Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 358
Filter
1.
Cell ; 185(12): 2103-2115.e19, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35568035

ABSTRACT

Soon after the emergence and global spread of the SARS-CoV-2 Omicron lineage BA.1, another Omicron lineage, BA.2, began outcompeting BA.1. The results of statistical analysis showed that the effective reproduction number of BA.2 is 1.4-fold higher than that of BA.1. Neutralization experiments revealed that immunity induced by COVID vaccines widely administered to human populations is not effective against BA.2, similar to BA.1, and that the antigenicity of BA.2 is notably different from that of BA.1. Cell culture experiments showed that the BA.2 spike confers higher replication efficacy in human nasal epithelial cells and is more efficient in mediating syncytia formation than the BA.1 spike. Furthermore, infection experiments using hamsters indicated that the BA.2 spike-bearing virus is more pathogenic than the BA.1 spike-bearing virus. Altogether, the results of our multiscale investigations suggest that the risk of BA.2 to global health is potentially higher than that of BA.1.


Subject(s)
COVID-19 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Animals , COVID-19/virology , Cricetinae , Epithelial Cells , Humans , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics
2.
Cell ; 185(21): 3992-4007.e16, 2022 10 13.
Article in English | MEDLINE | ID: mdl-36198317

ABSTRACT

After the global spread of the SARS-CoV-2 Omicron BA.2, some BA.2 subvariants, including BA.2.9.1, BA.2.11, BA.2.12.1, BA.4, and BA.5, emerged in multiple countries. Our statistical analysis showed that the effective reproduction numbers of these BA.2 subvariants are greater than that of the original BA.2. Neutralization experiments revealed that the immunity induced by BA.1/2 infections is less effective against BA.4/5. Cell culture experiments showed that BA.2.12.1 and BA.4/5 replicate more efficiently in human alveolar epithelial cells than BA.2, and particularly, BA.4/5 is more fusogenic than BA.2. We further provided the structure of the BA.4/5 spike receptor-binding domain that binds to human ACE2 and considered how the substitutions in the BA.4/5 spike play roles in ACE2 binding and immune evasion. Moreover, experiments using hamsters suggested that BA.4/5 is more pathogenic than BA.2. Our multiscale investigations suggest that the risk of BA.2 subvariants, particularly BA.4/5, to global health is greater than that of original BA.2.


Subject(s)
Angiotensin-Converting Enzyme 2 , COVID-19 , Antibodies, Viral , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
3.
Nature ; 602(7896): 300-306, 2022 02.
Article in English | MEDLINE | ID: mdl-34823256

ABSTRACT

During the current coronavirus disease 2019 (COVID-19) pandemic, a variety of mutations have accumulated in the viral genome of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and, at the time of writing, four variants of concern are considered to be potentially hazardous to human society1. The recently emerged B.1.617.2/Delta variant of concern is closely associated with the COVID-19 surge that occurred in India in the spring of 2021 (ref. 2). However, the virological properties of B.1.617.2/Delta remain unclear. Here we show that the B.1.617.2/Delta variant is highly fusogenic and notably more pathogenic than prototypic SARS-CoV-2 in infected hamsters. The P681R mutation in the spike protein, which is highly conserved in this lineage, facilitates cleavage of the spike protein and enhances viral fusogenicity. Moreover, we demonstrate that the P681R-bearing virus exhibits higher pathogenicity compared with its parental virus. Our data suggest that the P681R mutation is a hallmark of the virological phenotype of the B.1.617.2/Delta variant and is associated with enhanced pathogenicity.


Subject(s)
COVID-19/virology , Membrane Fusion , Mutation , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/genetics , Amino Acid Substitution , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/epidemiology , Cricetinae , Giant Cells/metabolism , Giant Cells/virology , Male , Mesocricetus , Phylogeny , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , Virulence/genetics , Virus Replication
4.
Nature ; 603(7902): 706-714, 2022 03.
Article in English | MEDLINE | ID: mdl-35104837

ABSTRACT

The SARS-CoV-2 Omicron BA.1 variant emerged in 20211 and has multiple mutations in its spike protein2. Here we show that the spike protein of Omicron has a higher affinity for ACE2 compared with Delta, and a marked change in its antigenicity increases Omicron's evasion of therapeutic monoclonal and vaccine-elicited polyclonal neutralizing antibodies after two doses. mRNA vaccination as a third vaccine dose rescues and broadens neutralization. Importantly, the antiviral drugs remdesivir and molnupiravir retain efficacy against Omicron BA.1. Replication was similar for Omicron and Delta virus isolates in human nasal epithelial cultures. However, in lung cells and gut cells, Omicron demonstrated lower replication. Omicron spike protein was less efficiently cleaved compared with Delta. The differences in replication were mapped to the entry efficiency of the virus on the basis of spike-pseudotyped virus assays. The defect in entry of Omicron pseudotyped virus to specific cell types effectively correlated with higher cellular RNA expression of TMPRSS2, and deletion of TMPRSS2 affected Delta entry to a greater extent than Omicron. Furthermore, drug inhibitors targeting specific entry pathways3 demonstrated that the Omicron spike inefficiently uses the cellular protease TMPRSS2, which promotes cell entry through plasma membrane fusion, with greater dependency on cell entry through the endocytic pathway. Consistent with suboptimal S1/S2 cleavage and inability to use TMPRSS2, syncytium formation by the Omicron spike was substantially impaired compared with the Delta spike. The less efficient spike cleavage of Omicron at S1/S2 is associated with a shift in cellular tropism away from TMPRSS2-expressing cells, with implications for altered pathogenesis.


Subject(s)
COVID-19/pathology , COVID-19/virology , Membrane Fusion , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Serine Endopeptidases/metabolism , Virus Internalization , Adult , Aged , Aged, 80 and over , Angiotensin-Converting Enzyme 2/metabolism , Animals , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , COVID-19/immunology , COVID-19 Vaccines/immunology , Cell Line , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Convalescence , Female , Humans , Immune Sera/immunology , Intestines/pathology , Intestines/virology , Lung/pathology , Lung/virology , Male , Middle Aged , Mutation , Nasal Mucosa/pathology , Nasal Mucosa/virology , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Tissue Culture Techniques , Virulence , Virus Replication
5.
Blood ; 143(7): 604-618, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-37922452

ABSTRACT

ABSTRACT: Acute leukemia cells require bone marrow microenvironments, known as niches, which provide leukemic cells with niche factors that are essential for leukemic cell survival and/or proliferation. However, it remains unclear how the dynamics of the leukemic cell-niche interaction are regulated. Using a genome-wide CRISPR screen, we discovered that canonical BRG1/BRM-associated factor (cBAF), a variant of the switch/sucrose nonfermenting chromatin remodeling complex, regulates the migratory response of human T-cell acute lymphoblastic leukemia (T-ALL) cells to a niche factor CXCL12. Mechanistically, cBAF maintains chromatin accessibility and allows RUNX1 to bind to CXCR4 enhancer regions. cBAF inhibition evicts RUNX1 from the genome, resulting in CXCR4 downregulation and impaired migration activity. In addition, cBAF maintains chromatin accessibility preferentially at RUNX1 binding sites, ensuring RUNX1 binding at these sites, and is required for expression of RUNX1-regulated genes, such as CDK6; therefore, cBAF inhibition negatively impacts cell proliferation and profoundly induces apoptosis. This anticancer effect was also confirmed using T-ALL xenograft models, suggesting cBAF as a promising therapeutic target. Thus, we provide novel evidence that cBAF regulates the RUNX1-driven leukemic program and governs migration activity toward CXCL12 and cell-autonomous growth in human T-ALL.


Subject(s)
Core Binding Factor Alpha 2 Subunit , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Humans , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/genetics , Bone Marrow/metabolism , Chromatin , T-Lymphocytes/metabolism , Cell Line, Tumor , Tumor Microenvironment
6.
Blood ; 141(5): 534-549, 2023 02 02.
Article in English | MEDLINE | ID: mdl-36322930

ABSTRACT

Germ line DDX41 variants have been implicated in late-onset myeloid neoplasms (MNs). Despite an increasing number of publications, many important features of DDX41-mutated MNs remain to be elucidated. Here we performed a comprehensive characterization of DDX41-mutated MNs, enrolling a total of 346 patients with DDX41 pathogenic/likely-pathogenic (P/LP) germ line variants and/or somatic mutations from 9082 MN patients, together with 525 first-degree relatives of DDX41-mutated and wild-type (WT) patients. P/LP DDX41 germ line variants explained ∼80% of known germ line predisposition to MNs in adults. These risk variants were 10-fold more enriched in Japanese MN cases (n = 4461) compared with the general population of Japan (n = 20 238). This enrichment of DDX41 risk alleles was much more prominent in male than female (20.7 vs 5.0). P/LP DDX41 variants conferred a large risk of developing MNs, which was negligible until 40 years of age but rapidly increased to 49% by 90 years of age. Patients with myelodysplastic syndromes (MDS) along with a DDX41-mutation rapidly progressed to acute myeloid leukemia (AML), which was however, confined to those having truncating variants. Comutation patterns at diagnosis and at progression to AML were substantially different between DDX41-mutated and WT cases, in which none of the comutations affected clinical outcomes. Even TP53 mutations made no exceptions and their dismal effect, including multihit allelic status, on survival was almost completely mitigated by the presence of DDX41 mutations. Finally, outcomes were not affected by the conventional risk stratifications including the revised/molecular International Prognostic Scoring System. Our findings establish that MDS with DDX41-mutation defines a unique subtype of MNs that is distinct from other MNs.


Subject(s)
DEAD-box RNA Helicases , Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Myeloproliferative Disorders , Adult , Aged, 80 and over , Female , Humans , Male , DEAD-box RNA Helicases/genetics , Germ Cells , Leukemia, Myeloid, Acute/genetics , Mutation , Myelodysplastic Syndromes/genetics , Myeloproliferative Disorders/genetics
7.
Mol Cell ; 66(5): 622-634.e8, 2017 Jun 01.
Article in English | MEDLINE | ID: mdl-28575658

ABSTRACT

RFWD3 is a recently identified Fanconi anemia protein FANCW whose E3 ligase activity toward RPA is essential in homologous recombination (HR) repair. However, how RPA ubiquitination promotes HR remained unknown. Here, we identified RAD51, the central HR protein, as another target of RFWD3. We show that RFWD3 polyubiquitinates both RPA and RAD51 in vitro and in vivo. Phosphorylation by ATR and ATM kinases is required for this activity in vivo. RFWD3 inhibits persistent mitomycin C (MMC)-induced RAD51 and RPA foci by promoting VCP/p97-mediated protein dynamics and subsequent degradation. Furthermore, MMC-induced chromatin loading of MCM8 and RAD54 is defective in cells with inactivated RFWD3 or expressing a ubiquitination-deficient mutant RAD51. Collectively, our data reveal a mechanism that facilitates timely removal of RPA and RAD51 from DNA damage sites, which is crucial for progression to the late-phase HR and suppression of the FA phenotype.


Subject(s)
Chromatin/enzymology , DNA Damage , DNA/metabolism , Fanconi Anemia/enzymology , Rad51 Recombinase/metabolism , Recombinational DNA Repair , Replication Protein A/metabolism , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Adenosine Triphosphatases/genetics , Adenosine Triphosphatases/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Chromatin/drug effects , Chromatin/genetics , Chromatin/radiation effects , DNA/genetics , Fanconi Anemia/genetics , Humans , Minichromosome Maintenance Proteins/metabolism , Mitomycin/pharmacology , Mutation , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Binding , Proteolysis , RNA Interference , Rad51 Recombinase/genetics , Recombinational DNA Repair/drug effects , Recombinational DNA Repair/radiation effects , Replication Protein A/genetics , Transfection , Ubiquitin-Protein Ligases/genetics , Valosin Containing Protein
8.
Biophys J ; 123(3): 294-306, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38115583

ABSTRACT

HIV-1 Vif is known to counteract the antiviral activity of human apolipoprotein B mRNA-editing catalytic polypeptide-like (A3), a cytidine deaminase, in various ways. However, the precise mechanism behind this interaction has remained elusive. Within infected cells, Vif forms a complex called VßBCC, comprising CBFß and the components of E3 ubiquitin ligase, Elongin B, Elongin C, and Cullin5. Together with the ubiquitin-conjugating enzyme, VßBCC induces ubiquitination-mediated proteasomal degradation of A3. However, Vif exhibits additional counteractive effects. In this study, we elucidate that VßBCC inhibits deamination by A3G, A3F, and A3B independently of proteasomal degradation. Surprisingly, we discovered that this inhibition for A3G is directly attributed to the interaction between VßBCC and the C-terminal domain of A3G. Previously, it was believed that Vif did not interact with the C-terminal domain. Our findings suggest that inhibiting the interaction between VßBCC and the C-terminal domain, as well as the N-terminal domain known to be targeted for ubiquitination, of A3G may be needed to prevent counteraction by Vif.


Subject(s)
HIV-1 , vif Gene Products, Human Immunodeficiency Virus , Humans , Cytosine Deaminase/metabolism , HIV-1/metabolism , Protein Binding , Proteolysis
9.
Br J Haematol ; 204(5): 2086-2096, 2024 May.
Article in English | MEDLINE | ID: mdl-38296352

ABSTRACT

Morphological dysplasia in haematopoietic cells, defined by a 10% threshold in each lineage, is one of the diagnostic criteria for myelodysplastic neoplasms. Dysplasia limited to the erythroid lineage has also been reported in some cases of aplastic anaemia (AA); however, its significance remains unclear. We herein examined the impact of erythroid dysplasia on immunosuppressive therapy responses and survival in AA patients. The present study included 100 eligible AA patients without ring sideroblasts. Among them, 32 had dysplasia in the erythroid lineage (AA with minimal dysplasia [mini-D]). No significant sex or age differences were observed between AA groups with and without erythroid dysplasia. In severe/very severe AA and non-severe AA patients, a response to anti-thymocyte globulin + ciclosporin within 12 months was observed in 80.0% and 60.0% of AA with mini-D and 42.9% and 90.0% of those without dysplasia, with no significant difference (p = 0.29 and p = 0.24 respectively). Overall survival and leukaemia-free survival did not significantly differ between the groups. Collectively, the present results indicate that the presence of erythroid dysplasia did not significantly affect clinical characteristics or outcomes in AA patients, suggesting that its presence in AA is acceptable. Therefore, erythroid dysplasia should not exclude an AA diagnosis.


Subject(s)
Anemia, Aplastic , Registries , Humans , Anemia, Aplastic/mortality , Anemia, Aplastic/pathology , Anemia, Aplastic/drug therapy , Female , Male , Middle Aged , Adult , Aged , Young Adult , Erythroid Cells/pathology , Adolescent , Aged, 80 and over
10.
Biochem Biophys Res Commun ; 693: 149355, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38096617

ABSTRACT

Nardilysin (NRDC) is a multifunctional protein required for maintaining homeostasis in various cellular and tissue contexts. However, its role in hematopoietic stem cells (HSCs) remains unclear. Here, through the conditional deletion of NRDC in hematopoietic cells, we demonstrate that NRDC is required for HSCs expansion in vitro and the reconstitution of hematopoiesis in vivo after transplantation. We found NRDC-deficient HSCs lose their self-renewal ability and display a preferential bias to myeloid differentiation in response to replication stress. Transcriptome data analysis revealed the upregulation of heat shock response-related genes in NRDC-deficient HSCs. Additionally, we observed increased protein synthesis in cultured NRDC-deficient HSCs. Thus, loss of NRDC may cause the inability to control protein synthesis in response to replication induced protein stress, leading to the impaired HSC self-renewal ability. This highlights a novel model of action of NRDC specifically in HSCs.


Subject(s)
Hematopoietic Stem Cells , Metalloendopeptidases , Hematopoietic Stem Cells/metabolism , Metalloendopeptidases/metabolism , Hematopoiesis/physiology , Up-Regulation , Cell Differentiation/genetics
11.
Cancer Immunol Immunother ; 73(7): 135, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38758239

ABSTRACT

BACKGROUND: Isatuximab, an anti-CD38 antibody, has been widely used in treatments for patients with relapsed/refractory multiple myeloma (MM). Despite its high efficacy, not all patients achieve a lasting therapeutic response with isatuximab. OBJECTIVE: We tried to identify biomarkers to predict the effectiveness of isatuximab by focusing on the host's immune status before treatment. METHODS: We retrospectively analyzed the cases of 134 relapsed/refractory MM patients in the Kansai Myeloma Forum database who had received only a first isatuximab treatment. RESULTS: Among the 134 patients, an isatuximab, pomalidomide and dexamethasone (Isa-PD) regimen, isatuximab, carfilzomib and dexamethasone (Isa-KD) regimen and isatuximab and/or dexamethasone (Isa-D) regimen were used in 112, 15 and 7 patients, respectively. The median age at treatment, number of prior treatment regimens, and progression-free survival (PFS) were 71, 6, and 6.54 months, respectively. Multivariate analysis showed that the PFS under the Isa-PD regimen was longer in patients with higher lymphocyte/monocyte ratio (LMR ≥ 4), fewer prior treatment regimens (< 6), and no use of prior daratumumab treatment. The OS under the Isa-PD regimen was longer in patients with higher white blood cell counts (WBC counts ≥ 3000/µL) and higher LMR. The PFS under the Isa-D regimen was longer in patients with fewer prior treatment regimens in univariate analysis, but no parameters were correlated with PFS/OS under the Isa-KD regimen. CONCLUSION: We found that the patients with higher LMR (≥ 4) could obtain longer PFS and OS under the Isa-PD regimen. Other cohort studies of isatuximab treatment might be necessary to substantiate our results.


Subject(s)
Antibodies, Monoclonal, Humanized , Antineoplastic Combined Chemotherapy Protocols , Lymphocytes , Monocytes , Multiple Myeloma , Thalidomide , Humans , Multiple Myeloma/drug therapy , Multiple Myeloma/mortality , Female , Male , Thalidomide/analogs & derivatives , Thalidomide/therapeutic use , Thalidomide/administration & dosage , Aged , Middle Aged , Retrospective Studies , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Monocytes/immunology , Antibodies, Monoclonal, Humanized/therapeutic use , Antibodies, Monoclonal, Humanized/administration & dosage , Adult , Aged, 80 and over , Prognosis
12.
J Virol ; 97(10): e0101123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37796123

ABSTRACT

IMPORTANCE: Most studies investigating the characteristics of emerging SARS-CoV-2 variants have been focusing on mutations in the spike proteins that affect viral infectivity, fusogenicity, and pathogenicity. However, few studies have addressed how naturally occurring mutations in the non-spike regions of the SARS-CoV-2 genome impact virological properties. In this study, we proved that multiple SARS-CoV-2 Omicron BA.2 mutations, one in the spike protein and another downstream of the spike gene, orchestrally characterize this variant, shedding light on the importance of Omicron BA.2 mutations out of the spike protein.


Subject(s)
Genome, Viral , Mutation , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , COVID-19/virology , SARS-CoV-2/genetics , SARS-CoV-2/pathogenicity , SARS-CoV-2/physiology , Spike Glycoprotein, Coronavirus/genetics , Genome, Viral/genetics
13.
Blood ; 140(24): 2611-2625, 2022 12 15.
Article in English | MEDLINE | ID: mdl-36112959

ABSTRACT

Blood cells are thought to have emerged as phagocytes in the common ancestor of animals followed by the appearance of novel blood cell lineages such as thrombocytes, erythrocytes, and lymphocytes, during evolution. However, this speculation is not based on genetic evidence and it is still possible to argue that phagocytes in different species have different origins. It also remains to be clarified how the initial blood cells evolved; whether ancient animals have solely developed de novo programs for phagocytes or they have inherited a key program from ancestral unicellular organisms. Here, we traced the evolutionary history of blood cells, and cross-species comparison of gene expression profiles revealed that phagocytes in various animal species and Capsaspora (C.) owczarzaki, a unicellular organism, are transcriptionally similar to each other. We also found that both phagocytes and C. owczarzaki share a common phagocytic program, and that CEBPα is the sole transcription factor highly expressed in both phagocytes and C. owczarzaki. We further showed that the function of CEBPα to drive phagocyte program in nonphagocytic blood cells has been conserved in tunicate, sponge, and C. owczarzaki. We finally showed that, in murine hematopoiesis, repression of CEBPα to maintain nonphagocytic lineages is commonly achieved by polycomb complexes. These findings indicate that the initial blood cells emerged inheriting a unicellular organism program driven by CEBPα and that the program has also been seamlessly inherited in phagocytes of various animal species throughout evolution.


Subject(s)
Eukaryota , Evolution, Molecular , Animals , Mice , Phylogeny , Eukaryota/genetics , Gene Expression Regulation , Blood Cells
14.
Blood ; 139(7): 967-982, 2022 02 17.
Article in English | MEDLINE | ID: mdl-34695199

ABSTRACT

Adult T-cell leukemia/lymphoma (ATL) is an aggressive neoplasm immunophenotypically resembling regulatory T cells, associated with human T-cell leukemia virus type-1. Here, we performed whole-genome sequencing (WGS) of 150 ATL cases to reveal the overarching landscape of genetic alterations in ATL. We discovered frequent (33%) loss-of-function alterations preferentially targeting the CIC long isoform, which were overlooked by previous exome-centric studies of various cancer types. Long but not short isoform-specific inactivation of Cic selectively increased CD4+CD25+Foxp3+ T cells in vivo. We also found recurrent (13%) 3'-truncations of REL, which induce transcriptional upregulation and generate gain-of-function proteins. More importantly, REL truncations are also common in diffuse large B-cell lymphoma, especially in germinal center B-cell-like subtype (12%). In the non-coding genome, we identified recurrent mutations in regulatory elements, particularly splice sites, of several driver genes. In addition, we characterized the different mutational processes operative in clustered hypermutation sites within and outside immunoglobulin/T-cell receptor genes and identified the mutational enrichment at the binding sites of host and viral transcription factors, suggesting their activities in ATL. By combining the analyses for coding and noncoding mutations, structural variations, and copy number alterations, we discovered 56 recurrently altered driver genes, including 11 novel ones. Finally, ATL cases were classified into 2 molecular groups with distinct clinical and genetic characteristics based on the driver alteration profile. Our findings not only help to improve diagnostic and therapeutic strategies in ATL, but also provide insights into T-cell biology and have implications for genome-wide cancer driver discovery.


Subject(s)
Ataxin-1/genetics , Biomarkers, Tumor/genetics , Gene Expression Regulation, Neoplastic , Leukemia-Lymphoma, Adult T-Cell/pathology , Mutation , Proto-Oncogene Proteins c-rel/genetics , Repressor Proteins/genetics , Animals , DNA Copy Number Variations , Female , Genome, Human , Humans , Leukemia-Lymphoma, Adult T-Cell/genetics , Mice , Mice, Inbred C57BL , Prognosis , Survival Rate , Exome Sequencing
15.
Ann Hematol ; 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38492020

ABSTRACT

Elotuzumab-based regimens are sometimes selected for multiple myeloma treatment after daratumumab-based regimens. However, there has been insufficient discussion on the efficacy of elotuzumab after daratumumab. We used Kansai Myeloma Forum registration data in a multicenter retrospective evaluation of the efficacy of elotuzumab after daratumumab. Overall survival (OS) rate and time to next treatment (TTNT) were significantly worse in the cohort given elotuzumab after daratumumab (Dara cohort, n = 47) than in the cohort with no history of daratumumab administration before elotuzumab (No-Dara cohort, n = 80, OS: P = 0.03; TTNT: P = 0.02; best response: P < 0.01). In the Dara cohort, OS and TTNT rates were worse with sequential elotuzumab use after daratumumab than with non-sequential (OS: P = 0.02; TTNT: P = 0.03). In patients given elotuzumab < 180 days after daratumumab, OS (P = 0.08) and best response (P = 0.21) tended to be worse, and TTNT was significantly worse (P = 0.01), than in those given elotuzumab after ≥ 180 days. These findings were confirmed by subgroup analyses and multivariate analyses. Monoclonal-antibody-free treatment might be preferable after daratumumab-based regimens. If possible, elotuzumab-based regimens should be considered only ≥ 180 days after daratumumab use.

16.
Ther Drug Monit ; 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38648638

ABSTRACT

BACKGROUND: Posaconazole is a vital drug to treat and prevent invasive fungal infections. Several factors, such as sex, body weight, total serum proteins, dietary intake, and severe mucositis, affect posaconazole pharmacokinetics (PKs). However, the relevance of other factors that affect the PKs of posaconazole in hematopoietic stem cell transplantation (HSCT) is unknown. This study explored factors influencing the PKs of posaconazole in HSCT recipients and nontransplant patients with hematological diseases. METHODS: The authors conducted a single-institution, retrospective study. Forty-two Japanese inpatients receiving oral posaconazole tablets as prophylaxis for fungal infections were enrolled in this study. A one-compartment model with first-order absorption was used as the structural pharmacokinetic model. A population PK (PopPK) analysis was performed using a nonlinear mixed-effects modeling program, using a first-order conditional estimation method with interactions. Perl-speaks-NONMEM and R were used to evaluate the goodness of fit and visualize the output. RESULTS: In 29% of the enrolled patients, the serum concentration of posaconazole was <0.5 mcg/mL, considered the effective range. PopPK analysis revealed that the patient had undergone HSCT within 1 year, diarrhea occurred more than 5 times a day, and aspartate aminotransferase were covariates that influenced apparent clearance (CL/F). The CL/F of posaconazole was 1.43-fold higher after HSCT and 1.26-fold higher during diarrhea. CONCLUSIONS: PopPK analysis revealed that HSCT, diarrhea, and aspartate aminotransferase were factors associated with the CL/F of posaconazole. The trough concentration of posaconazole may be below the therapeutic range in a few patients with diarrhea and/or after HSCT. As invasive fungal infections in patients with hematologic diseases can be life-threatening, therapeutic drug monitoring of posaconazole is strongly recommended, and patients should be carefully monitored.

17.
Rinsho Ketsueki ; 65(1): 47-51, 2024.
Article in Japanese | MEDLINE | ID: mdl-38311389

ABSTRACT

T-lymphoblastic leukemia/lymphoma (T-ALL/LBL) has a poor prognosis. Nelarabine has recently shown relatively good results in patients with relapsed or refractory T-ALL/LBL, but requires careful monitoring for neurological complications. A 50-year-old man with early recurrence of T-LBL after allogenic peripheral blood stem cell transplantation received nelarabine monotherapy and achieved complete remission after 1 cycle. He then received umbilical cord blood transplantation, and experienced sustained disturbance of consciousness. He later died of multiple organ failure, and autopsy suggested that nelarabine-induced leukoencephalopathy had caused the disturbance of consciousness. This case suggests that physicians should carefully monitor patients for neurological complications and consider imaging follow-up and consultation with a neurologist.


Subject(s)
Cord Blood Stem Cell Transplantation , Hematopoietic Stem Cell Transplantation , Lymphoma, Non-Hodgkin , Lymphoma, T-Cell , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma , Male , Humans , Middle Aged , Precursor T-Cell Lymphoblastic Leukemia-Lymphoma/pathology , Consciousness , Cord Blood Stem Cell Transplantation/adverse effects , Precursor Cell Lymphoblastic Leukemia-Lymphoma/therapy
18.
Biochem Biophys Res Commun ; 657: 43-49, 2023 05 21.
Article in English | MEDLINE | ID: mdl-36972660

ABSTRACT

Adult T-cell leukemia (ATL) is a peripheral T-cell malignancy caused by human T-cell leukemia virus type 1 (HTLV-1). Microsatellite instability (MSI) has been observed in ATL cells. Although MSI results from impaired mismatch repair (MMR) pathway, no null mutations in the genes encoding MMR factors are detectable in ATL cells. Thus, it is unclear whether or not impairment of MMR causes the MSI in ATL cells. HTLV-1 bZIP factor (HBZ) protein interacts with numerous host transcription factors and significantly contributes to disease pathogenesis and progression. Here we investigated the effect of HBZ on MMR in normal cells. The ectopic expression of HBZ in MMR-proficient cells induced MSI, and also suppressed the expression of several MMR factors. We then hypothesized that the HBZ compromises MMR by interfering with a transcription factor, nuclear respiratory factor 1 (NRF-1), and identified the consensus NRF-1 binding site at the promoter of the gene encoding MutS homologue 2 (MSH2), an essential MMR factor. The luciferase reporter assay revealed that NRF-1 overexpression enhanced MSH2 promoter activity, while co-expression of HBZ reversed this enhancement. These results supported the idea that HBZ suppresses the transcription of MSH2 by inhibiting NRF-1. Our data demonstrate that HBZ causes impaired MMR, and may imply a novel oncogenesis driven by HTLV-1.


Subject(s)
Human T-lymphotropic virus 1 , Leukemia-Lymphoma, Adult T-Cell , Adult , Humans , Human T-lymphotropic virus 1/genetics , DNA Mismatch Repair , Retroviridae Proteins/genetics , Retroviridae Proteins/metabolism , MutS Homolog 2 Protein/genetics , MutS Homolog 2 Protein/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Leukemia-Lymphoma, Adult T-Cell/pathology
19.
Cancer Immunol Immunother ; 72(11): 3861-3865, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37550429

ABSTRACT

Blinatumomab is an immunotherapy drug approved for the treatment of acute lymphoblastic leukemia. Since not all patients respond to blinatumomab, markers are needed to predict the efficacy of blinatumomab in individual patients. We hypothesized that the pre-treatment blast-to-lymphocyte ratio would predict blinatumomab efficacy. To examine this possibility, we conducted a post hoc analysis using data from the TOWER Clinical Trials (NCT02013167). Multivariate analysis showed that, along with the treatment groups, each of the following was independently correlated with superior progression-free survival: salvage-treatment phase, allogeneic stem cell transplantation, and pre-treatment ratio of bone marrow blasts-to-peripheral blood lymphocytes < 25.


Subject(s)
Antibodies, Bispecific , Antineoplastic Agents , Precursor Cell Lymphoblastic Leukemia-Lymphoma , Humans , Prognosis , Precursor Cell Lymphoblastic Leukemia-Lymphoma/drug therapy , Lymphocytes , T-Lymphocytes , Antineoplastic Agents/therapeutic use
20.
Liver Transpl ; 29(7): 711-723, 2023 07 01.
Article in English | MEDLINE | ID: mdl-36749821

ABSTRACT

Antibody-mediated rejection (AMR) is a refractory rejection after ABO blood-type incompatible (ABOi) or donor-specific antibody (DSA)-positive liver transplantation (LT). Pretransplant rituximab desensitization dramatically reduced posttransplant AMR development; however, risk factors for AMR in the rituximab era remain unclear in both ABOi living-donor LT (ABOi-LDLT) and preformed DSA-positive LT (pDSA-LT). Of our 596 adult LDLTs (≥18 y) after rituximab introduction (2004-2019), 136 were ABOi-LDLT (22.8%). After excluding retransplants (9), acute liver failure (7), and protocol deviations (16), 104 ABOi-LDLTs were finally enrolled. Of these, 19 recipients developed AMR, 18 of which occurred within 2 weeks after transplantation (95%). ABOi-AMR significantly worsened graft and recipient survival than those without ( p =0.02 and 0.04, respectively). Model for End-stage Liver Disease (MELD) ≤13 (OR: 5.15 [1.63-16.3], p =0.005) and pre-rituximab anti-ABO IgM-titer ≥128 (OR: 3.25 [1.05-10.0], p =0.03) were identified as independent risk factors for ABOi-AMR development. Recipients fulfilling both factors showed significantly worse survival rates than those who did not ( p =0.003). Of 352 adult LTs, after introducing the LABScreen Single Ag method (2009-2019), pDSA with mean fluorescence intensity (MFI) ≥500 was detected in 50 cases (14.2%). After excluding 10 ABOi-LDLTs, 40 pDSA-LTs were finally analyzed, of which 5 developed AMR. The combination of high-titer (sum-MFI ≥10,000) and multi-loci pDSAs was a significant risk factor for pDSA-AMR development ( p <0.001); however, it did not affect the 5-year recipient survival compared with those without ( p =0.56). In conclusion, preoperative MELD ≤13 and pre-rituximab anti-ABO IgM-titer ≥128 for ABOi-LDLT, and the combination of sum-MFI ≥10,000 and multi-loci pDSAs for pDSA-LT, are risk factors for AMR in the era of rituximab desensitization. Characteristically, ABOi-AMR significantly deteriorated graft and recipient survival, whereas pDSA-AMR did not.


Subject(s)
End Stage Liver Disease , Liver Transplantation , Adult , Humans , Rituximab/therapeutic use , Liver Transplantation/adverse effects , Liver Transplantation/methods , End Stage Liver Disease/etiology , Blood Group Incompatibility , Severity of Illness Index , Living Donors , Risk Factors , Immunoglobulin M , ABO Blood-Group System , Graft Rejection/epidemiology , Graft Rejection/prevention & control , Graft Survival
SELECTION OF CITATIONS
SEARCH DETAIL