metabolism , Structure-Activity Relationship
16.
J Enzyme Inhib Med Chem ; 31(6): 1638-47, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27063555

ABSTRACT

Fentanyl is a powerful opiate analgesic typically used for the treatment of severe and chronic pain, but its prescription is strongly limited by the well-documented side-effects. Different approaches have been applied to develop strong analgesic drugs with reduced pharmacologic side-effects. One of the most promising is the design of multitarget drugs. In this paper we report the synthesis, characterization and biological evaluation of twelve new 4-anilidopiperidine (fentanyl analogues). In vivo hot-Plate test, shows a moderate antinociceptive activity for compounds OMDM585 and OMDM586, despite the weak binding affinity on both µ and δ-opioid receptors. A strong inverse agonist activity in the GTP-binding assay was revealed suggesting the involvement of alternative systems in the brain. Fatty acid amide hydrolase inhibition was evaluated, together with binding assays of cannabinoid receptors. We can conclude that compounds OMDM585 and 586 are capable to elicit antinociception due to their multitarget activity on different systems involved in pain modulation.


Subject(s)
Analgesics/pharmacology , Carbamates/analysis , Piperidines/pharmacology , Urea/analysis , Analgesics/chemistry , Animals , Female , Guinea Pigs , Male , Mice , Piperidines/chemistry , Rats , Rats, Wistar , Spectrum Analysis/methods
17.
Org Biomol Chem ; 13(21): 6039-46, 2015 Jun 07.
Article in English | MEDLINE | ID: mdl-25948019

ABSTRACT

The study reports the solid-phase synthesis and biological evaluation of a series of new side chain-to-side chain cyclized opioid peptide analogs of the general structure Tyr-[D-Xaa-Phe-Phe-Asp]NH2, where Xaa = Lys (1), Orn (2), Dab (3), or Dap (4) (Dab = 2,4-diaminobutyric acid, Dap = 2,3-diaminopropionic acid), containing 17- to 14-membered rings. The influence of the ring size on binding to the MOP, DOP and KOP opioid receptors was studied. In general, the reduction of the size of the macrocyclic ring increased the selectivity for the MOP receptor. The cyclopeptide incorporating Xaa = Lys displayed subnanomolar MOP affinity but modest selectivity over the KOP receptor, while the analog with the Orn residue showed increased affinity and selectivity for MOP. The analog with Dab was a weak MOP agonist and did not bind to the other two opioid receptors. Finally, the peptide with Xaa = Dap was completely MOP receptor-selective with subnanomolar affinity. Interestingly, the deletion of one Phe residue from 1 led to the 14-membered Tyr-c[D-Lys-Phe-Asp]NH2 (5), a potent and selective MOP receptor ligand. The in vitro potencies of the new analogs were determined in a calcium mobilization assay performed in Chinese Hamster Ovary (CHO) cells expressing human recombinant opioid receptors and chimeric G proteins. A good correlation between binding and the functional test results was observed. The influence of the ring size, solid support and the N-terminal protecting group on the formation of cyclodimers was studied.


Subject(s)
Analgesics, Opioid/chemistry , Analgesics, Opioid/pharmacology , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Receptors, Opioid/metabolism , Amino Acid Sequence , Analgesics, Opioid/chemical synthesis , Animals , CHO Cells , Cricetinae , Cricetulus , Humans , Models, Molecular , Oligopeptides/chemical synthesis , Peptides, Cyclic/chemical synthesis
18.
Anesth Analg ; 121(6): 1488-94, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26465932

ABSTRACT

BACKGROUND: Hemopressin, so-called because of its hypotensive effect, belongs to the derivatives of the hemoglobin α-chain. It was isolated from rat brain membrane homogenate by the use of catalytically inactive forms of endopeptidase 24.15 and neurolysin. Hemopressin has antihyperalgesic features that cannot be prevented by the opioid receptor antagonist, naloxone. METHODS: In the present study, we investigated whether hemopressin (PVNFKFLSH) and its C-terminally truncated fragment hemopressin 1-7 (PVNFKFL) have any influence on opioid-dependent signaling. Peptides have been analyzed using G-protein-stimulating functional and receptor bindings in this experimental setup. RESULTS: These 2 compounds efficiently activated the G-proteins, and naloxone slightly blocked this stimulation. At the same time, they were able to displace radiolabeled [3H]DAMGO, a selective ligand for µ-opioid system, at micromolar concentrations. Displacement caused by the heptapeptide was more modest compared with hemopressin. Experiments performed on cell lines overexpressing µ-opioid receptors verified the opioid activity of both hemopressins. Moreover, the CB1 cannabinoid receptor antagonist, AM251, significantly decreased their G-protein stimulatory effect. CONCLUSIONS: Here, we further confirm that hemopressins can modulate CB1 receptors and can have a slight modulatory effect on the opioid system.


Subject(s)
Cannabinoids/metabolism , Hemoglobins/metabolism , Peptide Fragments/metabolism , Receptors, Opioid, mu/metabolism , Animals , CHO Cells , Cannabinoids/pharmacology , Cricetinae , Cricetulus , Guinea Pigs , Hemoglobins/pharmacology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/pharmacology , Protein Binding/physiology , Rats , Rats, Wistar , Receptors, Opioid, mu/agonists
19.
J Labelled Comp Radiopharm ; 58(1): 7-13, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25616230

ABSTRACT

Cell membrane association of proteins can be achieved by the addition of lipid moieties to the polypeptide chain, and such lipid-modified proteins have important biological functions. A class of cell surface proteins contains a complex glycosylphosphatidylinositol (GPI) glycolipid at the C-terminus, and they are accumulated in cholesterol-rich membrane microdomains, that is, lipid rafts. Semisynthetic lipoproteins prepared from recombinant proteins and designed lipids are valuable probes and model systems of the membrane-associated proteins. Because GPI-anchored proteins can be reinserted into the cell membrane with the retention of the biological function, they are appropriate candidates for preparing models via reduction of the structural complexity. A synthetic headgroup was added to the 3ß-hydroxyl group of cholesterol, an essential lipid component of rafts, and the resulting cholesterol derivative was used as a simplified GPI mimetic. In order to quantitate the membrane integrated GPI mimetic after the exogenous addition to live cells, a tritium labelled cholesterol anchor was prepared. The radioactive label was introduced into the headgroup, and the radiolabelled GPI mimetic anchor was obtained with a specific activity of 1.37 TBq/mmol. The headgroup labelled cholesterol derivative was applied to demonstrate the sensitive detection of the cell membrane association of the anchor under in vivo conditions.


Subject(s)
Cholesterol/analogs & derivatives , Glycosylphosphatidylinositols/chemical synthesis , Surface-Active Agents/chemical synthesis , Tritium/chemistry , Cholesterol/chemistry
20.
Bioorg Med Chem ; 22(23): 6545-6551, 2014 Dec 01.
Article in English | MEDLINE | ID: mdl-25456075

ABSTRACT

Cyclization of linear sequences is a well recognized tool in opioid peptide chemistry for generating analogs with improved bioactivities. Cyclization can be achieved through various bridging bonds between peptide ends or side-chains. In our earlier paper we have reported the synthesis and biological activity of a cyclic peptide, Tyr-c[D-Lys-Phe-Phe-Asp]NH2 (1), which can be viewed as an analog of endomorphin-2 (EM-2, Tyr-Pro-Phe-Phe-NH2). Cyclization was achieved through an amide bond between side-chains of D-Lys and Asp residues. Here, to increase rigidity of the cyclic structure, we replaced d-Lys with cis- or trans-4-aminocyclohexyl-D-alanine (D-ACAla). Two sets of analogs incorporating either Tyr or Dmt (2',6'-dimethyltyrosine) residues in position 1 were synthesized. In the binding studies the analog incorporating Dmt and trans-D-ACAla showed high affinity for both, µ- and δ-opioid receptors (MOR and DOR, respectively) and moderate affinity for the κ-opioid receptor (KOR), while analog with Dmt and cis-D-ACAla was exceptionally MOR-selective. Conformational analyses by NMR and molecular docking studies have been performed to investigate the molecular structural features responsible for the noteworthy MOR selectivity.


Subject(s)
Alanine/analogs & derivatives , Cyclohexanes/chemistry , Opioid Peptides/chemistry , Alanine/chemical synthesis , Alanine/chemistry , Cyclization , Cyclohexanes/chemical synthesis , Humans , Opioid Peptides/chemical synthesis , Opioid Peptides/metabolism , Receptors, Opioid/metabolism , Stereoisomerism
SELECTION OF CITATIONS
SEARCH DETAIL