Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Int J Immunopathol Pharmacol ; 26(2): 403-17, 2013.
Article in English | MEDLINE | ID: mdl-23755755

ABSTRACT

Floctafenine, a hydroxyquinoline derivative with analgesic properties, is widely used in Thailand and many other countries. The objectives of this study were to evaluate in Thai healthy volunteers: i) the inhibition of whole blood cyclooxygenase(COX)-2 and COX-1 activity by floctafenine and its metabolite floctafenic acid in vitro and ex vivo after dosing with floctafenine; ii) the possible interference of floctafenine administration with aspirin antiplatelet effects. We performed an open-label, cross-over, 3-period study, on 11 healthy Thai volunteers, who received consecutively floctafenine(200mg/TID), low-dose aspirin(81mg/daily) or their combination for 4 days, separated by washout periods. Floctafenine and floctafenic acid resulted potent inhibitors of COX-1 and COX-2 in vitro (floctafenic acid was more potent than floctafenine) showing a slight preference for COX-1. After dosing with floctafenine alone, whole blood COX-1 and COX-2 activities were inhibited ex vivo in a time-dependent fashion which paralleled floctafenic acid plasma concentrations. Aspirin alone inhibited profoundly and persistently platelet COX-1 activity and AA-induced platelet aggregation throughout 24-h dosing interval which was affected by the co-administration of floctafenine. At 24 h after dosing with aspirin and floctafenine, the inhibition of platelet thromboxane(TX)B2 generation and aggregation were significantly(P less than 0.05) lower than that caused by aspirin alone. Therapeutic dosing with floctafenine profoundly inhibited prostanoid biosynthesis through the rapid conversion to floctafenic acid. Floctafenine interfered with the antiplatelet effect of aspirin. Our results suggest that floctafenine should be avoided in patients with cardiovascular disease under treatment with low-dose aspirin.


Subject(s)
Aspirin/pharmacology , Blood Platelets/drug effects , Cyclooxygenase 1/blood , Cyclooxygenase 2/blood , Cyclooxygenase Inhibitors/pharmacology , Healthy Volunteers , Platelet Aggregation Inhibitors/pharmacology , ortho-Aminobenzoates/pharmacology , Adult , Aspirin/administration & dosage , Blood Platelets/metabolism , Cross-Over Studies , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase Inhibitors/administration & dosage , Dose-Response Relationship, Drug , Drug Administration Schedule , Drug Interactions , Female , Humans , Male , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/administration & dosage , Risk Assessment , Thailand , Thromboxane B2/blood , Time Factors , Young Adult , ortho-Aminobenzoates/administration & dosage
2.
Clin Pharmacol Ther ; 102(1): 52-61, 2017 07.
Article in English | MEDLINE | ID: mdl-28139830

ABSTRACT

The mechanism of action of low-dose aspirin in the prevention of colorectal cancer (CRC) remains largely hypothetical. We aimed to compare the effects of low-dose aspirin (100 mg/day for 7 days) given to 40 individuals undergoing CRC screening on the extent of cyclooxygenase (COX)-1 acetylation at serine-529 (AceCOX-1), in blood platelets vs. colorectal mucosa, at 7 (group 1) and 24 h (group 2) after dosing. A significantly (P < 0.01) lower %AceCOX-1 was detected in colonic and rectal mucosa (average 64%) vs. platelets (average 75%) in both groups. This effect was associated with an average 46% (P < 0.01) and 35% (P < 0.05) reduction in prostaglandin (PG) E2 levels and phosphorylated S6 (p-S6) levels, respectively. Rectal mucosal levels of p-S6/S6 significantly (P < 0.01) correlated with PGE2 . These findings demonstrate that low-dose aspirin produces long-lasting acetylation of COX-1 and downregulation of p-S6 in human colorectal mucosa, an effect that may interfere with early colorectal carcinogenesis.


Subject(s)
Aspirin , Blood Platelets , Colorectal Neoplasms , Cyclooxygenase 1/metabolism , Dinoprostone/biosynthesis , Intestinal Mucosa , Ribosomal Protein S6 Kinases/metabolism , Acetylation/drug effects , Aspirin/administration & dosage , Aspirin/pharmacokinetics , Biopsy/methods , Blood Platelets/drug effects , Blood Platelets/enzymology , Carcinogenesis/drug effects , Carcinogenesis/metabolism , Colorectal Neoplasms/blood , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Colorectal Neoplasms/prevention & control , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/pharmacokinetics , Dose-Response Relationship, Drug , Female , Humans , Intestinal Mucosa/drug effects , Intestinal Mucosa/enzymology , Male , Middle Aged , Phosphorylation/drug effects , Treatment Outcome
3.
Circulation ; 102(5): 539-45, 2000 Aug 01.
Article in English | MEDLINE | ID: mdl-10920066

ABSTRACT

BACKGROUND: Increased formation of 8-iso-prostaglandin (PG) F(2alpha) and thromboxane (TX) A(2), potent agonists of platelet and vascular thromboxane (TH)/PGH(2) receptors, has been detected in cigarette smokers. We performed a randomized, double-blind, placebo-controlled study of the effects of vitamin E (300, 600, and 1200 mg/d, each dose for 3 consecutive weeks) on 8-iso-PGF(2alpha) and TXA(2) biosynthesis in 46 moderate cigarette smokers. METHODS AND RESULTS: Urinary immunoreactive 8-iso-PGF(2alpha) and 11-dehydro-TXB(2), plasma vitamin E, and serum TXB(2) were measured by previously validated techniques. Baseline urinary 8-iso-PGF(2alpha) and 11-dehydro-TXB(2) excretion averaged 241+/-78 and 430+/-293 pg/mg creatinine, respectively. Urinary 8-iso-PGF(2alpha) was significantly correlated with 11-dehydro-TXB(2) (r=0.360, n=138, P<0.0001). Baseline plasma vitamin E levels averaged 20.6+/-4.9 micromol/L and were inversely correlated with urinary 11-dehydro-TXB(2) (r=-0.304, P=0.039) but not with 8-iso-PGF(2alpha) (r=-0.227, P=0.129). Vitamin E supplementation caused a dose-dependent increase in its plasma levels that reached a plateau at 600 mg (42.3+/-11.2 micromol/L, P<0. 001). This was not associated with any statistically significant change in urinary 8-iso-PGF(2alpha) or 11-dehydro-TXB(2) excretion. CONCLUSIONS: Supplementation with pharmacological doses of vitamin E has no detectable effects on lipid peroxidation and thromboxane biosynthesis in vivo in healthy subjects with a mild degree of oxidant stress. These findings are consistent with the hypothesis that the basal rate of lipid peroxidation is a major determinant of the response to vitamin E supplementation and have implications for the use of vitamin E in healthy subjects as well as for the design and interpretation of clinical trials of antioxidant intervention.


Subject(s)
Dinoprost/analogs & derivatives , Smoking/metabolism , Thromboxane B2/blood , Vitamin E/therapeutic use , Adult , Creatinine/urine , Dietary Supplements , Dinoprost/urine , Double-Blind Method , F2-Isoprostanes , Female , Humans , Lipid Peroxidation , Male , Middle Aged , Placebos , Thromboxane B2/analogs & derivatives , Thromboxane B2/urine , Vitamin E/blood
4.
Article in English | MEDLINE | ID: mdl-15626589

ABSTRACT

Aspirin may reduce the risk of colorectal neoplasia at doses similar to those recommended for the prevention of cardiovascular disease. Thus, we aimed to address whether enhanced platelet activation, as assessed by the measurement of the urinary excretion of 11-dehydro-TXB(2) (a major enzymatic metabolite of TXB(2)), occurs in patients with colorectal cancer. In 10 patients with colorectal cancer, the urinary excretion of 11-dehydro-TXB(2) was significantly higher than in 10 controls, matched for sex, age and cardiovascular risk factors [1001(205-5571) versus 409(113-984) pg/mg creatinine, respectively, median (range), P<0.05]. The administration of aspirin 50 mg daily for 5 consecutive days to colorectal cancer patients caused a cumulative inhibition of platelet cyclooxygenase (COX)-1 activity either ex vivo, as assessed by the measurement of serum TXB(2) levels, or in vivo, as assessed by urinary 11-dehydro-TXB(2) excretion. In conclusion, enhanced platelet activation occurs in colorectal cancer patients. Permanent inactivation of platelet COX-1 by low-dose aspirin might restore anti-tumor reactivity.


Subject(s)
Aspirin/administration & dosage , Colorectal Neoplasms/blood , Platelet Activation/drug effects , Thromboxane B2/analogs & derivatives , Thromboxane B2/urine , Aged , Aspirin/pharmacology , Biomarkers/urine , Colorectal Neoplasms/drug therapy , Cyclooxygenase 1 , Cyclooxygenase Inhibitors/administration & dosage , Cyclooxygenase Inhibitors/pharmacology , Female , Humans , Male , Membrane Proteins , Middle Aged , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/pharmacology , Prostaglandin-Endoperoxide Synthases/drug effects
5.
Clin Pharmacol Ther ; 70(5): 475-83, 2001 Nov.
Article in English | MEDLINE | ID: mdl-11719735

ABSTRACT

BACKGROUND: We studied the concentration dependence of the inhibitory effects of cortisol, 6-methylprednisolone, and dexamethasone on cyclooxygenase-2 (COX-2) expression and activity in human monocytes in response to lipopolysaccharide (LPS) in vitro. Moreover, we characterized the time and dose dependence of the inhibitory effects of 6-methylprednisolone, administered to healthy subjects, on LPS-inducible prostaglandin E2 (PGE2) biosynthesis in whole blood ex vivo. METHODS: Heparinized whole-blood samples obtained from healthy subjects and patients with rheumatoid arthritis were incubated with LPS (10 microg/ml) for 24 hours at 37 degrees C, and PGE2 was measured in plasma as an index of monocyte COX-2 activity. Comparative experiments were performed in LPS-stimulated isolated monocytes. The levels of COX-2-like immunoreactivity in monocyte lysates were measured by a specific Western blot technique. PGE2 was evaluated by radioimmunoassay. RESULTS: Nanomolar concentrations of cortisol, 6-methylprednisolone, and dexamethasone suppressed LPS-induced PGE2 biosynthesis both in whole blood and in isolated monocytes in vitro with relative potencies similar to those reported for their anti-inflammatory effects in vivo. The administration of single oral doses (4, 8, or 16 mg) of 6-methylprednisolone caused a dose- and time-dependent inhibition of whole-blood COX-2 activity. Whole-blood samples obtained from patients with rheumatoid arthritis treated with comparable maintenance doses of glucocorticoids produced significantly lower levels of LPS-inducible PGE2 than were found in untreated patients. CONCLUSIONS: Therapeutic plasma levels of synthetic glucocorticoids down-regulate inducible prostanoid biosynthesis in circulating monocytes. This effect may represent a readily measurable surrogate marker of their clinical efficacy for dose-finding studies.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Glucocorticoids/pharmacology , Hydrocortisone/pharmacology , Isoenzymes/blood , Monocytes/enzymology , Prostaglandin-Endoperoxide Synthases/blood , Arthritis, Rheumatoid/enzymology , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Dexamethasone/pharmacology , Dinoprostone/biosynthesis , Humans , Hydrocortisone/blood , Lipopolysaccharides/pharmacology , Membrane Proteins , Methylprednisolone/pharmacology
6.
Curr Pharm Des ; 10(6): 589-601, 2004.
Article in English | MEDLINE | ID: mdl-14965322

ABSTRACT

Novel coxibs (i.e. etoricoxib, valdecoxib, parecoxib and lumiracoxib) with enhanced biochemical cyclooxygenase (COX)-2 selectivity over that of rofecoxib and celecoxib have been recently developed. They have the potential advantage to spare COX-1 activity, thus reducing gastrointestinal toxicity, even when administered at high doses to improve efficacy. They are characterized by different pharmacodynamic and pharmacokinetics features. The higher biochemical selectivity of valdecoxib than celecoxib, evidenced in vitro, may be clinically relevant leading to an improved gastrointestinal safety. Interestingly, parecoxib, a pro-drug of valdecoxib, is the only injectable coxib. Etoricoxib shows only a slightly improved COX-2 selectivity than rofecoxib, a highly selective COX-2 inhibitor that has been reported to halve the incidence of serious gastrointestinal toxicity compared to nonselective nonsteroidal antiinflammatory drugs (NSAIDs). Lumiracoxib, the most selective COX-2 inhibitor in vitro, is the only acidic coxib. The hypothesis that this chemical property may lead to an increased and persistent drug accumulation in inflammatory sites and consequently to an improved clinical efficacy, however, remains to be verified. Several randomized clinical studies suggest that the novel coxibs have comparable efficacy to nonselective NSAIDs in the treatment of osteoarthritis, rheumatoid arthritis and acute pain, but they share similar renal side-effects. The apparent dose-dependence of renal toxicity may limit the use of higher doses of the novel coxibs for improved efficacy. Large-size randomized clinical trials are ongoing to define the gastrointestinal and cardiovascular safety of the novel coxibs.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Isoenzymes/antagonists & inhibitors , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/adverse effects , Cyclooxygenase Inhibitors/therapeutic use , Humans , Isoenzymes/metabolism , Membrane Proteins , Prostaglandin-Endoperoxide Synthases/metabolism , Prostaglandins/metabolism , Randomized Controlled Trials as Topic
7.
Int J Immunopathol Pharmacol ; 16(2 Suppl): 49-58, 2003.
Article in English | MEDLINE | ID: mdl-14552704

ABSTRACT

The discovery of cyclooxygenase (COX)-2 has provided the rationale for the development of a new class of nonsteroidal antiinflammatory drugs (NSAIDs), the selective COX-2 inhibitors (denominated coxibs), with the aim of reducing the gastrointestinal (GI) toxicity associated with the administration of NSAIDs by virtue of COX-1 sparing. Rofecoxib and celecoxib are the first selective COX-2 inhibitors approved by the FDA and EMEA for the treatment of rheumatoid arthritis (RA), osteoarthritis (OA) and for relief of acute pain. Rofecoxib has been shown to spare COX-1 activity ex vivo, in platelets and gastric mucosa, when administered at therapeutic doses or above. In a large clinical trial, COX-2 inhibitors have been demonstrated to halve the incidence of serious upper GI events vs a nonselective NSAID. Recently, other selective COX-2 inhibitors with different COX-1/COX-2 selectivity and pharmacokinetic features have been developed, i.e. valdecoxib, parecoxib, etoricoxib and lumiracoxib. The improved biochemical selectivity of valdecoxib vs celecoxib in vitro (COX-1/COX-2 ratio: 60 vs 30, respectively) may be clinically relevant leading to an improved GI safety. Interestingly, parecoxib, a pro-drug of valdecoxib, is the only injectable coxib. Etoricoxib, showing only a slightly higher COX-2 selectivity than rofecoxib in vitro (COX-1/COX-2 ratio: 344 vs 272, respectively), has been reported to cause a similar specific COX-2 inhibition ex vivo that should translate into comparable GI safety. Lumiracoxib, the most selective COX-2 inhibitor in vitro (COX-1/COX-2 ratio: 400), is the only acidic coxib. It has been hypothesized that this pecular chemical feature may lead to an enhanced concentration in inflammatory sites that may translate into an improved clinical efficacy. The results of clinical trials have shown that coxibs have a comparable clinical efficacy and renal toxicity and an improved GI safety vs nonselective NSAIDs. Whether the different pharmacodynamic and pharmacokinetics features of the various coxibs will produce detectable differences in efficacy and toxicity remains to be evaluated in appropriate comparative randomized clinical studies.


Subject(s)
Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Isoenzymes/antagonists & inhibitors , Animals , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Clinical Trials as Topic/statistics & numerical data , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/chemistry , Humans , Isoenzymes/metabolism , Membrane Proteins , Prostaglandin-Endoperoxide Synthases/metabolism
8.
J Thromb Haemost ; 12(8): 1320-30, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24942808

ABSTRACT

BACKGROUND: Even though the acetylation of platelet cyclooxygenase (COX)-1 at serine-529 is the direct mechanism of action of low-dose aspirin, its antiplatelet effect has been characterized using indirect indexes of COX-1 activity. OBJECTIVES: We performed a clinical study with enteric-coated low-dose aspirin (EC-aspirin), in healthy subjects, to evaluate the effects on the extent and duration of platelet COX-1 acetylation, using a novel proteomic strategy for absolute protein quantification (termed AQUA), as compared with traditional pharmacokinetic and pharmacodynamic parameters. SUBJECTS AND METHODS: In a phase I, single-arm, open-label study of EC aspirin (100 mg day(-1) ) administered to 24 healthy subjects, we compared, over a 24 h-period on day 1 and 7, % platelet acetylated COX-1 (AceCOX-1) with traditional pharmacokinetic and pharmacodynamics [i.e. serum thromboxane (TX) B2 , platelet function by monitoring CEPI(collagen/epinephrine) closure time (CT) using whole-blood PFA-100 and urinary excretion of 11-dehydro-TXB2 ] parameters. RESULTS: Acetylation of platelet COX-1 was measurable before detection of aspirin levels in the systemic circulation and increased in a cumulative fashion upon repeated dosing. After the last dose of EC-aspirin, %AceCOX-1, serum TXB2 and CEPI-CT values were maximally and persistently modified throughout 24 h; they averaged 76 ± 2%, 99.0 ± 0.4% and 271 ± 5 s, respectively. EC-aspirin caused 75% reduction in urinary 11-dehydro-TXB2 excretion. After chronic dosing with aspirin, the pharmacokinetics of acetylsalicylic acid was completely dissociated from pharmacodynamics. CONCLUSIONS: The demonstrated feasibility of quantifying the extent and duration of platelet COX-1 acetylation will allow characterizing the genetic, pharmacokinetic and pharmacodynamic determinants of the inter-individual variability in the antiplatelet response to low-dose aspirin as well as identifying extra-platelet sites of drug action.


Subject(s)
Aspirin/pharmacology , Biomarkers/blood , Acetylation , Area Under Curve , Aspirin/administration & dosage , Aspirin/pharmacokinetics , Cyclooxygenase 1/metabolism , Dose-Response Relationship, Drug , Thromboxane B2/blood
9.
Curr Med Chem ; 18(10): 1540-54, 2011.
Article in English | MEDLINE | ID: mdl-21428878

ABSTRACT

The development of the coxib family has represented a stimulating approach in the treatment of inflammatory disorders, such as arthritis, and for the management of acute pains, in relation to the well-known traditional Non-Steroidal Anti-inflammatory Drugs (t-NSAIDs). Prompted by the pursuit for new cyclooxygenase-2 (COX-2) inhibitors, endowed with fine tuned selectivity and high potency, in the past years we have identified novel classes of ether, ester and acid molecules characterized by the 1,5-diarylpyrrole scaffold as potentially powerful anti-inflammatory molecules (12-66). All compounds proved to exert an in vitro inhibition profile as good as that shown by reference compounds. Compounds bearing a p-methylsulfonylphenyl substituent at C5 displayed the best issues. In particular, ester derivatives proved to perform the best in vitro profile in terms of selectivity and activity toward COX-2. The cell-based assay data showed that an increase of hindrance at the C3 side chain of compounds could translate to activity enhancement. The human whole blood (HWB) test let to highlight that submitted compounds displayed 5-10 fold higher selectivity for COX-2 vs COX-1 which should translate clinically to an acceptable gastrointestinal safety and mitigate the cardiovascular effects highlighted by highly selective COX-2 inhibitors. Finally, to assess in vivo anti-inflammatory and analgesic activity three different tests (rat paw pressure, rat paw oedema and abdominal constriction) were performed. Results showed good in vivo anti-inflammatory and analgesic activities. The issues gained with these classes of compounds represent, nowadays, a potent stimulus for a further enlargement of the NSAIDs family. In this review we describe the results obtained by our research group on this topic.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/chemistry , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/pharmacology , Pyrroles/chemistry , Pyrroles/pharmacology , Analgesics/chemistry , Analgesics/pharmacology , Analgesics/therapeutic use , Animals , Anti-Inflammatory Agents/therapeutic use , Anti-Inflammatory Agents, Non-Steroidal/therapeutic use , Cyclooxygenase 1/metabolism , Cyclooxygenase 2/metabolism , Cyclooxygenase Inhibitors/chemistry , Cyclooxygenase Inhibitors/pharmacology , Cyclooxygenase Inhibitors/therapeutic use , Humans , Pyrroles/therapeutic use , Structure-Activity Relationship
10.
J Pharmacol Exp Ther ; 290(1): 276-80, 1999 Jul.
Article in English | MEDLINE | ID: mdl-10381787

ABSTRACT

We evaluated whether therapeutic blood levels of meloxicam are associated with selective inhibition of monocyte cyclooxygenase (COX)-2 in vitro and ex vivo. Concentration-response curves for the inhibition of monocyte COX-2 and platelet COX-1 were obtained in vitro after the incubation of meloxicam with whole blood samples. Moreover, 11 healthy volunteers received placebo or 7.5 or 15 mg/day meloxicam, each treatment for 7 consecutive days, according to a randomized, double-blind, crossover design. Before dosing and 24 h after the seventh dose of each regimen, heparinized whole blood samples were incubated with lipopolysaccharide (10 microgram/ml) for 24 h at 37 degrees C, and prostaglandin E2 was measured in plasma as an index of monocyte COX-2 activity. The production of thromboxane B2 in whole blood allowed to clot at 37 degrees C for 60 min was assessed as an index of platelet COX-1 activity. The administration of placebo did not significantly affect plasma prostaglandin E2 (21. 3 +/- 7.5 versus 19.1 +/- 4 ng/ml, mean +/- S.D., n = 11) or serum thromboxane B2 (426 +/- 167 versus 425 +/- 150 ng/ml) levels. In contrast, the administration of 7.5 and 15 mg of meloxicam caused dose-dependent reductions in monocyte COX-2 activity by 51% and 70%, respectively, and in platelet COX-1 activity by 25% and 35%, respectively. Although the IC50 value of meloxicam for inhibition of COX-1 was 10-fold higher than the IC50 value of COX-2 in vitro, this biochemical selectivity was inadequate to clearly separate the effects of meloxicam on the two isozymes after oral dosing as a function of the daily dose and interindividual variation in steady-state plasma levels.


Subject(s)
Blood Platelets/enzymology , Cyclooxygenase Inhibitors/pharmacology , Isoenzymes/metabolism , Monocytes/enzymology , Prostaglandin-Endoperoxide Synthases/metabolism , Thiazines/pharmacology , Thiazoles/pharmacology , Adult , Blood Platelets/drug effects , Cross-Over Studies , Cyclooxygenase 1 , Cyclooxygenase 2 , Cyclooxygenase 2 Inhibitors , Cyclooxygenase Inhibitors/blood , Dinoprostone/blood , Dose-Response Relationship, Drug , Double-Blind Method , Female , Humans , In Vitro Techniques , Isoenzymes/blood , Male , Meloxicam , Membrane Proteins , Monocytes/drug effects , Prostaglandin-Endoperoxide Synthases/blood , Thiazines/blood , Thiazoles/blood , Thromboxane B2/blood
SELECTION OF CITATIONS
SEARCH DETAIL