ABSTRACT
Peptide ligases are versatile enzymes that can be utilized for precise protein conjugation for bioengineering applications. Hyperactive peptide asparaginyl ligases (PALs), such as butelase-1, belong to a small class of enzymes from cyclotide-producing plants that can perform site-specific, rapid ligation reactions after a target peptide asparagine/aspartic acid (Asx) residue binds to the active site of the ligase. How PALs specifically recognize their polypeptide substrates has remained elusive, especially at the prime binding side of the enzyme. Here we report crystal structures that capture VyPAL2, a catalytically efficient PAL from Viola yedoensis, in an activated state, with and without a bound substrate. The bound structure shows one ligase with the N-terminal polypeptide tail from another ligase molecule trapped at its active site, revealing how Asx inserts in the enzyme's S1 pocket and why a hydrophobic residue is required at the P2' position. Besides illustrating the anchoring role played by P1 and P2' residues, these results uncover a role for the Gatekeeper residue at the surface of the S2 pocket in shifting the nonprime portion of the substrate and, as a result, the activity toward ligation or hydrolysis. These results suggest a picture for proenzyme maturation in the vacuole and will inform the rational design of peptide ligases with tailored specificities.
Subject(s)
Enzyme Precursors , Ligases , Enzyme Precursors/metabolism , Substrate Specificity , Ligases/genetics , Ligases/metabolism , Peptides/metabolism , ProteinsABSTRACT
Plant legumains are Asn/Asp-specific endopeptidases that have diverse functions in plants. Peptide asparaginyl ligases (PALs) are a special legumain subtype that primarily catalyze peptide bond formation rather than hydrolysis. PALs are versatile protein engineering tools but are rarely found in nature. To overcome this limitation, here we describe a two-step method to design and engineer a high-yield and efficient recombinant PAL based on commonly found asparaginyl endopeptidases. We first constructed a consensus sequence derived from 1500 plant legumains to design the evolutionarily stable legumain conLEG that could be produced in E. coli with 20-fold higher yield relative to that for natural legumains. We then applied the ligase-activity determinant hypothesis to exploit conserved residues in PAL substrate-binding pockets and convert conLEG into conPAL1-3. Functional studies showed that conLEG is primarily a hydrolase, whereas conPALs are ligases. Importantly, conPAL3 is a superefficient and broadly active PAL for protein cyclization and ligation.
Subject(s)
Escherichia coli , Plant Proteins , Amino Acid Sequence , Plant Proteins/metabolism , Cyclization , Escherichia coli/genetics , Escherichia coli/metabolism , Plants/metabolism , Peptide Synthases/metabolism , Protein Engineering , Peptides/metabolism , Endopeptidases/metabolismABSTRACT
Insulin-resistant diabetes is a common metabolic disease with serious complications. Treatments directly addressing the underlying molecular mechanisms involving insulin resistance would be desirable. Our laboratory recently identified a proteolytic-resistant cystine-dense microprotein from huáng qí (Astragalus membranaceus) called α-astratide aM1, which shares high sequence homology to leginsulins. Here we show that aM1 is a cell-penetrating insulin mimetic, enters cells by endocytosis, and activates the PI3K/Akt signaling pathway independent of the insulin receptor leading to translocation of glucose transporter GLUT4 to the cell surface to promote glucose uptake. We also showed that aM1 alters gene expression, suppresses lipid synthesis and uptake, and inhibits intracellular lipid accumulation in myotubes and adipocytes. By reducing intracellular lipid accumulation and preventing lipid-induced, PKCθ-mediated degradation of IRS1/2, aM1 restores glucose uptake to overcome insulin resistance. These findings highlight the potential of aM1 as a lead for developing orally bioavailable insulin mimetics to expand options for treating diabetes.
Subject(s)
Insulin Resistance , Humans , Proto-Oncogene Proteins c-akt , Phosphatidylinositol 3-Kinases , Insulin/pharmacology , Signal Transduction , Glucose , Lipids , MicropeptidesABSTRACT
Disulfides in peptides and proteins are essential for maintaining a properly folded structure. Their oxidative folding is invariably performed in an aqueous-buffered solution. However, this process is often slow and can lead to misfolded products. Here, we report a novel concept and strategy that is bio-inspired to mimic protein disulfide isomerase (PDI) by accelerating disulfide exchange rates many thousand-fold. The proposed strategy termed organic oxidative folding is performed under organic solvents to yield correctly folded cysteine-rich microproteins instantaneously without observable misfolded or dead-end products. Compared to conventional aqueous oxidative folding strategies, enormously large rate accelerations up to 113,200-fold were observed. The feasibility and generality of the organic oxidative folding strategy was successfully demonstrated on 15 cysteine-rich microproteins of different hydrophobicity, lengths (14 to 58 residues), and numbers of disulfides (2 to 5 disulfides), producing the native products in a second and in high yield.
Subject(s)
Cysteine , Micropeptides , Cysteine/metabolism , Protein Folding , Biomimetics , Peptides/chemistry , Protein Disulfide-Isomerases/metabolism , Oxidation-Reduction , Solvents , Disulfides/chemistry , Oxidative StressABSTRACT
Enzymatic peptide ligation holds great promise in the study of protein functions and development of protein therapeutics. Owing to their high catalytic efficiency and a minimal tripeptide recognition motif, peptidyl asparaginyl ligases (PALs) are particularly useful tools for bioconjugation. However, as an inherent limitation of transpeptidases, PAL-mediated ligation is reversible, requiring a large excess of one of the ligation partners to shift the reaction equilibrium in the forward direction. Herein, we report a method to make PAL-mediated intermolecular ligation irreversible by coupling it to glutaminyl cyclase (QC)-catalyzed pyroglutamyl formation. In this method, the acyl donor substrate of PALs is designed to have glutamine at the P1' position of the Asn-P1'-P2' tripeptide PAL recognition motif. Upon ligation with an acyl acceptor substrate, the acyl donor substrate releases a leaving group in which the exposed N-terminal glutamine is cyclized by QC, quenching the Gln Nα-amine in a lactam. Using this method, PAL-mediated ligation can achieve near-quantitative yields even at an equal molar ratio between the two ligation partners. We have demonstrated this method for a wide range of applications, including protein-to-protein ligations. We anticipate that this cascade enzymatic reaction scheme will make PAL enzymes well suited for numerous new uses in biotechnology.
Subject(s)
Glutamine , Proteins , Glutamine/metabolism , Peptides/chemistry , LigasesABSTRACT
Peptide asparaginyl ligases (PALs) are useful tools for precision modifications of proteins and live-cell surfaces by ligating peptides after Asn/Asp (Asx). They share high sequence and structural similarity to plant legumains that are generally known as asparaginyl endopeptidases (AEPs), thus making it challenging to identify PALs from AEPs. In this study, we investigate 875 plant species from algae to seed plants with available sequence data in public databases to identify new PALs. We conducted evolutionary trace analysis on 1500 plant legumains, including eight known PALs, to identify key residues that could differentiate ligases and proteases, followed by recombinant expression and functional validation of 16 novel legumains. Previously, we showed that the substrate-binding sequences flanking the catalytic site can strongly influence the enzymatic direction of a legumain and which we named as ligase-activity determinants (LADs). Here, we show that two conserved substrate-binding Gly residues of LADs are critical, but negative determinants for ligase activity. Our results suggest that specific glycine residues are molecular determinants to identify PALs and AEPs as two different legumain subfamilies, accounting for c. 1% and 88%, respectively.
Subject(s)
Fabaceae , Plant Proteins , Plant Proteins/metabolism , Glycine , Cysteine Endopeptidases/metabolism , Plants/metabolism , Ligases/metabolismABSTRACT
Coffee processing generates a huge amount of waste that contains many natural products. Here, we report the discovery of a panel of novel cell-penetrating and metal ion-binding microproteins designated coffeetide cC1a-c and cL1-6 from the husk of two popular coffee plants, Coffea canephora and Coffea liberica, respectively. Combining sequence determination and a database search, we show that the prototypic coffeetide cC1a is a 37-residue, eight-cysteine microprotein with a hevein-like cysteine motif, but without a chitin-binding domain. NMR determination of cC1a reveals a compact structure that confers its resistance to heat and proteolytic degradation. Disulfide mapping together with chemical synthesis reveals that cC1a has a ginsentide-like, and not a hevein-like, disulfide connectivity. In addition, transcriptomic analysis showed that the 98-residue micrcoproten-like coffeetide precursor contains a three-domain arrangement, like ginsentide precursors. Molecular modeling, together with experimental validation, revealed a Mg2+ and Fe3+ binding pocket at the N-terminus formed by three glutamic acids. Importantly, cC1a is amphipathic with a continuous stretch of 19 apolar amino acids, which enables its cell penetration to target intracellular proteins, despite being highly negatively charged. Our findings suggest that coffee by-products could provide a source of ginsentide-like bioactive peptides that have the potential to target intracellular proteins.
Subject(s)
Coffea , Coffee , Cysteine , Disulfides , MicropeptidesABSTRACT
Plants accumulate a vast array of secondary metabolites, which constitute a natural resource for pharmaceuticals. Oldenlandia corymbosa belongs to the Rubiaceae family, and has been used in traditional medicine to treat different diseases, including cancer. However, the active metabolites of the plant, their biosynthetic pathway and mode of action in cancer are unknown. To fill these gaps, we exposed this plant to eight different stress conditions and combined different omics data capturing gene expression, metabolic profiles, and anti-cancer activity. Our results show that O. corymbosa extracts are active against breast cancer cell lines and that ursolic acid is responsible for this activity. Moreover, we assembled a high-quality genome and uncovered two genes involved in the biosynthesis of ursolic acid. Finally, we also revealed that ursolic acid causes mitotic catastrophe in cancer cells and identified three high-confidence protein binding targets by Cellular Thermal Shift Assay (CETSA) and reverse docking. Altogether, these results constitute a valuable resource to further characterize the biosynthesis of active metabolites in the Oldenlandia group, while the mode of action of ursolic acid will allow us to further develop this valuable compound.
Subject(s)
Oldenlandia , Oldenlandia/chemistry , Transcriptome , Metabolomics , Genomics , Ursolic AcidABSTRACT
Legumains, also known as asparaginyl endopeptidases (AEPs), cleave peptide bonds after Asn/Asp (Asx) residues. In plants, certain legumains also have ligase activity that catalyzes biosynthesis of Asx-containing cyclic peptides. An example is the biosynthesis of MCoTI-I/II, a squash family-derived cyclic trypsin inhibitor, which involves splicing to remove the N-terminal prodomain and then N-to-C-terminal cyclization of the mature domain. To identify plant legumains responsible for the maturation of these cyclic peptides, we have isolated and characterized a legumain involved in splicing, McPAL1, from Momordica cochinchinensis (Cucurbitaceae) seeds. Functional studies show that recombinantly expressed McPAL1 displays a pH-dependent, trimodal enzymatic profile. At pH 4 to 6, McPAL1 selectively catalyzed Asp-ligation and Asn-cleavage, but at pH 6.5 to 8, Asn-ligation predominated. With peptide substrates containing N-terminal Asn and C-terminal Asp, such as is found in precursors of MCoTI-I/II, McPAL1 mediates proteolysis at the Asn site and then ligation at the Asp site at pH 5 to 6. Also, McPAL1 is an unusually stable legumain that is tolerant of heat and high pH. Together, our results support that McPAL1 is a splicing legumain at acidic pH that can mediate biosynthesis of MCoTI-I/II. We purport that the high thermal and pH stability of McPAL1 could have applications for protein engineering.
Subject(s)
Cysteine Endopeptidases/metabolism , Momordica/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Cyclization , Cyclotides/genetics , Cyclotides/metabolism , Cysteine Endopeptidases/analysis , Cysteine Endopeptidases/genetics , Models, Molecular , Momordica/chemistry , Momordica/genetics , Peptides, Cyclic/genetics , Peptides, Cyclic/metabolism , Plant Proteins/analysis , Plant Proteins/genetics , Protein Engineering , TranscriptomeABSTRACT
Asparaginyl endopeptidases (AEPs) are cysteinyl enzymes naturally catalyzing the hydrolysis and transpeptidation reactions at Asx-Xaa bonds. These reactions go by a common acyl-enzyme thioester intermediate, which is either attacked by water (for a protease-AEP) or by a peptidic amine nucleophile (for a ligase-AEP) to form the respective hydrolysis or aminolysis product. Herein, we show that hydrazine and hydroxylamine, two α-effect nucleophiles, are capable of resolving the thioester intermediate to yield peptide and protein products containing a C-terminal hydrazide and hydroxamic acid functionality, respectively. The hydrazinolysis reaction exhibits very high efficiency and can be completed in minutes at a low enzyme-to-substrate ratio. We further show the utility of the so-formed asparaginyl hydrazide in native chemical ligation and hydrazone conjugation. Using an EGFR-targeting affibody as a model protein, we have showcased our methodology in the preparation of a number of protein ligation or conjugation products, which are decorated with various functional moieties. The ZEGFR affibody-doxorubicin conjugate shows high selective binding and cytotoxicity toward the EGFR-positive A431 cells. Our results demonstrate the advantages of AEP-mediated protein hydrazinolysis as a simple and straightforward strategy for the precision manufacturing of protein bioconjugates.
Subject(s)
Cysteine EndopeptidasesABSTRACT
Asparaginyl endopeptidases (AEPs) are cysteine proteases which break Asx (Asn/Asp)-Xaa bonds in acidic conditions. Despite sharing a conserved overall structure with AEPs, certain plant enzymes such as butelase 1 act as a peptide asparaginyl ligase (PAL) and catalyze Asx-Xaa bond formation in near-neutral conditions. PALs also serve as macrocyclases in the biosynthesis of cyclic peptides. Here, we address the question of how a PAL can function as a ligase rather than a protease. Based on sequence homology of butelase 1, we identified AEPs and PALs from the cyclic peptide-producing plants Viola yedoensis (Vy) and Viola canadensis (Vc) of the Violaceae family. Using a crystal structure of a PAL obtained at 2.4-Å resolution coupled to mutagenesis studies, we discovered ligase-activity determinants flanking the S1 site, namely LAD1 and LAD2 located around the S2 and S1' sites, respectively, which modulate ligase activity by controlling the accessibility of water or amine nucleophile to the S-ester intermediate. Recombinantly expressed VyPAL1-3, predicted to be PALs, were confirmed to be ligases by functional studies. In addition, mutagenesis studies on VyPAL1-3, VyAEP1, and VcAEP supported our prediction that LAD1 and LAD2 are important for ligase activity. In particular, mutagenesis targeting LAD2 selectively enhanced the ligase activity of VyPAL3 and converted the protease VcAEP into a ligase. The definition of structural determinants required for ligation activity of the asparaginyl ligases presented here will facilitate genomic identification of PALs and engineering of AEPs into PALs.
Subject(s)
Cysteine Endopeptidases/metabolism , Ligases/metabolism , Peptides, Cyclic/metabolism , Plant Proteins/metabolism , Violaceae/metabolism , Mutagenesis/physiologyABSTRACT
Peptide asparaginyl ligases (PALs) catalyze transpeptidation at the Asn residue of a short Asn-Xaa1-Xaa2 tripeptide motif. Due to their high catalytic activity toward the P1-Asn substrates at around neutral pH, PALs have been used extensively for peptide ligation at asparaginyl junctions. PALs also bind to aspartyl substrates, but only when the γCOOH of P1-Asp remains in its neutral, protonated form, which usually requires an acidic pH. However, this limits the availability of the amine nucleophile and, consequently, the ligation efficiency at aspartyl junctions. Because of this perceived inefficiency, the use of PALs for Asp-specific ligation remains largely unexplored. We found that PAL enzymes, such as VyPAL2, display appreciable catalytic activities toward P1-Asp substrates at pH 4-5, which are at least 2 orders of magnitude higher than that of sortase A, making them practically useful for both intra- and intermolecular ligations. This also allows sequential ligations, first at Asp and then at Asn junctions, because the newly formed aspartyl peptide bond is resistant to the ligase at the pH used for asparaginyl ligation in the second step. Using this pH-controlled orthogonal ligation method, we dually labeled truncated sfGFP with a cancer-targeting peptide and a doxorubicin derivative at the respective N- and C-terminal ends in the N-to-C direction. In addition, a fluorescein tag and doxorubicin derivative were tagged to an EGFR-targeting affibody in the C-to-N direction. This study shows that the pH-dependent catalytic activity of PAL enzymes can be exploited to prepare multifunction protein biologics for pharmacological applications.
Subject(s)
Asparagine/metabolism , Cysteine Endopeptidases/metabolism , Asparagine/chemistry , Biocatalysis , Cysteine Endopeptidases/chemistry , Hydrogen-Ion Concentration , Models, MolecularABSTRACT
The last two decades have seen an increasing demand for new protein-modification methods from the biotech industry and biomedical research communities. Owing to their mild aqueous reaction conditions, enzymatic methods based on the use of peptide ligases are particularly desirable. In this regard, the recently discovered peptidyl Asx-specific ligases (PALs) have emerged as powerful biotechnological tools in recent years. However, as a new class of peptide ligases, their scope and application remain underexplored. Herein, we report the use of a new PAL, VyPAL2, for a diverse range of protein modifications. We successfully showed that VyPAL2 was an efficient biocatalyst for protein labelling, inter-protein ligation, and protein cyclization. The labelled or cyclized protein ligands remained functionally active in binding to their target receptors. We also demonstrated on-cell labelling of protein ligands pre-bound to cellular receptors and cell-surface engineering via modifying a covalently anchored peptide substrate pre-installed on cell-surface glycans. Together, these examples firmly establish Asx-specific ligases, such as VyPAL2, as the biocatalysts of the future for site-specific protein modification, with a myriad of applications in basic research and drug discovery.
Subject(s)
Biotechnology/methods , Ligases , Proteins/metabolism , Humans , Ligases/chemistry , Ligases/metabolism , MCF-7 Cells , Protein Processing, Post-TranslationalABSTRACT
Chitin-binding hevein-like peptides (CB-HLPs) belong to a family of cysteine-rich peptides that play important roles in plant stress and defense mechanisms. CB-HLPs are ribosomally synthesized peptides that are known to be bioprocessed from the following two types of three-domain CB-HLP precursor architectures: cargo-carrying and non-cargo-carrying. Here, we report the identification and characterization of chenotides biosynthesized from the third type of precursors, which are cleavable hololectins of the quinoa (Chenopodium quinoa) family. Chenotides are 6-Cys-CB-HLPs of 29-31 amino acids, which have a third type of precursor architecture that encompasses a canonical chitin-binding domain that is involved in chitin binding and anti-fungal activities. Microbroth dilution assays and microscopic analyses showed that chenotides are effective against phyto-pathogenic fungi in the micromolar range. Structure determination revealed that chenotides are cystine knotted and highly compact, which could confer resistance against heat and proteolytic degradation. Importantly, chenotides are connected by a novel 18-residue Gly/Ala-rich linker that is a target for bioprocessing by cathepsin-like endopeptidases. Taken together, our findings reveal that chenotides are a new family of CB-HLPs from quinoa that are synthesized as a single multi-modular unit and bioprocessed to yield individual mature CB-HLPs. Importantly, such precursors constitute a new family of cleavable hololectins. This unusual feature could increase the biosynthetic efficiency of anti-fungal CB-HLPs, to provide an evolutionary advantage for plant survival and reproduction.
Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Chenopodium quinoa/chemistry , Peptide Fragments/pharmacology , Plant Lectins/metabolism , Plant Proteins/metabolism , Amino Acid Sequence , Plant Lectins/chemistry , Plant Lectins/pharmacology , Plant Proteins/chemistry , Protein Conformation , Sequence HomologyABSTRACT
Peptidyl asparaginyl ligases (PALs) are powerful tools for peptide macrocyclization. Herein, we report that a derivative of Asn, namely Nγ -hydroxyasparagine or Asn(OH), is an unnatural P1 substrate of PALs. By Asn(OH)-mediated cyclization, we prepared cyclic peptides as new matrix metalloproteinaseâ 2 (MMP2) inhibitors displaying the hydroxamic acid moiety of Asn(OH) as the key pharmacophore. The most potent cyclic peptide (Ki =2.8±0.5â nM) was built on the hyperstable tetracyclic scaffold of rhesus theta defensin-1. The Asn(OH) residue in the cyclized peptides can also be readily oxidized to Asp. By this approach, we synthesized several bioactive Asp-containing cyclic peptides (MCoTI-II, kB2, SFTI, and integrin-targeting RGD peptides) that are otherwise difficult targets for PAL-catalyzed cyclization owing to unfavorable kinetics of the P1-Asp substrates. This study demonstrates that substrate engineering is a useful strategy to expand the application of PAL ligation in the synthesis of therapeutic cyclic peptides.
Subject(s)
Amino Acids/pharmacology , Asparagine/pharmacology , Enzyme Inhibitors/pharmacology , Peptide Synthases/antagonists & inhibitors , Peptides, Cyclic/pharmacology , Amino Acids/chemistry , Asparagine/chemistry , Enzyme Inhibitors/chemistry , Peptide Synthases/metabolism , Peptides, Cyclic/chemistry , Substrate SpecificityABSTRACT
Mitochondria are attractive therapeutic targets for developing agents to delay age-related frailty and diseases. However, few promising leads have been identified from natural products. Previously, we identified roseltide rT1, a hyperstable 27-residue cysteine-rich peptide from Hibiscus sabdariffa, as a knottin-type neutrophil elastase inhibitor. Here, we show that roseltide rT1 is also a cell-penetrating, mitochondria-targeting peptide that increases ATP production. Results from flow cytometry, live-cell imaging, pulldown assays, and genetically-modified cell lines supported that roseltide rT1 enters cells via glycosaminoglycan-dependent endocytosis, and enters the mitochondria through TOM20, a mitochondrial protein import receptor. We further showed that roseltide rT1 increases cellular ATP production via mitochondrial membrane hyperpolarization. Using biotinylated roseltide rT1 for target identification and proteomic analysis, we showed that human mitochondrial membrane ATP synthase subunit O is an intramitochondrial target. Collectively, these data support our discovery that roseltide rT1 is a first-in-class mitochondria-targeting, cysteine-rich peptide with potentials to be developed into tools to further our understanding of mitochrondria-related diseases.
Subject(s)
Energy Metabolism , Hibiscus/chemistry , Hibiscus/metabolism , Mitochondria/metabolism , Plant Proteins/metabolism , Cells, Cultured , Flow Cytometry , Hibiscus/cytology , HumansABSTRACT
Disulfide-rich plant peptides with molecular masses of 2-6 kDa represent an expanding class of peptidyl-type natural products with diverse functions. They are structurally compact, hyperstable, and underexplored as cell-penetrating agents that inhibit intracellular functions. Here, we report the discovery of an anionic, 34-residue peptide, the disulfide-rich roseltide rT7 from Hibiscus sabdariffa (of the Malvaceae family) that penetrates cells and inhibits their proteasomal activities. Combined proteomics and NMR spectroscopy revealed that roseltide rT7 is a cystine-knotted, six-cysteine hevein-like cysteine-rich peptide. A pair-wise comparison indicated that roseltide rT7 is >100-fold more stable against protease degradation than its S-alkylated analog. Confocal microscopy studies and cell-based assays disclosed that after roseltide rT7 penetrates cells, it causes accumulation of ubiquitinated proteins, inhibits human 20S proteasomes, reduces tumor necrosis factor-induced IκBα degradation, and decreases expression levels of intercellular adhesion molecule-1. Structure-activity studies revealed that roseltide rT7 uses a canonical substrate-binding mechanism for proteasomal inhibition enabled by an IIML motif embedded in its proline-rich and exceptionally long intercysteine loop 4. Taken together, our results provide mechanistic insights into a novel disulfide-rich, anionic, and cell-penetrating peptide, representing a potential lead for further development as a proteasomal inhibitor in anti-cancer or anti-inflammatory therapies.
Subject(s)
Cell-Penetrating Peptides/pharmacology , Hibiscus/chemistry , Plant Extracts/chemistry , Proteasome Endopeptidase Complex/metabolism , Proteasome Inhibitors/pharmacology , A549 Cells , Anti-Inflammatory Agents/pharmacology , Antimicrobial Cationic Peptides , Antineoplastic Agents, Phytogenic/pharmacology , Cysteine/chemistry , Disulfides , Endocytosis , Flow Cytometry , Humans , Magnetic Resonance Spectroscopy , Microscopy, Confocal , Molecular Conformation , Plant Lectins , Plant Proteins/chemistry , Proteomics , Structure-Activity Relationship , Ubiquitin/chemistryABSTRACT
Although the basic process of receptor-mediated endocytosis (RME) is well established, certain specific aspects, like the endosomal redox state, remain less characterized. Previous studies used chemically labeled ligands or antibodies with a FRET (fluorescence resonance energy transfer) probe to gauge the redox activity of the endocytic pathway with a limitation being their inability to track the apo receptor. New tools that allow direct labeling of a cell surface receptor with synthetic probes would aid in the study of its endocytic pathway and function. Herein, we use a peptide ligase, butelase 1, to label the human transferrin receptor 1 (TfR1) in established human cell lines with a designer disulfide FRET probe. This strategy enables us to obtain real-time live cell imaging of redox states in TfR1-mediated endocytosis, attesting a reducing environment in the endosomal compartments and the dynamics of TfR1 trafficking. A better understanding of endocytosis of different cell surface receptors has implications in designing strategies that hijack this natural process for intracellular drug delivery.
Subject(s)
Antigens, CD/analysis , Disulfides/chemistry , Endosomes/chemistry , Fluorescence Resonance Energy Transfer , Fluorescent Dyes/chemistry , Receptors, Transferrin/analysis , Antigens, CD/metabolism , Endosomes/metabolism , Humans , Oxidation-Reduction , Receptors, Transferrin/metabolismABSTRACT
The recently discovered peptide asparaginyl ligases (PALs) from cyclotide-producing plants are efficient and versatile tools for protein and peptide engineering. Here, we report immobilization of two glycosylated PALs, butelase-1 and VyPAL2, using three different attachment methods and their applications for peptide engineering. We compared immobilization indirectly via noncovalent affinity capture using NeutrAvidin or concanavalin A agarose beads or directly via covalent coupling of free amines on the enzyme surface with the N-hydroxysuccinimide (NHS) ester attached on agarose beads. The catalytic efficiency of immobilized PALs correlated with the distance between the biocatalysts and the solid supports, and in turn, the mobility of enzymes and the accessibility of substrates. Compared to their soluble counterparts, the site separations of immobilized PALs retain higher activity after prolonged storage and confer reusability for over 100 runs with less than 10% activity loss. We also showed that the cyclization and ligation of peptides and proteins with varying shapes and sizes can be accelerated by providing higher concentration of reusable immobilized PALs. These advantages could be exploited for large-scale industrial applications and nanodevices.
Subject(s)
Peptides , Proteins , Catalysis , Cyclization , Enzymes, Immobilized , Ligases/metabolismABSTRACT
Cysteine-rich peptides (CRPs), which are disulfide-constrained peptides with 3 to 5 disulfide bonds and molecular weights of 2 to 6â kDa, are generally hyperstable and resistant to thermal, chemical, and enzymatic degradation. Herein, the discovery and characterization of a novel suite of CRPs, collectively named potentides pA1-pA16 from the root of the medicinal herb Potentilla anserinaâ L, are described. Through a combination of proteomic and transcriptomic methods, it is shown that 35-residue potentide pA3, which is the most abundant member of potentides, exhibits high stability against heat, acidic, and proteolytic degradation. Transcriptomic analysis revealed that potentide precursor sequences contained four tandem repeats in the mature domain, which is the first report on tandem repeats being found in the Rosaceae family. Disulfide mapping showed that potentide pA3 displayed a novel disulfide connectivity of C1-C3, C2-C6, and C4-C5; a cystine motif that has not been reported in plant CRPs. Transcriptomic data mining and a neighbor-joining clustering analysis revealed 56 potentide homologues and their distribution in the families of Rosaceae and Ranunculaceae in angiosperm. Altogether, these results reveal a new plant CRP structure with an unusual cystine connectivity. Additionally, this study expands the families and structure diversity of CRPs as potentially active peptide pharmaceuticals.