Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Circ Res ; 133(11): 885-898, 2023 11 10.
Article in English | MEDLINE | ID: mdl-37929582

ABSTRACT

BACKGROUND: Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are poorly understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. METHODS: Eight-week-old male and female C57BL/6J mice received either Nγ-nitro-L-arginine methyl ester and high-fat diet or control water and diet for 2, 5, and 12 weeks. The db/db mice were studied as a second model of HFpEF. Early pathways regulating PH were identified by bulk and single-cell RNA sequencing. Findings were confirmed by immunostain in lungs of mice or lung slides from clinically performed autopsies of patients with PH-HFpEF. ELISA was used to verify IL-1ß (interleukin-1 beta) in mouse lung, mouse plasma, and also human plasma from patients with PH-HFpEF obtained at the time of right heart catheterization. Clodronate liposomes and an anti-IL-1ß antibody were utilized to deplete macrophages and IL-1ß, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF in mouse models. RESULTS: Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice developed PH, small vessel muscularization, and right heart dysfunction. Inflammation-related gene ontologies were overrepresented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling showed an increase in IL-1ß in mouse and human plasma. Finally, clodronate liposome treatment in mice prevented PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice, and IL-1ß depletion also attenuated PH in Nγ-nitro-L-arginine methyl ester/high-fat diet-treated mice. CONCLUSIONS: We report a novel model for the study of PH and right heart remodeling in HFpEF, and we identify myeloid cell-derived IL-1ß as an important contributor to PH in HFpEF.


Subject(s)
Heart Failure , Hypertension, Pulmonary , Animals , Female , Humans , Male , Mice , Clodronic Acid , Heart Failure/metabolism , Hypertension, Pulmonary/etiology , Interleukin-1beta , Mice, Inbred C57BL , Myeloid Cells/metabolism , Stroke Volume/physiology
2.
Am J Physiol Lung Cell Mol Physiol ; 318(2): L429-L441, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31850803

ABSTRACT

Insulin resistance and right ventricular (RV) dysfunction are associated with lipotoxicity in heritable forms of pulmonary arterial hypertension (PAH), commonly due to mutations in bone morphogenetic protein receptor type 2 (BMPR2). How BMPR2 dysfunction in cardiomyocytes alters glucose metabolism and the response of these cells to insulin are unknown. We hypothesized that BMPR2 mutation in cardiomyocytes alters glucose-supported mitochondrial respiration and impairs cellular responses to insulin, including glucose and lipid uptake. We performed metabolic assays, immunofluorescence and Western analysis, RNA profiling, and radioactive isotope uptake studies in H9c2 cardiomyocyte cell lines with and without patient-derived BMPR2 mutations (mutant cells), with and without insulin. Unlike control cells, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity as indicated by reduced mitochondrial respiration with increased mitochondrial superoxide production. These mutant cells show enhanced baseline phosphorylation of insulin-signaling protein as indicated by increased Akt, AMPK, and acetyl-CoA carboxylase phosphorylation that may negatively influence fatty acid oxidation and enhance lipid uptake, and are insulin insensitive. Furthermore, mutant cells demonstrate an increase in milk fat globule-EGF factor-8 protein (MFGE8), which influences the insulin-signaling pathway by phosphorylating AktSer473 via phosphatidylinositol 3-kinase and mammalian target of rapamycin. In conclusion, BMPR2 mutant cardiomyocytes have reduced metabolic plasticity and fail to respond to glucose. These cells have enhanced baseline insulin-signaling pattern favoring insulin resistance with failure to augment this pattern in response to insulin. BMPR2 mutation possibly blunts glucose uptake and enhances lipid uptake in these cardiomyocytes. The MFGE8-driven signaling pathway may suggest a new mechanism underlying RV lipotoxicity in PAH.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Glucose/metabolism , Homeostasis , Insulin/metabolism , Myocytes, Cardiac/metabolism , Signal Transduction , Animals , Antigens, Surface/metabolism , Bone Morphogenetic Protein Receptors, Type II/genetics , CD36 Antigens/metabolism , Cell Line , Gene Expression Regulation , Insulin Resistance , Mice , Milk Proteins/metabolism , Mitochondria/metabolism , Mutation/genetics , Oxygen Consumption , Palmitic Acid/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Rats , Superoxides/metabolism , TOR Serine-Threonine Kinases/metabolism
3.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L118-L126, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28935639

ABSTRACT

Endothelial-to-mesenchymal transition (EndMT) is a process in which endothelial cells lose polarity and cell-to cell contacts, and undergo a dramatic remodeling of the cytoskeleton. It has been implicated in initiation and progression of pulmonary arterial hypertension (PAH). However, the characteristics of cells which have undergone EndMT cells in vivo have not been reported and so remain unclear. To study this, sugen5416 and hypoxia (SuHx)-induced PAH was established in Cdh5-Cre/Gt(ROSA)26Sortm4(ACTB-tdTomato,EGFP)Luo/J double transgenic mice, in which GFP was stably expressed in pan-endothelial cells. After 3 wk of SuHx, flow cytometry and immunohistochemistry demonstrated CD144-negative and GFP-positive cells (complete EndMT cells) possessed higher proliferative and migratory activity compared with other mesenchymal cells. While CD144-positive and α-smooth muscle actin (α-SMA)-positive cells (partial EndMT cells) continued to express endothelial progenitor cell markers, complete EndMT cells were Sca-1-rich mesenchymal cells with high proliferative and migratory ability. When transferred in fibronectin-coated chamber slides containing smooth muscle media, α-SMA robustly expressed in these cells compared with cEndMT cells that were grown in maintenance media. Demonstrating additional paracrine effects, conditioned medium from isolated complete EndMT cells induced enhanced mesenchymal proliferation and migration and increased angiogenesis compared with conditioned medium from resident mesenchymal cells. Overall, these findings show that EndMT cells could contribute to the pathogenesis of PAH both directly, by transformation into smooth muscle-like cells with higher proliferative and migratory potency, and indirectly, through paracrine effects on vascular intimal and medial proliferation.


Subject(s)
Antigens, CD/physiology , Cadherins/physiology , Endothelium, Vascular/physiopathology , Epithelial-Mesenchymal Transition , Hypertension, Pulmonary/physiopathology , Pulmonary Artery/physiopathology , Animals , Cells, Cultured , Female , Gene Expression Profiling , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic
4.
Circulation ; 133(20): 1936-44, 2016 May 17.
Article in English | MEDLINE | ID: mdl-27006481

ABSTRACT

BACKGROUND: The mechanisms of right ventricular (RV) failure in pulmonary arterial hypertension (PAH) are poorly understood. Abnormalities in fatty acid (FA) metabolism have been described in experimental models of PAH, but systemic and myocardial FA metabolism has not been studied in human PAH. METHODS AND RESULTS: We used human blood, RV tissue, and noninvasive imaging to characterize multiple steps in the FA metabolic pathway in PAH subjects and controls. Circulating free FAs and long-chain acylcarnitines were elevated in PAH patients versus controls. Human RV long-chain FAs were increased and long-chain acylcarnitines were markedly reduced in PAH versus controls. With the use of proton magnetic resonance spectroscopy, in vivo myocardial triglyceride content was elevated in human PAH versus controls (1.4±1.3% triglyceride versus 0.22±0.11% triglyceride, P=0.02). Ceramide, a mediator of lipotoxicity, was increased in PAH RVs versus controls. Using an animal model of heritable PAH, we demonstrated reduced FA oxidation via failure of palmitoylcarnitine to stimulate oxygen consumption in the PAH RV. CONCLUSIONS: Abnormalities in FA metabolism can be detected in the blood and myocardium in human PAH and are associated with in vivo cardiac steatosis and lipotoxicity. Murine data suggest that lipotoxicity may arise from reduction in FA oxidation.


Subject(s)
Fatty Acids/metabolism , Hypertension, Pulmonary/metabolism , Hypertension, Pulmonary/pathology , Triglycerides/metabolism , Ventricular Dysfunction, Right/metabolism , Ventricular Dysfunction, Right/pathology , Animals , Ceramides/metabolism , Cohort Studies , Humans , Hypertension, Pulmonary/epidemiology , Mice , Mice, Transgenic , Prospective Studies , Ventricular Dysfunction, Right/epidemiology
5.
Circulation ; 133(1): 82-97, 2016 Jan 05.
Article in English | MEDLINE | ID: mdl-26487756

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a proliferative disease of the pulmonary vasculature that preferentially affects women. Estrogens such as the metabolite 16α-hydroxyestrone (16αOHE) may contribute to PAH pathogenesis, and alterations in cellular energy metabolism associate with PAH. We hypothesized that 16αOHE promotes heritable PAH (HPAH) via microRNA-29 (miR-29) family upregulation and that antagonism of miR-29 would attenuate pulmonary hypertension in transgenic mouse models of Bmpr2 mutation. METHODS AND RESULTS: MicroRNA array profiling of human lung tissue found elevation of microRNAs associated with energy metabolism, including the miR-29 family, among HPAH patients. miR-29 expression was 2-fold higher in Bmpr2 mutant mice lungs at baseline compared with controls and 4 to 8-fold higher in Bmpr2 mice exposed to 16αOHE 1.25 µg/h for 4 weeks. Blot analyses of Bmpr2 mouse lung protein showed significant reductions in peroxisome proliferator-activated receptor-γ and CD36 in those mice exposed to 16αOHE and protein derived from HPAH lungs compared with controls. Bmpr2 mice treated with anti-miR-29 (20-mg/kg injections for 6 weeks) had improvements in hemodynamic profile, histology, and markers of dysregulated energy metabolism compared with controls. Pulmonary artery smooth muscle cells derived from Bmpr2 murine lungs demonstrated mitochondrial abnormalities, which improved with anti-miR-29 transfection in vitro; endothelial-like cells derived from HPAH patient induced pluripotent stem cell lines were similar and improved with anti-miR-29 treatment. CONCLUSIONS: 16αOHE promotes the development of HPAH via upregulation of miR-29, which alters molecular and functional indexes of energy metabolism. Antagonism of miR-29 improves in vivo and in vitro features of HPAH and reveals a possible novel therapeutic target.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/biosynthesis , Cellular Microenvironment/physiology , Hydroxyestrones/metabolism , Hypertension, Pulmonary/metabolism , MicroRNAs/biosynthesis , Animals , Cellular Microenvironment/drug effects , Female , Humans , Hydroxyestrones/toxicity , Hypertension, Pulmonary/chemically induced , Hypertension, Pulmonary/diagnosis , Male , Mice , Mice, Transgenic , MicroRNAs/antagonists & inhibitors
6.
Eur Respir J ; 50(2)2017 08.
Article in English | MEDLINE | ID: mdl-28775043

ABSTRACT

Increased oestrogen is a strong epidemiological risk factor for development of pulmonary arterial hypertension (PAH) in patients, associated with metabolic defects. In addition, oestrogens drive penetrance in mice carrying mutations in bone morphogenetic protein receptor type II (BMPR2), the cause of most heritable PAH. The goal of the present study was to determine whether inhibition of oestrogens was effective in the treatment of PAH in these mice.The oestrogen inhibitors fulvestrant and anastrozole were used in a prevention and treatment paradigm in BMPR2 mutant mice, and tamoxifen was used for treatment. In addition, BMPR2 mutant mice were crossed onto oestrogen receptor (ESR)1 and ESR2 knockout backgrounds to assess receptor specificity. Haemodynamic and metabolic outcomes were measured.Oestrogen inhibition both prevented and treated PAH in BMPR2 mutant mice. This was associated with reduction in metabolic defects including oxidised lipid formation, insulin resistance and rescue of peroxisome proliferator-activated receptor-γ and CD36. The effect was mediated primarily through ESR2, but partially through ESR1.Our data suggest that trials of oestrogen inhibition in human PAH are warranted, and may improve pulmonary vascular disease through amelioration of metabolic defects. Although fulvestrant and anastrozole were more effective than tamoxifen, tamoxifen may be useful in premenopausal females, because of a reduced risk of induction of menopause.


Subject(s)
Estrogen Antagonists/pharmacology , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/physiopathology , Tamoxifen/pharmacology , Anastrozole , Animals , Bone Morphogenetic Protein Receptors, Type II/genetics , Disease Models, Animal , Echocardiography , Estradiol/analogs & derivatives , Estradiol/blood , Estradiol/pharmacology , Female , Fulvestrant , Hemodynamics , Humans , Insulin Resistance , Lung/pathology , Mice , Mice, Knockout , Mutation , Nitriles/pharmacology , Signal Transduction/drug effects , Triazoles/pharmacology
7.
Am J Respir Crit Care Med ; 193(8): 898-909, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-26651104

ABSTRACT

RATIONALE: Pulmonary arterial hypertension (PAH) is a progressive lung disease of the pulmonary microvasculature. Studies suggest that bone marrow (BM)-derived circulating cells may play an important role in its pathogenesis. OBJECTIVES: We used a genetic model of PAH, the Bmpr2 mutant mouse, to study the role of BM-derived circulating cells in its pathogenesis. METHODS: Recipient mice, either Bmpr2(R899X) mutant or controls, were lethally irradiated and transplanted with either control or Bmpr2(R899X) BM cells. Donor cells were traced in female recipient mice by Y chromosome painting. Molecular and function insights were provided by expression and cytokine arrays combined with flow cytometry, colony-forming assays, and competitive transplant assays. MEASUREMENTS AND MAIN RESULTS: We found that mutant BM cells caused PAH with remodeling and inflammation when transplanted into control mice, whereas control BM cells had a protective effect against the development of disease, when transplanted into mutant mice. Donor BM-derived cells were present in the lungs of recipient mice. Functional and molecular analysis identified mutant BM cell dysfunction suggestive of a PAH phenotype soon after activation of the transgene and long before the development of lung pathology. CONCLUSIONS: Our data show that BM cells played a key role in PAH pathogenesis and that the transplanted BM cells were able to drive the lung phenotype in a myeloablative transplant model. Furthermore, the specific cell types involved were derived from hematopoietic stem cells and exhibit dysfunction long before the development of lung pathology.


Subject(s)
Bone Marrow Transplantation , Hematopoietic Stem Cells/pathology , Hypertension, Pulmonary/pathology , Lung/pathology , Animals , Disease Models, Animal , Female , Flow Cytometry , Mice
8.
Am J Respir Crit Care Med ; 194(6): 719-28, 2016 09 15.
Article in English | MEDLINE | ID: mdl-27077479

ABSTRACT

RATIONALE: In heritable pulmonary arterial hypertension with germline mutation in the bone morphogenetic protein receptor type 2 (BMPR2) gene, right ventricle (RV) dysfunction is associated with RV lipotoxicity; however, the underlying mechanism for lipid accumulation is not known. OBJECTIVES: We hypothesized that lipid accumulation in cardiomyocytes with BMPR2 mutation occurs owing to alterations in lipid transport and impaired fatty acid oxidation (FAO), which is exacerbated by a high-lipid (Western) diet (WD). METHODS: We used a transgenic mouse model of pulmonary arterial hypertension with mutant BMPR2 and generated a cardiomyocyte cell line with BMPR2 mutation. Electron microscopy and metabolomic analysis were performed on mouse RVs. MEASUREMENTS AND MAIN RESULTS: By metabolomics analysis, we found an increase in long-chain fatty acids in BMPR2 mutant mouse RVs compared with controls, which correlated with cardiac index. BMPR2-mutant cardiomyocytes had increased lipid compared with controls. Direct measurement of FAO in the WD-fed BMPR2-mutant RV showed impaired palmitate-linked oxygen consumption, and metabolomics analysis showed reduced indices of FAO. Using both mutant BMPR2 mouse RVs and cardiomyocytes, we found an increase in the uptake of (14)C-palmitate and fatty acid transporter CD36 that was further exacerbated by WD. CONCLUSIONS: Taken together, our data suggest that impaired FAO and increased expression of the lipid transporter CD36 are key mechanisms underlying lipid deposition in the BMPR2-mutant RV, which are exacerbated in the presence of dietary lipids. These findings suggest important features leading to RV lipotoxicity in pulmonary arterial hypertension and may point to novel areas of therapeutic intervention.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Heart Ventricles/chemistry , Lipids/analysis , Animals , Bone Morphogenetic Protein Receptors, Type II/physiology , Cell Line , Disease Models, Animal , Fatty Acids/metabolism , Heart Ventricles/metabolism , Heart Ventricles/ultrastructure , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Lipid Metabolism/genetics , Metabolomics , Mice , Mice, Transgenic , Microscopy, Electron , Myocytes, Cardiac/metabolism
9.
Am J Physiol Lung Cell Mol Physiol ; 310(3): L249-62, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26637636

ABSTRACT

Pulmonary hypertension (PH) complicating chronic parenchymal lung disease, such as idiopathic pulmonary fibrosis, results in significant morbidity and mortality. Since the hypoxia-inducible factor (HIF) signaling pathway is important for development of pulmonary hypertension in chronic hypoxia, we investigated whether HIF signaling in vascular endothelium regulates development of PH related to pulmonary fibrosis. We generated a transgenic model in which HIF is deleted within vascular endothelial cells and then exposed these mice to chronic intraperitoneal bleomycin to induce PH associated with lung fibrosis. Although no differences in the degree of fibrotic remodeling were observed, we found that endothelial HIF-deficient mice were protected against development of PH, including right ventricle and pulmonary vessel remodeling. Similarly, endothelial HIF-deficient mice were protected from PH after a 4-wk exposure to normobaric hypoxia. In vitro studies of pulmonary vascular endothelial cells isolated from the HIF-targeted mice and controls revealed that endothelial HIF signaling increases endothelial cell expression of connective tissue growth factor, enhances vascular permeability, and promotes pulmonary artery smooth muscle cell proliferation and wound healing ability, all of which have the potential to impact the development of PH in vivo. Taken together, these studies demonstrate that vascular endothelial cell HIF signaling is necessary for development of hypoxia and pulmonary fibrosis associated PH. As such, HIF and HIF-regulated targets represent a therapeutic target in these conditions.


Subject(s)
Endothelial Cells/metabolism , Hypertension, Pulmonary/metabolism , Hypoxia-Inducible Factor 1/metabolism , Pulmonary Artery/metabolism , Animals , Cell Proliferation/physiology , Cells, Cultured , Endothelium, Vascular/metabolism , Fibrosis/etiology , Hypertension, Pulmonary/complications , Hypoxia/metabolism , Mice, Transgenic , Muscle, Smooth, Vascular/metabolism , Vascular Remodeling/physiology
10.
Am J Respir Crit Care Med ; 189(3): 325-34, 2014 Feb 01.
Article in English | MEDLINE | ID: mdl-24274756

ABSTRACT

RATIONALE: Shorter survival in heritable pulmonary arterial hypertension (HPAH), often due to BMPR2 mutation, has been described in association with impaired right ventricle (RV) compensation. HPAH animal models are insulin resistant, and cells with BMPR2 mutation have impaired fatty acid oxidation, but whether these findings affect the RV in HPAH is unknown. OBJECTIVES: To test the hypothesis that BMPR2 mutation impairs RV hypertrophic responses in association with lipid deposition. METHODS: RV hypertrophy was assessed in two models of mutant Bmpr2 expression, smooth muscle-specific (Sm22(R899X)) and universal expression (Rosa26(R899X)). Littermate control mice underwent the same stress using pulmonary artery banding (Low-PAB). Lipid content was assessed in rodent and human HPAH RVs and in Rosa26(R899X) mice after metformin administration. RV microarrays were performed using human HPAH and control subjects. RESULTS: RV/(left ventricle + septum) did not rise directly in proportion to RV systolic pressure in Rosa26(R899X) but did in Sm22(R899X) (P < 0.05). Rosa26(R899X) RVs demonstrated intracardiomyocyte triglyceride deposition not present in Low-PAB (P < 0.05). RV lipid deposition was identified in human HPAH RVs but not in controls. Microarray analysis demonstrated defects in fatty acid oxidation in human HPAH RVs. Metformin in Rosa26(R899X) mice resulted in reduced RV lipid deposition. CONCLUSIONS: These data demonstrate that Bmpr2 mutation affects RV stress responses in a transgenic rodent model. Impaired RV hypertrophy and triglyceride and ceramide deposition are present as a function of RV mutant Bmpr2 in mice; fatty acid oxidation impairment in human HPAH RVs may underlie this finding. Further study of how BMPR2 mediates RV lipotoxicity is warranted.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/genetics , Ceramides/metabolism , Hypertension, Pulmonary/genetics , Hypertrophy, Right Ventricular/metabolism , Lipolysis , Triglycerides/metabolism , Animals , Biomarkers/metabolism , Case-Control Studies , Familial Primary Pulmonary Hypertension , Genetic Markers , Humans , Hypertension, Pulmonary/complications , Hypertrophy, Right Ventricular/etiology , Hypertrophy, Right Ventricular/genetics , Mice , Mice, Transgenic , Mutation , Oligonucleotide Array Sequence Analysis , Oxidation-Reduction
11.
Am J Physiol Cell Physiol ; 307(8): C684-98, 2014 Oct 15.
Article in English | MEDLINE | ID: mdl-25122876

ABSTRACT

Genesis of myofibroblasts is obligatory for the development of pathology in many adult lung diseases. Adult lung tissue contains a population of perivascular ABCG2(pos) mesenchymal stem cells (MSC) that are precursors of myofibroblasts and distinct from NG2 pericytes. We hypothesized that these MSC participate in deleterious remodeling associated with pulmonary fibrosis (PF) and associated hypertension (PH). To test this hypothesis, resident lung MSC were quantified in lung samples from control subjects and PF patients. ABCG2(pos) cell numbers were decreased in human PF and interstitial lung disease compared with control samples. Genetic labeling of lung MSC in mice enabled determination of terminal lineage and localization of ABCG2 cells following intratracheal administration of bleomycin to elicit fibrotic lung injury. Fourteen days following bleomycin injury enhanced green fluorescent protein (eGFP)-labeled lung MSC-derived cells were increased in number and localized to interstitial areas of fibrotic and microvessel remodeling. Finally, gene expression analysis was evaluated to define the response of MSC to bleomycin injury in vivo using ABCG2(pos) MSC isolated during the inflammatory phase postinjury and in vitro bleomycin or transforming growth factor-ß1 (TGF-ß1)-treated cells. MSC responded to bleomycin treatment in vivo with a profibrotic gene program that was not recapitulated in vitro with bleomycin treatment. However, TGF-ß1 treatment induced the appearance of a profibrotic myofibroblast phenotype in vitro. Additionally, when exposed to the profibrotic stimulus, TGF-ß1, ABCG2, and NG2 pericytes demonstrated distinct responses. Our data highlight ABCG2(pos) lung MSC as a novel cell population that contributes to detrimental myofibroblast-mediated remodeling during PF.


Subject(s)
ATP-Binding Cassette Transporters/metabolism , Mesenchymal Stem Cells/physiology , Neoplasm Proteins/metabolism , Pericytes/physiology , Pulmonary Fibrosis/pathology , ATP Binding Cassette Transporter, Subfamily G, Member 2 , Animals , Cells, Cultured , Humans , Lung/blood supply , Lung/pathology , Mice , Myofibroblasts/physiology , Pulmonary Fibrosis/metabolism , Transforming Growth Factor beta1/physiology
12.
Front Med (Lausanne) ; 10: 1276422, 2023.
Article in English | MEDLINE | ID: mdl-37869164

ABSTRACT

Introduction: Pulmonary arterial hypertension is a fatal cardiopulmonary disease. Leptin, a neuroendocrine hormone released by adipose tissue, has a complex relationship with cardiovascular diseases, including PAH. Leptin is thought to be an important factor linking metabolic syndrome and cardiovascular disorders. Given the published association between metabolic syndrome and RV dysfunction in PAH, we sought to determine the association between leptin and RV dysfunction. We hypothesized that in PAH-RV, leptin influences metabolic changes via leptin receptors, which can be manipulated by metformin. Methods: Plasma leptin was measured in PAH patients and healthy controls from a published trial of metformin in PAH. Leptin receptor localization was detected in RV from PAH patients, healthy controls, animal models of PH with RV dysfunction before and after metformin treatment, and cultured cardiomyocytes with two different BMPR2 mutants by performing immunohistochemical and cell fractionation studies. Functional studies were conducted in cultured cardiomyocytes to examine the role of leptin and metformin in lipid-driven mitochondrial respiration. Results: In human studies, we found that plasma leptin levels were higher in PAH patients and moderately correlated with higher BMI, but not in healthy controls. Circulating leptin levels were reduced by metformin treatment, and these findings were confirmed in an animal model of RV dysfunction. Leptin receptor expression was increased in PAH-RV cardiomyocytes. In animal models of RV dysfunction and cultured cardiomyocytes with BMPR2 mutation, we found increased expression and membrane localization of the leptin receptor. In cultured cardiomyocytes with BMPR2 mutation, leptin moderately influences palmitate uptake, possibly via CD36, in a mutation-specific manner. Furthermore, in cultured cardiomyocytes, the Seahorse XFe96 Extracellular Flux Analyzer and gene expression data indicate that leptin may not directly influence lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. However, metformin alone or when supplemented with leptin can improve lipid-driven mitochondrial respiration in BMPR2 mutant cardiomyocytes. The effect of metformin on lipid-driven mitochondrial respiration in cardiomyocytes is BMPR2 mutation-specific. Conclusion: In PAH, increased circulating leptin can influence metabolic signaling in RV cardiomyocytes via the leptin receptor; in particular, it may alter lipid-dependent RV metabolism in combination with metformin in a mutation-specific manner and warrants further investigation.

13.
bioRxiv ; 2023 May 18.
Article in English | MEDLINE | ID: mdl-37292652

ABSTRACT

Background: Pulmonary hypertension (PH) in heart failure with preserved ejection fraction (HFpEF) is a common and highly morbid syndrome, but mechanisms driving PH-HFpEF are not well understood. We sought to determine whether a well-accepted murine model of HFpEF also displays features of PH in HFpEF, and we sought to identify pathways that might drive early remodeling of the pulmonary vasculature in HFpEF. Methods: Eight week old male and female C57/BL6J mice were given either L-NAME and high fat diet (HFD) or control water/diet for 2,5, and 12 weeks. Bulk RNA sequencing and single cell RNA sequencing was performed to identify early and cell-specific pathways that might regulate pulmonary vascular remodeling in PH-HFpEF. Finally, clodronate liposome and IL1ß antibody treatments were utilized to deplete macrophages or IL1ß, respectively, to assess their impact on pulmonary vascular remodeling in HFpEF. Results: Mice given L-NAME/HFD developed PH, small vessel muscularization, and right heart dysfunction after 2 weeks of treatment. Inflammation-related gene ontologies were over-represented in bulk RNA sequencing analysis of whole lungs, with an increase in CD68+ cells in both murine and human PH-HFpEF lungs. Cytokine profiling of mouse lung and plasma showed an increase in IL1ß, which was confirmed in plasma from patients with HFpEF. Single cell sequencing of mouse lungs also showed an increase in M1-like, pro-inflammatory populations of Ccr2+ monocytes and macrophages, and transcript expression of IL1ß was primarily restricted to myeloid-type cells. Finally, clodronate liposome treatment prevented the development of PH in L-NAME/HFD treated mice, and IL1ß antibody treatment also attenuated PH in L-NAME/HFD treated mice. Conclusions: Our study demonstrated that a well-accepted model of HFpEF recapitulates features of pulmonary vascular remodeling commonly seen in patients with HFpEF, and we identified myeloid cell derived IL1ß as an important contributor to PH in HFpEF.

14.
Am J Physiol Lung Cell Mol Physiol ; 302(5): L474-84, 2012 Mar 01.
Article in English | MEDLINE | ID: mdl-22180660

ABSTRACT

The heritable form of pulmonary arterial hypertension (PAH) is typically caused by a mutation in bone morphogenic protein receptor type 2 (BMPR2), and mice expressing Bmpr2 mutations develop PAH with features similar to human disease. BMPR2 is known to interact with the cytoskeleton, and human array studies in PAH patients confirm alterations in cytoskeletal pathways. The goal of this study was to evaluate cytoskeletal defects in BMPR2-associated PAH. Expression arrays on our Bmpr2 mutant mouse lungs revealed cytoskeletal defects as a prominent molecular consequence of universal expression of a Bmpr2 mutation (Rosa26-Bmpr2(R899X)). Pulmonary microvascular endothelial cells cultured from these mice have histological and functional cytoskeletal defects. Stable transfection of different BMPR2 mutations into pulmonary microvascular endothelial cells revealed that cytoskeletal defects are common to multiple BMPR2 mutations and are associated with activation of the Rho GTPase, Rac1. Rac1 defects are corrected in cell culture and in vivo through administration of exogenous recombinant human angiotensin-converting enzyme 2 (rhACE2). rhACE2 reverses 77% of gene expression changes in Rosa26-Bmpr2(R899X) transgenic mice, in particular, correcting defects in cytoskeletal function. Administration of rhACE2 to Rosa26-Bmpr2(R899X) mice with established PAH normalizes pulmonary pressures. Together, these findings suggest that cytoskeletal function is central to the development of BMPR2-associated PAH and that intervention against cytoskeletal defects may reverse established disease.


Subject(s)
Bone Morphogenetic Protein Receptors, Type II/metabolism , Cytoskeleton/pathology , Hypertension, Pulmonary/pathology , Amino Acid Substitution , Angiotensin-Converting Enzyme 2 , Animals , Blood Pressure/drug effects , Bone Morphogenetic Protein Receptors, Type II/genetics , Cells, Cultured , Cytoskeleton/genetics , Cytoskeleton/metabolism , Endothelial Cells/metabolism , Endothelial Cells/pathology , Enzyme Activation , Familial Primary Pulmonary Hypertension , Female , Gene Expression Profiling , Heart Ventricles/physiopathology , Humans , Hypertension, Pulmonary/drug therapy , Hypertension, Pulmonary/genetics , Hypertension, Pulmonary/metabolism , Lung/blood supply , Lung/metabolism , Lung/pathology , Male , Mice , Mice, Transgenic , Microvessels/metabolism , Microvessels/pathology , Neuropeptides/metabolism , Oligonucleotide Array Sequence Analysis , Peptidyl-Dipeptidase A/pharmacology , Peptidyl-Dipeptidase A/therapeutic use , Phosphorylation , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , rac GTP-Binding Proteins/metabolism , rac1 GTP-Binding Protein
15.
Pulm Circ ; 12(3): e12107, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35911183

ABSTRACT

Pulmonary arterial hypertension (PAH) is a fatal vasculopathy that ultimately leads to elevated pulmonary pressure and death by right ventricular (RV) failure, which occurs in part due to decreased fatty acid oxidation and cytotoxic lipid accumulation. In this study, we tested the hypothesis that decreased fatty acid oxidation and increased lipid accumulation in the failing RV is driven, in part, by a relative carnitine deficiency. We then tested whether supplementation of l-carnitine can reverse lipotoxic RV failure through augmentation of fatty acid oxidation. In vivo in transgenic mice harboring a human BMPR2 mutation, l-carnitine supplementation reversed RV failure by increasing RV cardiac output, improving RV ejection fraction, and decreasing RV lipid accumulation through increased PPARγ expression and augmented fatty acid oxidation of long chain fatty acids. These findings were confirmed in a second model of pulmonary artery banding-induced RV dysfunction. In vitro, l-carnitine supplementation selectively increased fatty acid oxidation in mitochondria and decreased lipid accumulation through a Cpt1-dependent pathway. l-Carnitine supplementation improves right ventricular contractility in the stressed RV through augmentation of fatty acid oxidation and decreases lipid accumulation. Correction of carnitine deficiency through l-carnitine supplementation in PAH may reverse RV failure.

16.
Cells ; 10(9)2021 09 03.
Article in English | MEDLINE | ID: mdl-34571956

ABSTRACT

Pulmonary arterial hypertension (PAH) is a progressive lung disease caused by thickening of the pulmonary arterial wall and luminal obliteration of the small peripheral arteries leading to increase in vascular resistance which elevates pulmonary artery pressure that eventually causes right heart failure and death. We have previously shown that transcription factor Msx1 (mainly expressed during embryogenesis) is strongly upregulated in transformed lymphocytes obtained from PAH patients, especially IPAH. Under pathological conditions, Msx1 overexpression can cause cell dedifferentiation or cell apoptosis. We hypothesized that Msx1 overexpression contributes to loss of small pulmonary vessels in PAH. In IPAH lung, MSX1 protein localization was strikingly increased in muscularized remodeled pulmonary vessels, whereas it was undetectable in control pulmonary arteries. We developed a transgenic mouse model overexpressing MSX1 (MSX1OE) by about 4-fold and exposed these mice to normoxic, sugen hypoxic (3 weeks) or hyperoxic (100% 02 for 3 weeks) conditions. Under normoxic conditions, compared to controls, MSX1OE mice demonstrated a 30-fold and 2-fold increase in lung Msx1 mRNA and protein expression, respectively. There was a significant retinal capillary dropout (p < 0.01) in MSX1OE mice, which was increased further (p < 0.03) with sugen hypoxia. At baseline, the number of pulmonary vessels in MSX1OE mice was similar to controls. In sugen-hypoxia-treated MSX1OE mice, the number of small (0-25 uM) and medium (25-50 uM) size muscularized vessels increased approximately 2-fold (p < 0.01) compared to baseline controls; however, they were strikingly lower (p < 0.001) in number than in sugen-hypoxia-treated control mice. In MSX1OE mouse lung, 104 genes were upregulated and 67 genes were downregulated compared to controls. Similarly, in PVECs, 156 genes were upregulated and 320 genes were downregulated from siRNA to MSX1OE, and in PVSMCs, 65 genes were upregulated and 321 genes were downregulated from siRNA to MSX1OE (with control in the middle). Many of the statistically significant GO groups associated with MSX1 expression in lung, PVECs, and PVSMCs were similar, and were involved in cell cycle, cytoskeletal and macromolecule organization, and programmed cell death. Overexpression of MSX1 suppresses many cell-cycle-related genes in PVSMCs but induces them in PVECs. In conclusion, overexpression of Msx1 leads to loss of pulmonary vessels, which is exacerbated by sugen hypoxia, and functional consequences of Msx1 overexpression are cell-dependent.


Subject(s)
Hypoxia/metabolism , Lung/metabolism , MSX1 Transcription Factor/metabolism , Pulmonary Artery/metabolism , Animals , Apoptosis/physiology , Cell Cycle/physiology , Cell Differentiation/physiology , Down-Regulation/physiology , Female , Humans , Male , Mice , Up-Regulation/physiology
17.
JRSM Cardiovasc Dis ; 9: 2048004020906994, 2020.
Article in English | MEDLINE | ID: mdl-32110389

ABSTRACT

PURPOSE: Chronic thromboembolic pulmonary hypertension is characterized by incomplete thrombus resolution following acute pulmonary embolism, leading to pulmonary hypertension and right ventricular dysfunction. Conditions such as thrombophilias, dysfibrinogenemias, and inflammatory states have been associated with chronic thromboembolic pulmonary hypertension, but molecular mechanisms underlying this disease are poorly understood. We sought to characterize the molecular and functional features associated with chronic thromboembolic pulmonary hypertension using a multifaceted approach. METHODS: We utilized functional assays to compare clot lysis times between chronic thromboembolic pulmonary hypertension patients and multiple controls. We then performed immunohistochemical characterization of tissue from chronic thromboembolic pulmonary hypertension, pulmonary arterial hypertension, and healthy controls, and examined RNA expression patterns of cultured lymphocytes and pulmonary arterial specimens. We then confirmed RNA expression changes using immunohistochemistry, immunofluorescence, and Western blotting in pulmonary arterial tissue. RESULTS: Clot lysis times in chronic thromboembolic pulmonary hypertension patients are similar to multiple controls. Chronic thromboembolic pulmonary hypertension endarterectomized tissue has reduced expression of both smooth muscle and endothelial cell markers. RNA expression profiles in pulmonary arteries and peripheral blood lymphocytes identified differences in RNA transcript levels related to inflammation and growth factor signaling, which we confirmed using immunohistochemistry. Gene expression data also suggested significant alterations in metabolic pathways, and immunofluorescence and Western blot experiments confirmed that unglycosylated CD36 and adiponectin expression were increased in chronic thromboembolic pulmonary hypertension versus controls. CONCLUSIONS: Our data do not support impaired clot lysis underlying chronic thromboembolic pulmonary hypertension, but did demonstrate distinct molecular patterns present both in peripheral blood and in pathologic specimens of chronic thromboembolic pulmonary hypertension patients suggesting that altered metabolism may play a role in chronic thromboembolic pulmonary hypertension pathogenesis.

18.
Pulm Circ ; 9(1): 2045894018817741, 2019.
Article in English | MEDLINE | ID: mdl-30451070

ABSTRACT

Little is known about the impact of metabolic syndrome (MS) on right ventricular (RV) structure and function. We hypothesized that mice fed a Western diet (WD) would develop RV lipid accumulation and impaired RV function, which would be ameliorated with metformin. Male C57/Bl6 mice were fed a WD or standard rodent diet (SD) for eight weeks. A subset of mice underwent pulmonary artery banding (PAB). Treated mice were given 2.5 g/kg metformin mixed in food. Invasive hemodynamics, histology, Western, and quantitative polymerase chain reaction (qPCR) were performed using standard techniques. Lipid content was detected by Oil Red O staining. Mice fed a WD developed insulin resistance, RV hypertrophy, and higher RV systolic pressure compared with SD controls. Myocardial lipid accumulation was greater in the WD group and disproportionately affected the RV. These structural changes were associated with impaired RV diastolic function in WD mice. PAB-WD mice had greater RV hypertrophy, increased lipid deposition, and lower RV ejection fraction compared with PAB SD controls. Compared to untreated mice, metformin lowered HOMA-IR and prevented weight gain in mice fed a WD. Metformin reduced RV systolic pressure, prevented RV hypertrophy, and reduced RV lipid accumulation in both unstressed stressed conditions. RV diastolic function improved in WD mice treated with metformin. WD in mice leads to an elevation in pulmonary pressure, RV diastolic dysfunction, and disproportionate RV steatosis, which are exacerbated by PAB. Metformin prevents the deleterious effects of WD on RV function and myocardial steatosis in this model of the metabolic syndrome.

19.
JCI Insight ; 4(1)2019 Jan 10.
Article in English | MEDLINE | ID: mdl-30626738

ABSTRACT

BACKGROUND: Pulmonary arterial hypertension (PAH) is a deadly disease of the small pulmonary vasculature with an increased prevalence of insulin resistance (IR). Insulin regulates both glucose and lipid homeostasis. We sought to quantify glucose- and lipid-related IR in human PAH, testing the hypothesis that lipoprotein indices are more sensitive indices of IR in PAH. METHODS: Oral glucose tolerance testing in PAH patients and triglyceride-matched (TG-matched) controls and proteomic, metabolomics, and lipoprotein analyses were performed in PAH and controls. Results were validated in an external cohort and in explanted human PAH lungs. RESULTS: PAH patients were similarly glucose intolerant or IR by glucose homeostasis metrics compared with control patients when matched for the metabolic syndrome. Using the insulin-sensitive lipoprotein index, TG/HDL ratio, PAH patients were more commonly IR than controls. Proteomic and metabolomic analysis demonstrated separation between PAH and controls, driven by differences in lipid species. We observed a significant increase in long-chain acylcarnitines, phosphatidylcholines, insulin metabolism-related proteins, and in oxidized LDL receptor 1 (OLR1) in PAH plasma in both a discovery and validation cohort. PAH patients had higher lipoprotein axis-related IR and lipoprotein-based inflammation scores compared with controls. PAH patient lung tissue showed enhanced OLR1 immunostaining within plexiform lesions and oxidized LDL accumulation within macrophages. CONCLUSIONS: IR in PAH is characterized by alterations in lipid and lipoprotein homeostasis axes, manifest by elevated TG/HDL ratio, and elevated circulating medium- and long-chain acylcarnitines and lipoproteins. Oxidized LDL and its receptor OLR1 may play a role in a proinflammatory phenotype in PAH. FUNDING: NIH DK096994, HL060906, UL1 RR024975-01, UL1 TR000445-06, DK020593, P01 HL108800-01A1, and UL1 TR002243; American Heart Association 13FTF16070002.

20.
Pulm Circ ; 7(3): 624-634, 2017.
Article in English | MEDLINE | ID: mdl-28704134

ABSTRACT

Pulmonary arterial hypertension (PAH) is associated with metabolic derangements including insulin resistance, although their effects on the cardiopulmonary disease are unclear. We hypothesized that insulin resistance promotes pulmonary hypertension (PH) development and mutations in type 2 bone morphogenetic protein receptor (BMPR2) cause cellular insulin resistance. Using a BMPR2 transgenic murine model of PAH and two models of inducible diabetes mellitus, we explored the impact of hyperglycemia and/or hyperinsulinemia on development and severity of PH. We assessed insulin signaling and insulin-mediated glucose uptake in human endothelial cells with and without mutations in BMPR2. PH developed in control mice fed a Western diet and PH in BMPR2 mutant mice was increased by Western diet. Pulmonary artery pressure correlated strongly with fasting plasma insulin but not glucose. Reactive oxygen species were increased in lungs of insulin-resistant animals. BMPR2 mutation impaired insulin-mediated endothelial glucose uptake via reduced glucose transporter translocation despite intact insulin signaling. Experimental hyperinsulinemia is strongly associated with PH in both control and BMPR2-mutant mice, though to a greater degree in those with BMPR2 mutation. Human pulmonary endothelial cells with BMPR2 mutation have evidence of reduced glucose uptake due to impaired glucose transporter translocation. These experiments support a role for hyperinsulinemia in pulmonary vascular disease.

SELECTION OF CITATIONS
SEARCH DETAIL