Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
1.
Magn Reson Med ; 89(5): 1777-1790, 2023 05.
Article in English | MEDLINE | ID: mdl-36744619

ABSTRACT

PURPOSE: To develop a robust retrospective motion-correction technique based on repeating k-space guidance lines for improving motion correction in Cartesian 2D and 3D brain MRI. METHODS: The motion guidance lines are inserted into the standard sequence orderings for 2D turbo spin echo and 3D MPRAGE to inform a data consistency-based motion estimation and reconstruction, which can be guided by a low-resolution scout. The extremely limited number of required guidance lines are repeated during each echo train and discarded in the final image reconstruction. Thus, integration within a standard k-space acquisition ordering ensures the expected image quality/contrast and motion sensitivity of that sequence. RESULTS: Through simulation and in vivo 2D multislice and 3D motion experiments, we demonstrate that respectively 2 or 4 optimized motion guidance lines per shot enables accurate motion estimation and correction. Clinically acceptable reconstruction times are achieved through fully separable on-the-fly motion optimizations (˜1 s/shot) using standard scanner GPU hardware. CONCLUSION: The addition of guidance lines to scout accelerated motion estimation facilitates robust retrospective motion correction that can be effectively introduced without perturbing standard clinical protocols and workflows.


Subject(s)
Brain , Magnetic Resonance Imaging , Retrospective Studies , Brain/diagnostic imaging , Magnetic Resonance Imaging/methods , Motion , Computer Simulation , Imaging, Three-Dimensional/methods , Image Processing, Computer-Assisted/methods
2.
Magn Reson Med ; 87(5): 2380-2387, 2022 05.
Article in English | MEDLINE | ID: mdl-34985151

ABSTRACT

PURPOSE: To evaluate the impact of magnetization transfer (MT) on brain tissue contrast in turbo-spin-echo (TSE) and EPI fluid-attenuated inversion recovery (FLAIR) images, and to optimize an MT-prepared EPI FLAIR pulse sequence to match the tissue contrast of a clinical reference TSE FLAIR protocol. METHODS: Five healthy volunteers underwent 3T brain MRI, including single slice TSE FLAIR, multi-slice TSE FLAIR, EPI FLAIR without MT-preparation, and MT-prepared EPI FLAIR with variations of the MT-preparation parameters, including number of preparation pulses, pulse amplitude, and resonance offset. Automated co-registration and gray matter (GM) versus white matter (WM) segmentation was performed using a T1-MPRAGE acquisition, and the GM versus WM signal intensity ratio (contrast ratio) was calculated for each FLAIR acquisition. RESULTS: Without MT preparation, EPI FLAIR showed poor tissue contrast (contrast ratio = 0.98), as did single slice TSE FLAIR. Multi-slice TSE FLAIR provided high tissue contrast (contrast ratio = 1.14). MT-prepared EPI FLAIR closely approximated the contrast of the multi-slice TSE FLAIR images for two combinations of the MT-preparation parameters (contrast ratio = 1.14). Optimized MT-prepared EPI FLAIR provided a 50% reduction in scan time compared to the reference TSE FLAIR acquisition. CONCLUSION: Optimized MT-prepared EPI FLAIR provides comparable brain tissue contrast to the multi-slice TSE FLAIR images used in clinical practice.


Subject(s)
Magnetic Resonance Imaging , White Matter , Brain/diagnostic imaging , Echo-Planar Imaging/methods , Gray Matter/diagnostic imaging , Humans , Magnetic Resonance Imaging/methods , Neuroimaging , White Matter/diagnostic imaging
3.
Magn Reson Med ; 87(5): 2453-2463, 2022 05.
Article in English | MEDLINE | ID: mdl-34971463

ABSTRACT

PURPOSE: We introduce and validate an artificial intelligence (AI)-accelerated multi-shot echo-planar imaging (msEPI)-based method that provides T1w, T2w, T2∗ , T2-FLAIR, and DWI images with high SNR, high tissue contrast, low specific absorption rates (SAR), and minimal distortion in 2 minutes. METHODS: The rapid imaging technique combines a novel machine learning (ML) scheme to limit g-factor noise amplification and improve SNR, a magnetization transfer preparation module to provide clinically desirable contrast, and high per-shot EPI undersampling factors to reduce distortion. The ML training and image reconstruction incorporates a tunable parameter for controlling the level of denoising/smoothness. The performance of the reconstruction method is evaluated across various acceleration factors, contrasts, and SNR conditions. The 2-minute protocol is directly compared to a 10-minute clinical reference protocol through deployment in a clinical setting, where five representative cases with pathology are examined. RESULTS: Optimization of custom msEPI sequences and protocols was performed to balance acquisition efficiency and image quality compared to the five-fold longer clinical reference. Training data from 16 healthy subjects across multiple contrasts and orientations were used to produce ML networks at various acceleration levels. The flexibility of the ML reconstruction was demonstrated across SNR levels, and an optimized regularization was determined through radiological review. Network generalization toward novel pathology, unobserved during training, was illustrated in five clinical case studies with clinical reference images provided for comparison. CONCLUSION: The rapid 2-minute msEPI-based protocol with tunable ML reconstruction allows for advantageous trade-offs between acquisition speed, SNR, and tissue contrast when compared to the five-fold slower standard clinical reference exam.


Subject(s)
Artificial Intelligence , Echo-Planar Imaging , Brain/diagnostic imaging , Diffusion Magnetic Resonance Imaging/methods , Echo-Planar Imaging/methods , Humans , Image Processing, Computer-Assisted/methods , Neuroimaging
4.
Eur Radiol ; 32(10): 7128-7135, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35925387

ABSTRACT

OBJECTIVES: Wave-CAIPI (Controlled Aliasing in Parallel Imaging) enables dramatic reduction in acquisition time of 3D MRI sequences such as 3D susceptibility-weighted imaging (SWI) but has not been clinically evaluated at 1.5 T. We sought to compare highly accelerated Wave-CAIPI SWI (Wave-SWI) with two alternative standard sequences, conventional three-dimensional SWI and two-dimensional T2*-weighted Gradient-Echo (T2*w-GRE), in patients undergoing routine brain MRI at 1.5 T. METHODS: In this study, 172 patients undergoing 1.5 T brain MRI were scanned with a more commonly used susceptibility sequence (standard SWI or T2*w-GRE) and a highly accelerated Wave-SWI sequence. Two radiologists blinded to the acquisition technique scored each sequence for visualization of pathology, motion and signal dropout artifacts, image noise, visualization of normal anatomy (vessels and basal ganglia mineralization), and overall diagnostic quality. Superiority testing was performed to compare Wave-SWI to T2*w-GRE, and non-inferiority testing with 15% margin was performed to compare Wave-SWI to standard SWI. RESULTS: Wave-SWI performed superior in terms of visualization of pathology, signal dropout artifacts, visualization of normal anatomy, and overall image quality when compared to T2*w-GRE (all p < 0.001). Wave-SWI was non-inferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall image quality (all p < 0.001). Wave-SWI was superior to standard SWI for motion artifact (p < 0.001), while both conventional susceptibility sequences were superior to Wave-SWI for image noise (p < 0.001). CONCLUSIONS: Wave-SWI can be performed in a 1.5 T clinical setting with robust performance and preservation of diagnostic quality. KEY POINTS: • Wave-SWI accelerated the acquisition of 3D high-resolution susceptibility images in 70% of the acquisition time of the conventional T2*GRE. • Wave-SWI performed superior to T2*w-GRE for visualization of pathology, signal dropout artifacts, and overall diagnostic image quality. • Wave-SWI was noninferior to standard SWI for visualization of normal anatomy and pathology, signal dropout artifacts, and overall diagnostic image quality.


Subject(s)
Magnetic Resonance Imaging , Neuroimaging , Artifacts , Brain/diagnostic imaging , Humans , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging/methods
5.
Pediatr Radiol ; 52(6): 1115-1124, 2022 05.
Article in English | MEDLINE | ID: mdl-35119490

ABSTRACT

BACKGROUND: Susceptibility-weighted imaging (SWI) is highly sensitive for intracranial hemorrhagic and mineralized lesions but is associated with long scan times. Wave controlled aliasing in parallel imaging (Wave-CAIPI) enables greater acceleration factors and might facilitate broader application of SWI, especially in motion-prone populations. OBJECTIVE: To compare highly accelerated Wave-CAIPI SWI to standard SWI in the non-sedated pediatric outpatient setting, with respect to the following variables: estimated scan time, image noise, artifacts, visualization of normal anatomy and visualization of pathology. MATERIALS AND METHODS: Twenty-eight children (11 girls, 17 boys; mean age ± standard deviation [SD] = 128.3±62 months) underwent 3-tesla (T) brain MRI, including standard three-dimensional (3-D) SWI sequence followed by a highly accelerated Wave-CAIPI SWI sequence for each subject. We rated all studies using a predefined 5-point scale and used the Wilcoxon signed rank test to assess the difference for each variable between sequences. RESULTS: Wave-CAIPI SWI provided a 78% and 67% reduction in estimated scan time using the 32- and 20-channel coils, respectively, corresponding to estimated scan time reductions of 3.5 min and 3 min, respectively. All 28 children were imaged without anesthesia. Inter-reader agreement ranged from fair to substantial (k=0.67 for evaluation of pathology, 0.55 for anatomical contrast, 0.3 for central noise, and 0.71 for artifacts). Image noise was rated higher in the central brain with wave SWI (P<0.01), but not in the peripheral brain. There was no significant difference in the visualization of normal anatomical structures and visualization of pathology between the standard and wave SWI sequences (P=0.77 and P=0.79, respectively). CONCLUSION: Highly accelerated Wave-CAIPI SWI of the brain can provide similar image quality to standard SWI, with estimated scan time reduction of 3-3.5 min depending on the radiofrequency coil used, with fewer motion artifacts, at a cost of mild but perceptibly increased noise in the central brain.


Subject(s)
Artifacts , Magnetic Resonance Imaging , Brain/diagnostic imaging , Child , Female , Humans , Imaging, Three-Dimensional , Magnetic Resonance Imaging/methods , Male , Neuroimaging/methods , Pilot Projects
6.
Neuroimage ; 237: 118206, 2021 08 15.
Article in English | MEDLINE | ID: mdl-34048902

ABSTRACT

Most existing algorithms for automatic 3D morphometry of human brain MRI scans are designed for data with near-isotropic voxels at approximately 1 mm resolution, and frequently have contrast constraints as well-typically requiring T1-weighted images (e.g., MP-RAGE scans). This limitation prevents the analysis of millions of MRI scans acquired with large inter-slice spacing in clinical settings every year. In turn, the inability to quantitatively analyze these scans hinders the adoption of quantitative neuro imaging in healthcare, and also precludes research studies that could attain huge sample sizes and hence greatly improve our understanding of the human brain. Recent advances in convolutional neural networks (CNNs) are producing outstanding results in super-resolution and contrast synthesis of MRI. However, these approaches are very sensitive to the specific combination of contrast, resolution and orientation of the input images, and thus do not generalize to diverse clinical acquisition protocols - even within sites. In this article, we present SynthSR, a method to train a CNN that receives one or more scans with spaced slices, acquired with different contrast, resolution and orientation, and produces an isotropic scan of canonical contrast (typically a 1 mm MP-RAGE). The presented method does not require any preprocessing, beyond rigid coregistration of the input scans. Crucially, SynthSR trains on synthetic input images generated from 3D segmentations, and can thus be used to train CNNs for any combination of contrasts, resolutions and orientations without high-resolution real images of the input contrasts. We test the images generated with SynthSR in an array of common downstream analyses, and show that they can be reliably used for subcortical segmentation and volumetry, image registration (e.g., for tensor-based morphometry), and, if some image quality requirements are met, even cortical thickness morphometry. The source code is publicly available at https://github.com/BBillot/SynthSR.


Subject(s)
Brain/diagnostic imaging , Deep Learning , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Computer Simulation , Humans , Models, Theoretical
7.
Eur Radiol ; 31(8): 5759-5767, 2021 Aug.
Article in English | MEDLINE | ID: mdl-33454799

ABSTRACT

OBJECTIVES: Intra-tumor heterogeneity has been previously shown to be an independent predictor of patient survival. The goal of this study is to assess the role of quantitative MRI-based measures of intra-tumor heterogeneity as predictors of survival in patients with metastatic colorectal cancer. METHODS: In this IRB-approved retrospective study, we identified 55 patients with stage 4 colon cancer with known hepatic metastasis on MRI. Ninety-four metastatic hepatic lesions were identified on post-contrast images and manually volumetrically segmented. A heterogeneity phenotype vector was extracted from each lesion. Univariate regression analysis was used to assess the contribution of 110 extracted features to survival prediction. A random forest-based machine learning technique was applied to the feature vector and to the standard prognostic clinical and pathologic variables. The dataset was divided into a training and test set at a ratio of 4:1. ROC analysis and confusion matrix analysis were used to assess classification performance. RESULTS: Mean survival time was 39 ± 3.9 months for the study population. A total of 22 texture features were associated with patient survival (p < 0.05). The trained random forest machine learning model that included standard clinical and pathological prognostic variables resulted in an area under the ROC curve of 0.83. A model that adds imaging-based heterogeneity features to the clinical and pathological variables resulted in improved model performance for survival prediction with an AUC of 0.94. CONCLUSIONS: MRI-based texture features are associated with patient outcomes and improve the performance of standard clinical and pathological variables for predicting patient survival in metastatic colorectal cancer. KEY POINTS: • MRI-based tumor heterogeneity texture features are associated with patient survival outcomes. • MRI-based tumor texture features complement standard clinical and pathological variables for prognosis prediction in metastatic colorectal cancer. • Agglomerative hierarchical clustering shows that patient survival outcomes are associated with different MRI tumor profiles.


Subject(s)
Colonic Neoplasms , Rectal Neoplasms , Colonic Neoplasms/diagnostic imaging , Humans , Machine Learning , Magnetic Resonance Imaging , Retrospective Studies
8.
Pediatr Radiol ; 51(1): 77-85, 2021 01.
Article in English | MEDLINE | ID: mdl-32845348

ABSTRACT

BACKGROUND: Diffusion-weighted imaging (DWI) is a useful MRI technique to characterize abdominal lesions in children, but long acquisition times can lead to image degradation. Simultaneous multi-slice accelerated DWI is a promising technique to shorten DWI scan times. OBJECTIVE: To test the feasibility of simultaneous multi-slice DWI of the kidneys in pediatric patients with tuberous sclerosis complex (TSC) and to evaluate the accelerated protocol regarding image quality and quantitative apparent diffusion coefficient (ADC) values compared to standard echoplanar DWI sequence. MATERIALS AND METHODS: We included 33 children and adolescents (12 female, 21 male; mean age 10±5 years) with TSC and renal cyst or angiomyolipoma on 3-tesla (T) MRI from 2017 to 2019. All studies included both free-breathing standard echoplanar DWI and simultaneous multi-slice DWI sequences. Subjective and quantitative image quality was evaluated using a predefined 5-point scale. ADC values were obtained for all renal cysts and angiomyolipomas ≥5 mm. All statistical analysis was performed using Stata/SE v15.1. RESULTS: Simultaneous multi-slice DWI ADC values were slightly lower compared to standard echoplanar DWI for both renal cysts and angiomyolipomas (mean difference 0.05×10-3 mm2/s, 95% confidence interval [CI] 0.40-0.50 and 0.024×10-3 mm2/s, 95% CI 0.17-0.21, respectively, with P>0.1). Our results showed that renal lesions with ADC values >1.69×10-3 mm2/s were all cysts, whereas lesions with values <1.16×10-3 mm2/s were all angiomyolipomas. However, ADC values could not discriminate between lipid-rich and lipid-poor angiomyolipomas (P>0.1, for both sequences). CONCLUSION: A 55% reduction in scan time was achieved using simultaneous multi-slice DWI for abdominal imaging in children with TSC, with near identical image quality as standard DWI. These results suggest that multi-slice techniques should be considered more broadly as an MRI acceleration technique in children.


Subject(s)
Tuberous Sclerosis , Adolescent , Child , Diffusion Magnetic Resonance Imaging , Echo-Planar Imaging , Female , Humans , Infant, Newborn , Kidney , Male , Reproducibility of Results , Tuberous Sclerosis/complications , Tuberous Sclerosis/diagnostic imaging
9.
Pediatr Radiol ; 51(13): 2498-2506, 2021 12.
Article in English | MEDLINE | ID: mdl-34532817

ABSTRACT

BACKGROUND: In children exposed to multiple computed tomography (CT) exams, performed with varying z-axis coverage and often with tube current modulation, it is inaccurate to add volume CT dose index (CTDIvol) and size-specific dose estimate (SSDE) to obtain cumulative dose values. OBJECTIVE: To introduce the patient-size-specific z-axis dose profile and its dose line integral (DLI) as new dose metrics, and to use them to compare cumulative dose calculations against conventional measures. MATERIALS AND METHODS: In all children with 2 or more abdominal-pelvic CT scans performed from 2013 through 2019, we retrospectively recorded all series kV, z-axis tube current profile, CTDIvol, dose-length product (DLP) and calculated SSDE. We constructed dose profiles as a function of z-axis location for each series. One author identified the z-axis location of the superior mesenteric artery origin on each series obtained to align the dose profiles for construction of each patient's cumulative profile. We performed pair-wise comparisons between the peak dose of the cumulative patient dose profile and ΣSSDE, and between ΣDLI and ΣDLP. RESULTS: We recorded dose data in 143 series obtained in 48 children, ages 0-2 years (n=15) and 8-16 years (n=33): ΣSSDE 12.7±6.7 and peak dose 15.1±8.1 mGy, ΣDLP 278±194 and ΣDLI 550±292 mGy·cm. Peak dose exceeded ΣSSDE by 20.6% (interquartile range [IQR]: 9.9-26.4%, P<0.001), and ΣDLI exceeded ΣDLP by 114% (IQR: 86.5-147.0%, P<0.001). CONCLUSION: Our methodology represents a novel approach for evaluating radiation exposure in recurring pediatric abdominal CT examinations, both at the individual and population levels. Under a wide range of patient variables and acquisition conditions, graphic depiction of the cumulative z-axis dose profile across and beyond scan ranges, including the peak dose of the profile, provides a better tool for cumulative dose documentation than simple summations of SSDE. ΣDLI is advantageous in characterizing overall energy absorption over ΣDLP, which significantly underestimated this in all children.


Subject(s)
Pelvis , Tomography, X-Ray Computed , Child , Child, Preschool , Humans , Infant , Infant, Newborn , Phantoms, Imaging , Radiation Dosage , Retrospective Studies
10.
Pediatr Radiol ; 51(11): 2009-2017, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34268599

ABSTRACT

BACKGROUND: Fast magnetic resonance imaging (MRI) sequences are advantageous in pediatric imaging as they can lessen child discomfort, decrease motion artifact and improve scanner availability. OBJECTIVE: To evaluate the feasibility of an ultrafast wave-CAIPI (controlled aliasing in parallel imaging) MP-RAGE (magnetization-prepared rapid gradient echo) sequence for brain imaging of awake pediatric patients. MATERIALS AND METHODS: Each MRI included a standard MP-RAGE sequence and an ultrafast wave-MP-RAGE sequence. Two neuroradiologists evaluated both sequences in terms of artifacts, noise, anatomical contrast and pathological contrast. A predefined 5-point scale was used by two independent pediatric neuroradiologists. A Wilcoxon signed-rank test was used to evaluate the difference between sequences for each variable. RESULTS: Twenty-four patients (14 males; mean age: 11.5±4.5 years, range: 1 month to 17.8 years) were included. Wave-CAIPI MP-RAGE provided a 77% reduction in scan time using a 32-channel coil and a 70% reduction using a 20-channel coil. Visualization of the pathology, artifacts and pathological enhancement (including parenchymal, leptomeningeal and dural enhancement) was not significantly different between standard MP-RAGE and wave-CAIPI MP-RAGE (all P>0.05). For central (P<0.001) and peripheral (P<0.001) noise, and the evaluation of the anatomical structures (P<0.001), the observers favored standard MP-RAGE over wave-CAIPI MP-RAGE. CONCLUSION: Ultrafast brain imaging with wave-CAIPI MP-RAGE is feasible in awake pediatric patients, providing a substantial reduction in scan time at a cost of subjectively increased image noise.


Subject(s)
Imaging, Three-Dimensional , Magnetic Resonance Imaging , Adolescent , Artifacts , Brain/diagnostic imaging , Child , Humans , Male
11.
Kidney Int ; 98(5): 1225-1241, 2020 11.
Article in English | MEDLINE | ID: mdl-32610050

ABSTRACT

Polycystin-1 (PC1) and -2 (PC2), products of the PKD1 and PKD2 genes, are mutated in autosomal dominant polycystic kidney disease (ADPKD). They localize to the primary cilia; however, their ciliary function is in dispute. Loss of either the primary cilia or PC1 or PC2 causes cyst formation. However, loss of both cilia and PC1 or PC2 inhibits cyst growth via an unknown pathway. To help define a pathway, we studied cilium length in human and mouse kidneys. We found cilia are elongated in kidneys from patients with ADPKD and from both Pkd1 and Pkd2 knockout mice. Cilia elongate following polycystin inactivation. The role of intraflagellar transport proteins in Pkd1-deficient mice is also unknown. We found that inactivation of Ift88 (a gene expressing a core component of intraflagellar transport) in Pkd1 knockout mice, as well as in a new Pkd2 knockout mouse, shortened the elongated cilia, impeded kidney and liver cystogenesis, and reduced cell proliferation. Multi-stage in vivo analysis of signaling pathways revealed ß-catenin activation as a prominent, early, and sustained event in disease onset and progression in Pkd2 single knockout but not in Pkd2.Ift88 double knockout mouse kidneys. Additionally, AMPK, mTOR and ERK pathways were altered in Pkd2 single knockout mice but only AMPK and mTOR pathway alteration were rescued in Pkd2.Ift88 double knockout mice. Thus, our findings advocate an essential role of polycystins in the structure and function of the primary cilia and implicate ß-catenin as a key inducer of cystogenesis downstream of the primary cilia. Our data suggest that modulating cilium length and/or its associated signaling events may offer novel therapeutic approaches for ADPKD.


Subject(s)
Cysts , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Animals , Cilia , Cysts/genetics , Humans , Kidney , Liver , Mice , Mice, Knockout , Polycystic Kidney, Autosomal Dominant/genetics , TRPP Cation Channels/genetics
12.
AJR Am J Roentgenol ; 214(6): 1199-1205, 2020 06.
Article in English | MEDLINE | ID: mdl-32286868

ABSTRACT

OBJECTIVE. The purpose of this study was to assess if dual-source dual-energy CT (DS-DECT) can be used with lower radiation doses and contrast material volumes than single-energy CT (SECT) in children and young adults. MATERIALS AND METHODS. This retrospective study included 85 consecutive children and young adults (age range, 1 month old to 19 years old; 81 male, 70 female) who underwent contrast-enhanced DS-DECT of the chest (n = 41) or the abdomen and pelvis (n = 44) on second- or third-generation dual-source CT scanners (Somatom Flash or Force, Siemens Healthineers) for clinically indicated reasons. We included 66 age-, sex-, body region-, and weight-matched patients who underwent SECT on the same scanner. Patients were scanned with either SECT (with automatic exposure control using both CARE kV [Siemens Healthineers] and CARE Dose 4D [Siemens Healthineers]) or DS-DECT (with CARE Dose 4D). Two pediatric radiologists assessed clinical indications, radiologic findings, image quality, and any study limitations (noise or artifacts). Patient demographics (age, sex, weight), scan parameters (tube voltage, tube current-time product, pitch, section thickness), CT dose descriptors (volume CT dose index, dose-length product, size-specific dose estimate [SSDE]), and contrast material volume were recorded. Descriptive statistics, paired t test, and Cohen kappa test were performed. RESULTS. Mean patient ages and weights ± SD in DS-DECT (10 ± 6 years old, 38 ± 23 kg) and SECT (11 ± 7 years old, 43 ± 29 kg) groups were not significantly different (p > 0.05). Respective SSDEs for chest DS-DECT (4.0 ± 2.1 mGy), chest SECT (6.1 ± 4.4 mGy), abdomen-pelvis DS-DECT (5.0 ± 5.0 mGy), and abdomen-pelvis SECT (8.3 ± 4.0 mGy) were significantly different (p = 0.003-0.005). Contrast material volume for DS-DECT examinations was 19-22% lower compared with the weight- and body region-matched scans obtained with SECT. Image quality of DECT was acceptable in all patients. CONCLUSION. In children and young adults, chest and abdomen-pelvis DS-DECT enables substantial radiation dose and contrast volume reductions compared with weight- and region-matched SECT.


Subject(s)
Contrast Media/administration & dosage , Radiation Dosage , Radiation Protection/methods , Radiography, Dual-Energy Scanned Projection , Tomography, X-Ray Computed , Adolescent , Child , Child, Preschool , Female , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , Young Adult
13.
AJR Am J Roentgenol ; 214(3): 566-573, 2020 03.
Article in English | MEDLINE | ID: mdl-31967501

ABSTRACT

OBJECTIVE. The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. MATERIALS AND METHODS. Our prospective multiinstitutional study included 59 adult patients (33 women, 26 men; mean age ± SD, 65 ± 12 years old; mean body mass index [weight in kilograms divided by the square of height in meters] = 27 ± 5) who underwent routine chest (n = 22; 16 women, six men) and abdominopelvic (n = 37; 17 women, 20 men) CT on a 640-MDCT scanner (Aquilion ONE, Canon Medical Systems). All patients gave written informed consent for the acquisition of low-dose (LD) CT (LDCT) after a clinically indicated standard-dose (SD) CT (SDCT). The SDCT series (120 kVp, 164-644 mA) were reconstructed with interactive reconstruction (IR) (adaptive iterative dose reduction [AIDR] 3D, Canon Medical Systems), and the LDCT (100 kVp, 120 kVp; 30-50 mA) were reconstructed with filtered back-projection (FBP), IR (AIDR 3D and forward-projected model-based iterative reconstruction solution [FIRST], Canon Medical Systems), and deep learning reconstruction (DLR) (Advanced Intelligent Clear-IQ Engine [AiCE], Canon Medical Systems). Four subspecialty-trained radiologists first read all LD image sets and then compared them side-by-side with SD AIDR 3D images in an independent, randomized, and blinded fashion. Subspecialty radiologists assessed image quality of LDCT images on a 3-point scale (1 = unacceptable, 2 = suboptimal, 3 = optimal). Descriptive statistics were obtained, and the Wilcoxon sign rank test was performed. RESULTS. Mean volume CT dose index and dose-length product for LDCT (2.1 ± 0.8 mGy, 49 ± 13mGy·cm) were lower than those for SDCT (13 ± 4.4 mGy, 567 ± 249 mGy·cm) (p < 0.0001). All 31 clinically significant abdominal lesions were seen on SD AIDR 3D and LD DLR images. Twenty-five, 18, and seven lesions were detected on LD AIDR 3D, LD FIRST, and LD FBP images, respectively. All 39 pulmonary nodules detected on SD AIDR 3D images were also noted on LD DLR images. LD DLR images were deemed acceptable for interpretation in 97% (35/37) of abdominal and 95-100% (21-22/22) of chest LDCT studies (p = 0.2-0.99). The LD FIRST, LD AIDR 3D, and LD FBP images had inferior image quality compared with SD AIDR 3D images (p < 0.0001). CONCLUSION. At submillisievert chest and abdominopelvic CT doses, DLR enables image quality and lesion detection superior to commercial IR and FBP images.


Subject(s)
Deep Learning , Radiographic Image Interpretation, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Aged , Contrast Media , Female , Humans , Imaging, Three-Dimensional , Male , Middle Aged , Prospective Studies , Radiation Dosage , Radiography, Abdominal , Radiography, Thoracic
14.
Radiographics ; 39(3): 709-726, 2019.
Article in English | MEDLINE | ID: mdl-30924753

ABSTRACT

CT is an invaluable diagnostic tool for pediatric patients; however, concerns have arisen about the potential risks of ionizing radiation associated with diagnostic imaging in young patients, particularly for pediatric populations that may require serial CT examinations. Recent attention has also been focused on the immediate and long-term risks of administration of anesthetic medications to infants and young children who require sedation to undergo imaging examinations. These concerns can be mitigated with use of advanced CT techniques that can decrease scan time and radiation dose while preserving image quality. In this article, current state-of-the-art CT acquisition techniques are reviewed as part of a comprehensive strategy to reduce radiation dose, decrease sedation needs, and optimize image quality in infants and young children. Three imaging strategies are discussed, including (a) dual-energy CT (DECT), (b) imaging with a low tube potential, and (c) rapid scanning. Consolidating multiphase imaging protocols into a single phase with virtual nonenhanced imaging on DECT scanners, as well as use of low tube voltage, can reduce the radiation dose while increasing the conspicuity of contrast material-enhanced structures with a reduced volume of iodinated contrast material and a reduced rate of injection. Rapid scanning techniques with either ultrahigh pitch at dual-source CT or with wide-area detector single-source CT facilitate scanning without the need for sedation in many children. ©RSNA, 2019 See discussion on this article by Szczykutowicz .


Subject(s)
Radiation Dosage , Tomography, X-Ray Computed/methods , Adolescent , Anesthetics/administration & dosage , Anesthetics/adverse effects , Body Size , Child , Child, Preschool , Computed Tomography Angiography/instrumentation , Computed Tomography Angiography/methods , Contrast Media , Humans , Hypnotics and Sedatives/administration & dosage , Hypnotics and Sedatives/adverse effects , Infant , Iodine Compounds , Radiographic Image Interpretation, Computer-Assisted/methods , Radiography, Dual-Energy Scanned Projection/instrumentation , Radiography, Dual-Energy Scanned Projection/methods , Tomography, X-Ray Computed/adverse effects , Tomography, X-Ray Computed/instrumentation
15.
J Pediatr Gastroenterol Nutr ; 69(5): 533-538, 2019 11.
Article in English | MEDLINE | ID: mdl-31365485

ABSTRACT

OBJECTIVE: The aim of the study was to investigate if texture analysis of contrast-enhanced magnetic resonance enterography (MRE) images can determine Crohn disease (CD) stricture histologic type. MATERIALS AND METHODS: A radiology report database query identified 25 pediatric patients with established CD who underwent MRE followed by bowel resection within 30 days. MRE images were reviewed to identify strictures on enteric phase T1-weighted fat-suppressed images, that were matched with sites of histologic sectioning. Regions of interest were drawn over the bowel wall and texture analysis was performed using TexRAD software (Cambridge, UK), with skewness, mean, entropy and standard deviation parameters assessed. A pathologist reviewed all stricture histology specimens to assess for active mucosal inflammation and mural fibrosis. Multivariate logistic regression and analysis of variance were performed to identify texture features associated with stricture fibrosis. RESULTS: Sixty-four bowel segments from 25 patients (mean age 16 ±â€Š2 years) with imaging-histologic correlation were included. Of note, all strictures included had undergone surgical resection with MRE imaging available within 30 days. The histologic distribution of these bowel segments included 9 segments that showed active inflammation without fibrosis, 23 segments that showed only fibrosis, and 32 mixed segments with concomitant active inflammation and fibrosis. Bivariate regression analysis demonstrated that skewness, standard deviation, entropy, and mean texture analysis features are independently associated with stricture fibrosis. Stepwise logistic regression showed that the combination of mean, skewness, and entropy texture predicted stricture fibrosis with a goodness-of-fit value of 0.995. A combination of threshold values for these 3 texture analysis parameters was able to correctly classify 100% of the strictures in the study cohort for presence (55/55) and absence (9/9) of fibrosis. CONCLUSIONS: MRE texture analysis (MRE-TA) texture features can differentiate CD stricture types and accurately detect fibrosis.


Subject(s)
Constriction, Pathologic/diagnostic imaging , Crohn Disease/diagnostic imaging , Fibrosis/diagnostic imaging , Adolescent , Contrast Media , Databases, Factual , Female , Humans , Magnetic Resonance Imaging , Male , Retrospective Studies , Sensitivity and Specificity
16.
Pediatr Radiol ; 49(6): 737-745, 2019 05.
Article in English | MEDLINE | ID: mdl-30741316

ABSTRACT

BACKGROUND: Differentiation of benign from malignant lymphadenopathy remains challenging in pediatric radiology. Textural analysis (TA) quantitates heterogeneity of tissue signal intensities and has been applied to analysis of CT images. OBJECTIVE: The purpose of this study was to establish whether CT textural analysis of enlarged lymph nodes visualized on pediatric CT can distinguish benign from malignant lymphadenopathy. MATERIALS AND METHODS: We retrospectively identified enlarged lymph nodes measuring 10-20 mm on contrast-enhanced CTs of patients age 18 years and younger that had been categorized as benign or malignant based on the known diagnoses. We placed regions of interest (ROIs) over lymph nodes of interest and performed textural analysis with and without feature size filtration. We then calculated test performance characteristics for TA features, along with multivariate logistic regression modeling using Akaike Information Criterion (AIC) minimization, to determine the optimal thresholds for distinguishing benign from malignant lymphadenopathy. RESULTS: We identified 34 enlarged malignant nodes and 29 benign nodes from 63 patients within the 10- to 20-mm size range. Filtered image TA exhibited 82.4% sensitivity, 86.2% specificity and 84.1% accuracy for detecting malignant lymph nodes using mean and entropy parameters, whereas unfiltered TA exhibited 88.2% sensitivity, 72.4% specificity and 81.0% accuracy using mean and mean value of positive pixels parameters. CONCLUSION: This preliminary study demonstrates that the use of TA features improves the utility of pediatric CT to distinguish benign from malignant lymphadenopathy. The addition of TA to pediatric CT protocols has great potential to aid the characterization of indeterminate lymph nodes. If definitive differentiation between benign and malignant lymphadenopathy is possible by TA, it has the potential to reduce the need for follow-up imaging and tissue sampling, with reduced associated radiation exposure. However future studies are needed to confirm the clinical applicability of TA in distinguishing benign from malignant lymphadenopathy.


Subject(s)
Lymphadenopathy/diagnostic imaging , Tomography, X-Ray Computed/methods , Adolescent , Child , Diagnosis, Differential , Female , Humans , Lymphadenopathy/pathology , Male , Radiographic Image Interpretation, Computer-Assisted , Retrospective Studies , Sensitivity and Specificity
17.
J Cell Sci ; 128(22): 4063-73, 2015 Nov 15.
Article in English | MEDLINE | ID: mdl-26430213

ABSTRACT

Failure to localize membrane proteins to the primary cilium causes a group of diseases collectively named ciliopathies. Polycystin-1 (PC1, also known as PKD1) is a large ciliary membrane protein defective in autosomal dominant polycystic kidney disease (ADPKD). Here, we developed a large set of PC1 expression constructs and identified multiple sequences, including a coiled-coil motif in the C-terminal tail of PC1, regulating full-length PC1 trafficking to the primary cilium. Ciliary trafficking of wild-type and mutant PC1 depends on the dose of polycystin-2 (PC2, also known as PKD2), and the formation of a PC1-PC2 complex. Modulation of the ciliary trafficking module mediated by the VxP ciliary-targeting sequence and Arf4 and Asap1 does not affect the ciliary localization of full-length PC1. PC1 also promotes PC2 ciliary trafficking. PC2 mutations truncating its C-terminal tail but not those changing the VxP sequence to AxA or impairing the pore of the channel, leading to a dead channel, affect PC1 ciliary trafficking. Cleavage at the GPCR proteolytic site (GPS) of PC1 is not required for PC1 trafficking to cilia. We propose a mutually dependent model for the ciliary trafficking of PC1 and PC2, and that PC1 ciliary trafficking is regulated by multiple cis-acting elements. As all pathogenic PC1 mutations tested here are defective in ciliary trafficking, ciliary trafficking might serve as a functional read-out for ADPKD.


Subject(s)
Cilia/metabolism , Kidney Tubules, Collecting/metabolism , TRPP Cation Channels/metabolism , Animals , HEK293 Cells , Humans , Kidney Tubules, Collecting/cytology , Mice , TRPP Cation Channels/genetics
18.
Radiology ; 283(1): 178-185, 2017 04.
Article in English | MEDLINE | ID: mdl-27797678

ABSTRACT

Purpose To determine indexes of skeletal integrity by using computed tomographic (CT) trabecular texture analysis of the lumbar spine in patients with anorexia nervosa and normal-weight control subjects and to determine body composition predictors of trabecular texture. Materials and Methods This cross-sectional study was approved by the institutional review board and compliant with HIPAA. Written informed consent was obtained. The study included 30 women with anorexia nervosa (mean age ± standard deviation, 26 years ± 6) and 30 normal-weight age-matched women (control group). All participants underwent low-dose single-section quantitative CT of the L4 vertebral body with use of a calibration phantom. Trabecular texture analysis was performed by using software. Skewness (asymmetry of gray-level pixel distribution), kurtosis (pointiness of pixel distribution), entropy (inhomogeneity of pixel distribution), and mean value of positive pixels (MPP) were assessed. Bone mineral density and abdominal fat and paraspinal muscle areas were quantified with quantitative CT. Women with anorexia nervosa and normal-weight control subjects were compared by using the Student t test. Linear regression analyses were performed to determine associations between trabecular texture and body composition. Results Women with anorexia nervosa had higher skewness and kurtosis, lower MPP (P < .001), and a trend toward lower entropy (P = .07) compared with control subjects. Bone mineral density, abdominal fat area, and paraspinal muscle area were inversely associated with skewness and kurtosis and positively associated with MPP and entropy. Texture parameters, but not bone mineral density, were associated with lowest lifetime weight and duration of amenorrhea in anorexia nervosa. Conclusion Patients with anorexia nervosa had increased skewness and kurtosis and decreased entropy and MPP compared with normal-weight control subjects. These parameters were associated with lowest lifetime weight and duration of amenorrhea, but there were no such associations with bone mineral density. These findings suggest that trabecular texture analysis might contribute information about bone health in anorexia nervosa that is independent of that provided with bone mineral density. © RSNA, 2016.


Subject(s)
Anorexia Nervosa/physiopathology , Cancellous Bone/diagnostic imaging , Tomography, X-Ray Computed/methods , Adult , Anorexia Nervosa/diagnostic imaging , Cancellous Bone/physiopathology , Female , Humans , Lumbar Vertebrae/diagnostic imaging , Lumbar Vertebrae/physiopathology , Middle Aged , Prospective Studies , Young Adult
19.
AJR Am J Roentgenol ; 207(4): 694-704, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27341483

ABSTRACT

OBJECTIVE: Tuberculosis (TB) may present with highly variable imaging findings. The findings may vary from nonspecific hepatomegaly to abscesses or solid focal lesions, mimicking liver tumors. Biliary tract involvement may also be detected, which may manifest with ductal dilatations from underlying strictures. CONCLUSION: All cross-sectional imaging modalities, including sonography, CT, and MRI, may be used in the evaluation of patients with TB. Imaging findings may be perplexing to radiologists, particularly ones who practice in areas where TB is not endemic; thus, histopathologic diagnosis may be required.

20.
Explor Target Antitumor Ther ; 5(1): 74-84, 2024.
Article in English | MEDLINE | ID: mdl-38464383

ABSTRACT

Aim: To investigate magnetic resonance imaging (MRI)-based peritumoral texture features as prognostic indicators of survival in patients with colorectal liver metastasis (CRLM). Methods: From 2007-2015, forty-eight patients who underwent MRI within 3 months prior to initiating treatment for CRLM were identified. Clinicobiological prognostic variables were obtained from electronic medical records. Ninety-four metastatic hepatic lesions were identified on T1-weighted post-contrast images and volumetrically segmented. A total of 112 radiomic features (shape, first-order, texture) were derived from a 10 mm region surrounding each segmented tumor. A random forest model was applied, and performance was tested by receiver operating characteristic (ROC). Kaplan-Meier analysis was utilized to generate the survival curves. Results: Forty-eight patients (male:female = 23:25, age 55.3 years ± 18 years) were included in the study. The median lesion size was 25.73 mm (range 8.5-103.8 mm). Microsatellite instability was low in 40.4% (38/94) of tumors, with Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutation detected in 68 out of 94 (72%) tumors. The mean survival was 35 months ± 21 months, and local disease progression was observed in 35.5% of patients. Univariate regression analysis identified 42 texture features [8 first order, 5 gray level dependence matrix (GLDM), 5 gray level run time length matrix (GLRLM), 5 gray level size zone matrix (GLSZM), 2 neighboring gray tone difference matrix (NGTDM), and 17 gray level co-occurrence matrix (GLCM)] independently associated with metastatic disease progression (P < 0.03). The random forest model achieved an area under the curve (AUC) of 0.88. Conclusions: MRI-based peritumoral heterogeneity features may serve as predictive biomarkers for metastatic disease progression and patient survival in CRLM.

SELECTION OF CITATIONS
SEARCH DETAIL