Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Neuroimage ; 229: 117730, 2021 04 01.
Article in English | MEDLINE | ID: mdl-33454399

ABSTRACT

Psychophysical experiments have demonstrated large and highly systematic perceptual distortions of tactile space. Such a space can be referred to our experience of the spatial organisation of objects, at representational level, through touch, in analogy with the familiar concept of visual space. We investigated the neural basis of tactile space by analysing activity patterns induced by tactile stimulation of nine points on a 3 × 3 square grid on the hand dorsum using functional magnetic resonance imaging. We used a searchlight approach within pre-defined regions of interests to compute the pairwise Euclidean distances between the activity patterns elicited by tactile stimulation. Then, we used multidimensional scaling to reconstruct tactile space at the neural level and compare it with skin space at the perceptual level. Our reconstructions of the shape of skin space in contralateral primary somatosensory and motor cortices reveal that it is distorted in a way that matches the perceptual shape of skin space. This suggests that early sensorimotor areas critically contribute to the distorted internal representation of tactile space on the hand dorsum.


Subject(s)
Distance Perception/physiology , Hand/physiology , Motor Cortex/physiology , Skin Physiological Phenomena , Somatosensory Cortex/physiology , Touch Perception/physiology , Adult , Female , Hand/innervation , Humans , Magnetic Resonance Imaging/methods , Male , Motor Cortex/diagnostic imaging , Photic Stimulation/methods , Physical Stimulation/methods , Somatosensory Cortex/diagnostic imaging , Space Perception/physiology , Young Adult
2.
Exp Brain Res ; 239(4): 1235-1246, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33590275

ABSTRACT

Hands play a fundamental role in everyday behaviour. Nevertheless, healthy adults show striking misrepresentations of their hands which have been documented by a wide range of studies addressing various aspects of body representation. For example, when asked to indicate the location within the hand of the knuckles, people place them substantially farther forward than they actually are. Previous research, however, has focused exclusively on the knuckles at the base of each finger, not considering the other knuckles in the fingers. This study, therefore, aimed to investigate conceptual knowledge of the structure of the whole hand, by investigating judgements of the location of all 14 knuckle joints in the hand. Participants localised each of the 14 knuckles of their own hand (Experiment 1) or of the experimenter's hand (Experiment 2) on a hand silhouette. We measured whether there are systematic localisation biases. The results showed highly similar pattern of mislocalisation for the knuckles of one's own hand and those of another person's hand, suggesting that people share an abstract conceptual knowledge about the hand structure. In line with previous reports, we showed that the metacarpophalangeal joints at the base of the fingers are judged as substantially father forward in the hand than they actually are. Moreover, for the first time we showed a gradient of this bias, with progressive reduction of distal bias from more proximal to more distal joints. In sum, people think their finger segments are roughly the same, and that their fingers are shorter than they are.


Subject(s)
Fingers , Hand , Adult , Bias , Body Image , Humans , Judgment
3.
J Neurophysiol ; 121(1): 152-162, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30517062

ABSTRACT

Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1), unlike over primary motor cortex (M1), does not produce an immediate, objective output. Researchers must therefore rely on one or more indirect methods to position the TMS coil over S1. The "gold standard" method of TMS coil positioning is to use individual functional and structural magnetic resonance imaging (f/sMRI) alongside a stereotactic navigation system. In the absence of these facilities, however, one common method used to locate S1 is to find the scalp location that produces twitches in a hand muscle (e.g., the first dorsal interosseus, M1-FDI) and then move the coil posteriorly to target S1. There has been no systematic assessment of whether this commonly reported method of finding the hand area of S1 is optimal. To do this, we systematically reviewed 124 TMS studies targeting the S1 hand area and 95 fMRI studies involving passive finger and hand stimulation. Ninety-six TMS studies reported the scalp location assumed to correspond to S1-hand, which was on average 1.5-2 cm posterior to the functionally defined M1-hand area. Using our own scalp measurements combined with similar data from MRI and TMS studies of M1-hand, we provide the estimated scalp locations targeted in these TMS studies of the S1-hand. We also provide a summary of reported S1 coordinates for passive finger and hand stimulation in fMRI studies. We conclude that S1-hand is more lateral to M1-hand than assumed by the majority of TMS studies.


Subject(s)
Brain Mapping/methods , Somatosensory Cortex/physiology , Transcranial Magnetic Stimulation/methods , Hand/physiology , Humans , Magnetic Resonance Imaging , Muscle, Skeletal/physiology , Somatosensory Cortex/diagnostic imaging
4.
J Neurophysiol ; 121(1): 336-344, 2019 01 01.
Article in English | MEDLINE | ID: mdl-30575432

ABSTRACT

Transcranial magnetic stimulation (TMS) over human primary somatosensory cortex (S1) does not produce immediate outputs. Researchers must therefore rely on indirect methods for TMS coil positioning. The "gold standard" is to use individual functional and structural magnetic resonance imaging (MRI) data, but the majority of studies don't do this. The most common method to locate the hand area of S1 (S1-hand) is to move the coil posteriorly from the hand area of primary motor cortex (M1-hand). Yet, S1-hand is not directly posterior to M1-hand. We localized the index finger area of S1-hand (S1-index) experimentally in four ways. First, we reanalyzed functional MRI data from 20 participants who received vibrotactile stimulation to their 10 digits. Second, to assist the localization of S1-hand without MRI data, we constructed a probabilistic atlas of the central sulcus from 100 healthy adult MRIs and measured the likely scalp location of S1-index. Third, we conducted two experiments mapping the effects of TMS across the scalp on tactile discrimination performance. Fourth, we examined all available neuronavigation data from our laboratory on the scalp location of S1-index. Contrary to the prevailing method, and consistent with systematic review evidence, S1-index is close to the C3/C4 electroencephalography (EEG) electrode locations on the scalp, ~7-8 cm lateral to the vertex, and ~2 cm lateral and 0.5 cm posterior to the M1-hand scalp location. These results suggest that an immediate revision to the most commonly used heuristic to locate S1-hand is required. The results of many TMS studies of S1-hand need reassessment. NEW & NOTEWORTHY Noninvasive human brain stimulation requires indirect methods to target particular brain areas. Magnetic stimulation studies of human primary somatosensory cortex have used scalp-based heuristics to find the target, typically locating it 2 cm posterior to the motor cortex. We measured the scalp location of the hand area of primary somatosensory cortex and found that it is ~2 cm lateral to motor cortex. Our results suggest an immediate revision of the prevailing method is required.


Subject(s)
Hand/physiology , Somatosensory Cortex/physiology , Transcranial Magnetic Stimulation/methods , Adult , Brain Mapping/methods , Discrimination, Psychological/physiology , Electromyography , Female , Humans , Magnetic Resonance Imaging , Male , Models, Neurological , Models, Statistical , Muscle, Skeletal/physiology , Scalp , Sensory Thresholds/physiology , Somatosensory Cortex/diagnostic imaging , Touch Perception/physiology , Vibration , Young Adult
5.
Exp Brain Res ; 236(1): 31-42, 2018 01.
Article in English | MEDLINE | ID: mdl-29018928

ABSTRACT

Identifying the spatial location of touch on the skin surface is a fundamental function of our somatosensory system. Despite the fact that stimulation of even single mechanoreceptive afferent fibres is sufficient to produce clearly localised percepts, tactile localisation can be modulated also by higher level processes such as body posture. This suggests that tactile events are coded using multiple representations using different coordinate systems. Recent reports provide evidence for systematic biases on tactile localisation task, which are thought to result from a supramodal representation of the skin surface. While the influence of non-informative vision of the body and gaze direction on tactile discrimination tasks has been extensively studied, their effects on tactile localisation tasks remain largely unexplored. To address this question, participants performed a tactile localization task on their left hand under different visual conditions by means of a mirror box; in the mirror condition, a single stimulus was delivered on participants' hand, while the reflexion of the right hand was seen through the mirror; in the object condition, participants looked at a box through the mirror, and in the right hand condition, participants looked directly at their right hand. Participants reported the location of the tactile stimuli using a silhouette of a hand. Results showed a shift in the localization of the touches towards the tip of the fingers (distal bias) and the thumb (radial biases) across conditions. Critically, distal biases were reduced when participants looked towards the mirror compared to when they looked at their right hand suggesting that gaze direction reduces the typical proximo-distal biases in tactile localization. Moreover, vision of the hand modulates the internal configuration of points' locations, by elongating it, in the radio-ulnar axis.


Subject(s)
Fingers/physiology , Fixation, Ocular/physiology , Space Perception/physiology , Touch Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Young Adult
6.
Conscious Cogn ; 61: 107-116, 2018 05.
Article in English | MEDLINE | ID: mdl-29373301

ABSTRACT

Previous studies showed stereotyped distortions in hand representations. People judge their knuckles as farther forward in the hand than they actually are. The cause of this bias remains unclear. We tested whether both visual and tactile information contribute to the bias. In Experiment 1, participants judged the location of their knuckles by pointing to the location on their palm with: (1) a metal baton (using vision and touch), (2) a metal baton while blindfolded (using touch), or (3) a laser pointer (using vision). Distal mislocalisations were found in all conditions. In Experiment 2, we investigated whether judgments are influenced by visual landmarks such as creases. Participants localized their knuckles on either a photograph of their palm or a silhouette. Distal mislocalisations were apparent in both conditions. These results show that distal biases are resistant to changes in stimulus information, suggesting that such mislocalisations reflect a conceptual mis-representation of hand structure.


Subject(s)
Body Image , Hand , Space Perception/physiology , Touch Perception/physiology , Visual Perception/physiology , Adult , Aged , Female , Humans , Male , Middle Aged , Young Adult
7.
Brain Cogn ; 111: 25-33, 2017 02.
Article in English | MEDLINE | ID: mdl-27816777

ABSTRACT

Localizing tactile stimuli on our body requires sensory information to be represented in multiple frames of reference along the sensory pathways. These reference frames include the representation of sensory information in skin coordinates, in which the spatial relationship of skin regions is maintained. The organization of the primary somatosensory cortex matches such somatotopic reference frame. In contrast, higher-order representations are based on external coordinates, in which body posture and gaze direction are taken into account in order to localise touch in other meaningful ways according to task demands. Dominance of one representation or the other, or the use of multiple representations with different weights, is thought to depend on contextual factors of cognitive and/or sensory origins. However, it is unclear under which situations a reference frame takes over another or when different reference frames are jointly used at the same time. The study of tactile mislocalizations at the fingers has shown a key role of the somatotopic frame of reference, both when touches are delivered unilaterally to a single hand, and when they are delivered bilaterally to both hands. Here, we took advantage of a well-established tactile mislocalization paradigm to investigate whether the reference frame used to integrate bilateral tactile stimuli can change as a function of the spatial relationship between the two hands. Specifically, supra-threshold interference stimuli were applied to the index or little fingers of the left hand 200ms prior to the application of a test stimulus on a finger of the right hand. Crucially, different hands postures were adopted (uncrossed or crossed). Results show that introducing a change in hand-posture triggered the concurrent use of somatotopic and external reference frames when processing bilateral touch at the fingers. This demonstrates that both somatotopic and external reference frames can be concurrently used to localise tactile stimuli on the fingers.


Subject(s)
Hand/physiology , Posture/physiology , Space Perception/physiology , Touch Perception/physiology , Adult , Female , Fingers/physiology , Humans , Male , Young Adult
8.
Neuroimage ; 138: 184-196, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27233148

ABSTRACT

Detecting and discriminating sensory stimuli are fundamental functions of the nervous system. Electrophysiological and lesion studies suggest that macaque primary somatosensory cortex (SI) is critically involved in discriminating between stimuli, but is not required simply for detecting stimuli. By contrast, transcranial magnetic stimulation (TMS) studies in humans have shown near-complete disruption of somatosensory detection when a single pulse of TMS is delivered over SI. To address this discrepancy, we measured the sensitivity and decision criteria of participants detecting vibrotactile stimuli with individually-tailored fMRI-guided TMS over SI, over a control site not activated by vibrotactile stimuli (inferior parietal lobule, IPL), or away from the head (a no TMS condition). In a one-interval detection task, TMS increased participants' likelihood of reporting 'no' target present regardless of site, but TMS over SI also decreased detection sensitivity, and prevented improvement in tactile sensitivity over time. We then measured tactile thresholds in a series of two-interval forced-choice (2IFC) detection and discrimination tasks with lower dependence on response criteria and short-term memory load. We found that thresholds for detecting stimuli were comparable with TMS over SI and IPL, but TMS over SI specifically and significantly impaired frequency discrimination. We conclude that, in accordance with macaque studies, human SI is required for discriminating between tactile stimuli and for maintaining stimulus representations over time, or under high task demand, but may not be required for simple tactile detection. SIGNIFICANT STATEMENT: Studies on monkeys have suggested that the primary somatosensory cortex is responsible for discriminating between different vibrations on the fingertips, but not just for detecting these vibrations. However, similar studies in humans suggest that the somatosensory cortex is required both for detecting and discriminating between tactile stimuli. We used magnetic brain stimulation to interfere with human somatosensory cortex while healthy volunteers detected and discriminated between vibrations applied to their fingertips. We found that the somatosensory cortex is required for keeping vibrotactile stimuli in memory for short periods of time and for comparing two vibrotactile stimuli, but is not required merely for detecting vibrotactile stimulation. This suggests that human primary somatosensory cortex is not always needed for vibrotactile detection.


Subject(s)
Nerve Net/physiology , Somatosensory Cortex/physiopathology , Task Performance and Analysis , Touch Perception/physiology , Vibration , Adult , Brain Mapping/methods , Female , Humans , Male , Physical Stimulation/methods , Sensory Thresholds/physiology
9.
Cogn Neuropsychol ; 33(1-2): 48-66, 2016.
Article in English | MEDLINE | ID: mdl-27314449

ABSTRACT

According to current textbook knowledge, the primary somatosensory cortex (SI) supports unilateral tactile representations, whereas structures beyond SI, in particular the secondary somatosensory cortex (SII), support bilateral tactile representations. However, dexterous and well-coordinated bimanual motor tasks require early integration of bilateral tactile information. Sequential processing, first of unilateral and subsequently of bilateral sensory information, might not be sufficient to accomplish these tasks. This view of sequential processing in the somatosensory system might therefore be questioned, at least for demanding bimanual tasks. Evidence from the last 15 years is forcing a revision of this textbook notion. Studies in animals and humans indicate that SI is more than a simple relay for unilateral sensory information and, together with SII, contributes to the integration of somatosensory inputs from both sides of the body. Here, we review a series of recent works from our own and other laboratories in favour of interactions between tactile stimuli on the two sides of the body at early stages of processing. We focus on tactile processing, although a similar logic may also apply to other aspects of somatosensation. We begin by describing the basic anatomy and physiology of interhemispheric transfer, drawing on neurophysiological studies in animals and behavioural studies in humans that showed tactile interactions between body sides, both in healthy and in brain-damaged individuals. Then we describe the neural substrates of bilateral interactions in somatosensation as revealed by neurophysiological work in animals and neuroimaging studies in humans (i.e., functional magnetic resonance imaging, magnetoencephalography, and transcranial magnetic stimulation). Finally, we conclude with considerations on the dilemma of how efficiently integrating bilateral sensory information at early processing stages can coexist with more lateralized representations of somatosensory input, in the context of motor control.


Subject(s)
Somatosensory Cortex/physiology , Touch/physiology , Adult , Animals , Female , Humans , Male
10.
J Neurosci ; 34(27): 9012-23, 2014 Jul 02.
Article in English | MEDLINE | ID: mdl-24990921

ABSTRACT

Neuropsychological studies have described patients with a selective impairment of finger identification in association with posterior parietal lesions. However, evidence of the role of these areas in finger gnosis from studies of the healthy human brain is still scarce. Here we used functional magnetic resonance imaging to identify the brain network engaged in a novel finger gnosis task, the intermanual in-between task (IIBT), in healthy participants. Several brain regions exhibited a stronger blood oxygenation level-dependent (BOLD) response in IIBT than in a control task that did not explicitly rely on finger gnosis but used identical stimuli and motor responses as the IIBT. The IIBT involved stronger signal in the left inferior parietal lobule (IPL), bilateral precuneus (PCN), bilateral premotor cortex, and left inferior frontal gyrus. In all regions, stimulation of nonhomologous fingers of the two hands elicited higher BOLD signal than stimulation of homologous fingers. Only in the left anteromedial IPL (a-mIPL) and left PCN did signal strength decrease parametrically from nonhomology, through partial homology, to total homology with stimulation delivered synchronously to the two hands. With asynchronous stimulation, the signal was stronger in the left a-mIPL than in any other region, possibly indicating retention of task-relevant information. We suggest that the left PCN may contribute a supporting visuospatial representation via its functional connection to the right PCN. The a-mIPL may instead provide the core substrate of an explicit bilateral body structure representation for the fingers that when disrupted can produce the typical symptoms of finger agnosia.


Subject(s)
Body Image , Fingers , Frontal Lobe/physiology , Parietal Lobe/physiology , Adult , Agnosia/physiopathology , Brain Mapping , Dominance, Cerebral , Female , Humans , Magnetic Resonance Imaging , Male , Nerve Net/physiology , Reference Values , Touch Perception/physiology
11.
Eur J Neurosci ; 41(11): 1459-65, 2015 May.
Article in English | MEDLINE | ID: mdl-25879687

ABSTRACT

Moving and interacting with the world requires that the sensory and motor systems share information, but while some information about tactile events is preserved during sensorimotor transfer the spatial specificity of this information is unknown. Afferent inhibition (AI) studies, in which corticospinal excitability (CSE) is inhibited when a single tactile stimulus is presented before a transcranial magnetic stimulation pulse over the motor cortex, offer contradictory results regarding the sensory-to-motor transfer of spatial information. Here, we combined the techniques of AI and tactile repetition suppression (the decreased neurophysiological response following double stimulation of the same vs. different fingers) to investigate whether topographic information is preserved in the sensory-to-motor transfer in humans. We developed a double AI paradigm to examine both spatial (same vs. different finger) and temporal (short vs. long delay) aspects of sensorimotor interactions. Two consecutive electrocutaneous stimuli (separated by either 30 or 125 ms) were delivered to either the same or different fingers on the left hand (i.e. index finger stimulated twice or middle finger stimulated before index finger). Information about which fingers were stimulated was reflected in the size of the motor responses in a time-constrained manner: CSE was modulated differently by same and different finger stimulation only when the two stimuli were separated by the short delay (P = 0.004). We demonstrate that the well-known response of the somatosensory cortices following repetitive stimulation is mirrored in the motor cortex and that CSE is modulated as a function of the temporal and spatial relationship between afferent stimuli.


Subject(s)
Afferent Pathways/physiology , Motor Cortex/physiology , Pyramidal Tracts/physiology , Somatosensory Cortex/physiology , Adult , Electric Stimulation , Electromyography , Evoked Potentials, Motor , Female , Fingers/innervation , Fingers/physiology , Humans , Male , Transcranial Magnetic Stimulation , Young Adult
12.
Hum Brain Mapp ; 36(4): 1506-23, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25514844

ABSTRACT

Animal, as well as behavioural and neuroimaging studies in humans have documented integration of bilateral tactile information at the level of primary somatosensory cortex (SI). However, it is still debated whether integration in SI occurs early or late during tactile processing, and whether it is somatotopically organized. To address both the spatial and temporal aspects of bilateral tactile processing we used magnetoencephalography in a tactile repetition-suppression paradigm. We examined somatosensory evoked-responses produced by probe stimuli preceded by an adaptor, as a function of the relative position of adaptor and probe (probe always at the left index finger; adaptor at the index or middle finger of the left or right hand) and as a function of the delay between adaptor and probe (0, 25, or 125 ms). Percentage of response-amplitude suppression was computed by comparing paired (adaptor + probe) with single stimulations of adaptor and probe. Results show that response suppression varies differentially in SI and SII as a function of both spatial and temporal features of the stimuli. Remarkably, repetition suppression of SI activity emerged early in time, regardless of whether the adaptor stimulus was presented on the same and the opposite body side with respect to the probe. These novel findings support the notion of an early and somatotopically organized inter-hemispheric integration of tactile information in SI.


Subject(s)
Fingers/physiology , Functional Laterality/physiology , Somatosensory Cortex/physiology , Touch Perception/physiology , Adult , Evoked Potentials, Somatosensory , Female , Humans , Magnetoencephalography , Male , Physical Stimulation/methods , Time Factors
13.
Q J Exp Psychol (Hove) ; : 17470218241256870, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38785308

ABSTRACT

Visual objects in the peripersonal space (PPS) are perceived faster than farther ones appearing in the extrapersonal space (EPS). This shows preferential processing for visual stimuli near our body. Such an advantage should favour visual perceptual learning occurring near, as compared with far from observers, but opposite evidence has been recently provided from online testing protocols, showing larger perceptual learning in the far space. Here, we ran two laboratory-based experiments investigating whether visual training in PPS and EPS has different effects. We used the horizontal Ponzo Illusion to create a lateralized depth perspective while participants completed a visual search task in which they reported whether or not a specific target object orientation (e.g., a triangle pointing upwards) was present among distractors. This task was completed before and after a training phase in either the (illusory) near or far space for 1 h. In Experiment 1, the near space was in the left hemispace, whereas in Experiment 2, it was in the right. Results showed that, in both experiments, participants were more accurate after training in the far space, whereas training in the near space led to either improvement in the far space (Experiment 1), or no change (Experiment 2). Moreover, we found a larger visual perceptual learning when stimuli were presented in the left compared with the right hemispace. Differently from visual processing, visual perceptual learning is more effective in the far space. We propose that depth is a key dimension that can be used to improve human visual learning.

14.
Article in English | MEDLINE | ID: mdl-39275796

ABSTRACT

Emotional experiences deeply impact our bodily states, such as when we feel 'anger', our fists close and our face burns. Recent studies have shown that emotions can be mapped onto specific body areas, suggesting a possible role of the primary somatosensory system (S1) in emotion processing. To date, however, the causal role of S1 in emotion generation remains unclear. To address this question, we applied transcranial alternating current stimulation (tACS) on the S1 at different frequencies (beta, theta and sham) while participants saw emotional stimuli with different degrees of pleasantness and level of arousal. Results showed that modulation of S1 influenced subjective emotional ratings as a function of the frequency applied. While theta and beta-tACS made participants rate the emotional images as more pleasant (higher valence), only theta-tACS lowered the subjective arousal ratings (more calming). Skin conductance responses recorded throughout the experiment confirmed a different arousal for pleasant vs unpleasant stimuli. Our study revealed that S1 has a causal role in the feeling of emotions, adding new insight into the embodied nature of emotions. Importantly, we provided causal evidence that beta and theta frequencies contribute differently to the modulation of two dimensions of emotions - arousal and valence - corroborating the view of a dissociation between these two dimensions of emotions.

15.
Psychon Bull Rev ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37932577

ABSTRACT

Visual shape discrimination is faster for objects close to the body, in the peripersonal space (PPS), compared with objects far from the body. Visual processing enhancement in PPS occurs also when perceived depth is based on 2D pictorial cues. This advantage has been observed from relatively low-level (detection, size, orientation) to high-level visual features (face processing). While multisensory association also displays proximal advantages, whether PPS influences visual perceptual learning remains unclear. Here, we investigated whether perceptual learning effects vary according to the distance of visual stimuli (near or far) from the observer, illusorily induced by leveraging the Ponzo illusion. Participants performed a visual search task in which they reported whether a specific target object orientation (e.g., triangle pointing downward) was present among distractors. Performance was assessed before and after practicing the visual search task (30 minutes/day for 5 days) at either the close (near group) or far (far group) distance. Results showed that participants that performed the training in the near space did not improve. By contrast, participants that performed the training in the far space showed an improvement in the visual search task in both the far and near spaces. We suggest that such improvement following the far training is due to a greater deployment of attention in the far space, which could make the learning more effective and generalize across spaces.

16.
J Cogn Neurosci ; 24(12): 2306-20, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22849401

ABSTRACT

Although the somatosensory homunculus is a classically used description of the way somatosensory inputs are processed in the brain, the actual contributions of primary (SI) and secondary (SII) somatosensory cortices to the spatial coding of touch remain poorly understood. We studied adaptation of the fMRI BOLD response in the somatosensory cortex by delivering pairs of vibrotactile stimuli to the finger tips of the index and middle fingers. The first stimulus (adaptor) was delivered either to the index or to the middle finger of the right or left hand, and the second stimulus (test) was always administered to the left index finger. The overall BOLD response evoked by the stimulation was primarily contralateral in SI and was more bilateral in SII. However, our fMRI adaptation approach also revealed that both somatosensory cortices were sensitive to ipsilateral as well as to contralateral inputs. SI and SII adapted more after subsequent stimulation of homologous as compared with nonhomologous fingers, showing a distinction between different fingers. Most importantly, for both somatosensory cortices, this finger-specific adaptation occurred irrespective of whether the tactile stimulus was delivered to the same or to different hands. This result implies integration of contralateral and ipsilateral somatosensory inputs in SI as well as in SII. Our findings suggest that SI is more than a simple relay for sensory information and that both SI and SII contribute to the spatial coding of touch by discriminating between body parts (fingers) and by integrating the somatosensory input from the two sides of the body (hands).


Subject(s)
Magnetic Resonance Imaging/methods , Self Concept , Somatosensory Cortex/physiology , Adult , Cerebrovascular Circulation/physiology , Data Interpretation, Statistical , Evoked Potentials/physiology , Female , Fingers/innervation , Fingers/physiology , Fixation, Ocular , Functional Laterality/physiology , Humans , Image Processing, Computer-Assisted , Male , Neural Pathways/physiology , Oxygen/blood , Photic Stimulation , Physical Stimulation , Touch/physiology , Vibration
17.
Neuroimage ; 59(4): 3406-17, 2012 Feb 15.
Article in English | MEDLINE | ID: mdl-22173297

ABSTRACT

Multisensory integration involves bottom-up as well as top-down processes. We investigated the influences of top-down control on the neural responses to multisensory stimulation using EEG recording and time-frequency analyses. Participants were stimulated at the index or thumb of the left hand, using tactile vibrators mounted on a foam cube. Simultaneously they received a visual distractor from a light emitting diode adjacent to the active vibrator (spatially congruent trial) or adjacent to the inactive vibrator (spatially incongruent trial). The task was to respond to the elevation of the tactile stimulus (upper or lower), while ignoring the simultaneous visual distractor. To manipulate top-down control on this multisensory stimulation, the proportion of spatially congruent (vs. incongruent) trials was changed across blocks. Our results reveal that the behavioral cost of responding to incongruent than congruent trials (i.e., the crossmodal congruency effect) was modulated by the proportion of congruent trials. Most importantly, the EEG gamma band response and the gamma-theta coupling were also affected by this modulation of top-down control, whereas the late theta band response related to the congruency effect was not. These findings suggest that gamma band response is more than a marker of multisensory binding, being also sensitive to the correspondence between expected and actual multisensory stimulation. By contrast, theta band response was affected by congruency but appears to be largely immune to stimulation expectancy.


Subject(s)
Electroencephalography , Touch Perception/physiology , Visual Perception/physiology , Adult , Female , Humans , Male , Reaction Time
18.
Vision (Basel) ; 6(3)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35893757

ABSTRACT

Several studies have shown the presence of large anisotropies for tactile distance perception across several parts of the body. The tactile distance between two touches on the dorsum of the hand is perceived as larger when they are oriented mediolaterally (across the hand) than proximodistally (along the hand). This effect can be partially explained by the characteristics of primary somatosensory cortex representations. However, this phenomenon is significantly attenuated relative to differences in acuity and cortical magnification, suggesting a process of tactile size constancy. It is unknown whether the same kind of compensation also takes place when estimating the size of a continuous object. Here, we investigate whether the tactile anisotropy that typically emerges when participants have to estimate the distance between two touches is also present when a continuous object touches the skin and participants have to estimate its size. In separate blocks, participants judged which of two tactile distances or objects on the dorsum of their hand felt larger. One stimulation (first or second) was aligned with the proximodistal axis (along the hand) and the other with the mediolateral axis (across the hand). Results showed a clear anisotropy for distances between two distinct points, with across distances consistently perceived as larger than along distances, as in previous studies. Critically, however, this bias was significantly reduced or absent for judgments of the length of continuous objects. These results suggest that a tactile size constancy process is more effective when the tactile size of an object has to be approximated compared to when the distance between two touches has to be determined. The possible mechanism subserving these results is described and discussed. We suggest that a lateral inhibition mechanism, when an object touches the skin, provides information through the distribution of the inhibitory subfields of the RF about the shape of the tactile RF itself. Such a process allows an effective tactile size compensatory mechanism where a good match between the physical and perceptual dimensions of the object is achieved.

19.
Cognition ; 209: 104569, 2021 04.
Article in English | MEDLINE | ID: mdl-33388528

ABSTRACT

Perceptual completion is a fundamental perceptual function serving to maintain robust perception against noise. For example, we can perceive a vivid experience of motion even for the discrete inputs across time and space (apparent motion: AM). In vision, stimuli irrelevant to AM perception are suppressed to maintain smooth AM perception along the AM trajectory where no physical inputs are applied. We investigated whether such perceptual masking induced by perceptual completion of dynamic inputs is general across sensory modalities by focusing on touch. Participants tried to detect a vibro-tactile target stimulus presented along the trajectory of AM induced by two other tactile stimuli on the forearm. In a control condition, the inducing stimuli were applied simultaneously, resulting in no motion percept. Tactile target detection was impaired with tactile AM. Our findings support the notion that the perceptual masking induced by perceptual completion mechanism of AM is a general function rather than a sensory specific effect.


Subject(s)
Motion Perception , Touch Perception , Humans , Perceptual Masking , Photic Stimulation , Touch
20.
Atten Percept Psychophys ; 83(8): 3227-3239, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34240341

ABSTRACT

Perception of distance between two touches varies with orientation on the hand, with distances aligned with hand width perceived as larger than those aligned with hand length. Similar anisotropies are found on other body parts (e.g., the face), suggesting they may reflect a general feature of tactile organization, but appear absent on other body parts (e.g., the belly). Here, we investigated tactile-distance anisotropy on the foot, a body part structurally and embryologically similar to the hand, but with very different patterns of functional usage in humans. In three experiments, we compared the perceived distance between pairs of touches aligned with the medio-lateral and proximal-distal foot axes. On the hairy skin of the foot dorsum, anisotropy was consistently found, with distances aligned with the medio-lateral foot axis perceived as larger than those in the proximo-distal axis. In contrast, on the glabrous skin of the sole, inconsistent results were found across experiments, with no overall evidence for anisotropy. This shows a pattern of anisotropy on the foot broadly similar to that on the hand, adding to the list of body parts showing tactile-distance anisotropy, and providing further evidence that such biases are a general aspect of tactile spatial organization across the body. Significance: The perception of tactile distance has been widely used to understand the spatial structure of touch. On the hand, anisotropy of tactile distance perception is well established, with distances oriented across hand width perceived larger than those oriented along hand length. We investigated tactile-distance anisotropy on the feet, a body part structurally, genetically, and developmentally homologous to the hands, but with strikingly different patterns of functional usage. We report highly similar patterns of anisotropy on the hairy skin of the hand dorsum and foot dorsum. This suggests that anisotropy arises from the general organization of touch across the body.


Subject(s)
Touch Perception , Touch , Anisotropy , Distance Perception , Hand , Humans
SELECTION OF CITATIONS
SEARCH DETAIL