Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
1.
Environ Res ; 261: 119646, 2024 Nov 15.
Article in English | MEDLINE | ID: mdl-39032622

ABSTRACT

Domoic acid (DA) is a neurotoxin produced by marine microalgae. It tends to accumulate in marine shellfish and fish, posing a threat to aquaculture and seafood consumers' health. In this study, DA in the surface and bottom seawater, sediment, and porewater of the Jiaozhou Bay, a typical mariculture bay in China, was systematically investigated for the first time over different seasons. Surprisingly, a high concentration of DA was discovered in the marine sediment porewater (maximum detected concentration: 289.49 ng/L) for the first time. DA was found to be extensively distributed in the water body and sedimentary environment of the Jiaozhou Bay. DA in the surface and bottom seawater of Jiaozhou Bay in spring was uniformly distributed, whereas DA showed obvious spatial variations in summer and winter. The high concentration areas of DA are located in the north of Jiaozhou Bay and decreased to the south areas. DA was also distributed in the sediment (spring mean: 316.57 ng/kg; summer mean: 10.22 ng/kg; winter mean: 237.08 ng/kg) and porewater (spring mean: 129.70 ng/L; summer mean: 53.54 ng/L; winter mean: 19.90 ng/L) of Jiaozhou Bay. The DA concentrations in the surface sediment and porewater were higher in the spring than in the winter and summer, contrary to the seasonal variation pattern observed in the surface and bottom seawater. The DA concentration in porewater was significantly higher than in the surface and bottom seawater, indicating that the risk of pollution contamination from DA to benthic fishery organisms may be underestimated. Overall, DA is widely distributed in the seawater and also in the benthic environment of Jiaozhou Bay and exhibited potential harm to fishery organisms varied greatly with seasons. It is an important discovery for marine algae toxins and has important guiding significance and important indicative role for the routine monitoring and management of DA pollution in water and benthic environment.


Subject(s)
Bays , Environmental Monitoring , Geologic Sediments , Kainic Acid , Seawater , Water Pollutants, Chemical , China , Kainic Acid/analogs & derivatives , Kainic Acid/analysis , Geologic Sediments/chemistry , Geologic Sediments/analysis , Water Pollutants, Chemical/analysis , Seawater/chemistry , Seawater/analysis , Seasons , Aquaculture , Spatio-Temporal Analysis
2.
Mikrochim Acta ; 191(5): 249, 2024 04 08.
Article in English | MEDLINE | ID: mdl-38587558

ABSTRACT

17ß-Estradiol (E2) is the typical endocrine disruptor of steroidal estrogens and is widely used in animal husbandry and dairy processing. In the environment, even lower concentrations of E2 can cause endocrine dysfunction in organisms. Herein, we have developed a novel molecularly imprinted ratiometric fluorescent sensor based on SiO2-coated CdTe quantum dots (CdTe@SiO2) and 7-hydroxycoumarin with a post-imprint mixing strategy. The sensor selectively detected E2 in aqueous environments due to its two fluorescent signals with a self-correction function. The sensor has been successfully used for spiking a wide range of real water and milk samples. The results showed that the sensor exhibited good linearity over the concentration range 0.011-50 µg/L, obtaining satisfactory recoveries of 92.4-110.6% with precisions (RSD) < 2.5%. Moreover, this sensor obtained an ultra-low detection limit of 3.3 ng/L and a higher imprinting factor of 13.66. By using estriol (E3), as a supporting model, it was confirmed that a simple and economical ratiometric fluorescent construction strategy was provided for other hydrophobic substances.


Subject(s)
Cadmium Compounds , Quantum Dots , Animals , Milk , Fluorescence , Silicon Dioxide , Tellurium , Estradiol , Coloring Agents
3.
Mikrochim Acta ; 191(7): 377, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850342

ABSTRACT

A novel molecularly imprinted ratiometric fluorescent sensor CQDs@MIP/FITC@SiO2 for the detection of p-nitroaniline (p-NA) was constructed through the mixture of CQDs@MIP and FITC@SiO2 in the ratio of 1:1 (VCQDs@MIP:VFITC@SiO2). The polymers of CQDs@MIP and FITC@SiO2 were prepared by sol-gel method and reversed-phase microemulsion method, respectively. CQDs@MIP was used as the auxiliary response signal and FITC@SiO2 was used as the reference enhancement signal. The signal was measured at excitation/emission wavelengths of 365/438, 512 nm. The sensor showed good linearity in the concentration range 0.14-40.00 µM (R2 = 0.998) with a detection limit of 0.042 µM for p-NA. The color change of "blue-cyan-green" could be observed by the naked eye under 365 nm UV light, thus realizing the visual detection of p-NA. The sensor presented comparable results compared with high-performance liquid chromatography (HPLC) method for the detection of p-NA in hair dye paste and aqueous samples with recoveries of 96.8-103.7% and 95.8-104.4%, respectively. It was demonstrated that the constructed sensor possesses the advantages of simplicity, excellent selectivity, superior sensitivity, and outstanding stability.

4.
Mikrochim Acta ; 190(1): 8, 2022 12 06.
Article in English | MEDLINE | ID: mdl-36472666

ABSTRACT

A magnetic molecularly imprinted probe (MMIP@QD) was synthesized by reverse microemulsion method using CdTe QDs, Fe3O4, and molecularly imprinted polymer as the fluorophore, magnetic carrier, and recognition sites, respectively. The nanoparticle was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FT-IR) spectroscopy, and vibrating sample magnetometry (VSM). In the optimal experimental condition, fluorescent emission intensity (measured at excitation wavelengths of 350 nm) was quenched linearly with increasing malachite green (MG) concentration from 0.8 to 28.0 µM with LOD of 0.67 µM. Simultaneously, it was observed that the maximum absorption wavelength was blue shifted gradually with the increase of MG concentration. The inner filter effect, static quenching, and band gap transition were interpreted as the mechanisms of fluorescence quenching and wavelength shift. Thermodynamic studies indicated that the quenching reaction proceeded spontaneously. The developed sensor was applied to detect MG in seawater samples. Satisfactory recoveries of MG in spiked seawater ranged from 83.6 to 122.1% with RSD < 1.8%.


Subject(s)
Cadmium Compounds , Magnetite Nanoparticles , Quantum Dots , Spectroscopy, Fourier Transform Infrared , Tellurium
5.
Mikrochim Acta ; 189(3): 95, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35142925

ABSTRACT

Molecularly imprinted polymers were synthesized by gel-sol method with multi-walled carbon nanotubes as support and enrofloxacin as a template and further modified on the surface of glassy carbon electrode to construct a molecularly imprinted electrochemical sensor. The performance of the imprinted electrochemical sensor was thoroughly investigated by using cyclic voltammetry and differential pulse voltammetry. The influence of imprinted polymers amount, electrolyte pH, and incubation time on the sensor performance was investigated for the detection of enrofloxacin. Under the optimal experimental conditions in a three-electrode system with the modified electrode as the working electrode the differential pulse voltammetry response current of the sensor had a good linear relationship at 0.2 V (vs. saturated calomel reference electrode) with the enrofloxacin concentration within 2.8 pM-28 µM and the limit of detection of the method was 0.9 pM. The competitive interference experiment showed that the imprinted electrochemical sensor could selectively recognize enrofloxacin. The method was applied to analyze spiked natural seawater, fish, and shrimp samples. The recovery was 96.4%-102%, and RSD was less than 4.3% (n = 3), indicating that the proposed imprinted electrochemical sensor was suitable for the determination of trace enrofloxacin in marine environment samples.


Subject(s)
Electrochemical Techniques , Enrofloxacin/analysis , Molecularly Imprinted Polymers/chemistry , Molecular Structure , Particle Size , Surface Properties
6.
Ecotoxicol Environ Saf ; 190: 110180, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-31927195

ABSTRACT

This paper studied the allelopathic effect of Cylindrotheca closterium on the growth of Prorocentrum donghaiense, the model of harmful algal blooms in aquatic environment, by the co-culture tests and bioassay-guided fraction methods. The growth of P. donghaiense in co-cultures was observably suppressed by C. closterium, and P. donghaiense biomass in C/P = 3: 1 group increased slowly with a low growth rate of 0.18 d-1 after 4 days. Petroleum ether (PE) extract derived from C. closterium filtrates was isolated by C18 column and the allelopathy of all isolated fractions for P. donghaiense was investigated. After 96 h cultivation, the inhibition ratio of PE-Ⅲ and PE-Ⅷ fractions on P. donghaiense could reach up to 70.2% and 64.3% at the concentration of 10-fold when compared to control, while the other fractions displayed relatively low inhibitory effects on P. donghaiense. PE-Ⅲ and PE-Ⅷ fractions also decreased the chlorophyll content and maximum quantum yield of photosystem II (Fv/Fm) of P. donghaiense cells. The activities of superoxide dismutase (SOD), one of antioxidant enzymes, reduced around 8.3% and 13.7% following exposure to 2-fold PE-Ⅲ and PE-Ⅷ, and was significantly decreased following higher exposure concentrations. After 96 h of 10-fold PE-Ⅲ and PE-Ⅷ treatments, Catalase (CAT) activity reduced to 44.86% and 46.42% of that observed in the control group. At the same time, a significant increase in malondialdehyde (MDA) contents was observed. These findings suggested that PE-Ⅲ and PE-Ⅷ fractions contained main allelochemicals and possibly acted as promising algistatic agents for emergency handling of P. donghaiense blooms.


Subject(s)
Diatoms/chemistry , Dinoflagellida/drug effects , Harmful Algal Bloom/drug effects , Herbicides/pharmacology , Pheromones/pharmacology , Allelopathy , Biomass , Chlorophyll/metabolism , Dinoflagellida/growth & development , Herbicides/isolation & purification , Pheromones/isolation & purification , Photosystem II Protein Complex/metabolism
7.
J Sep Sci ; 42(12): 2100-2106, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30964224

ABSTRACT

A novel molecularly imprinted polymer based on graphene oxide was prepared as a solid-phase extraction adsorbent for the selective adsorption and extraction of cyromazine from seawater samples. The obtained graphene oxide molecularly imprinted polymer and non-imprinted polymer were nanoparticles and characterized by scanning electron microscopy. The imprinted polymer showed higher adsorption capacity and better selectivity than non-imprinted polymer, and the maximum adsorption capacity was 14.5 mg/g. The optimal washing and elution solvents for molecularly imprinted solid phase extraction procedure were 2 mL of acetonitrile/water (80:20, v/v) and methanol/acetic acid (70:30, v/v), respectively. The recoveries of cyromazine in the spiked seawater samples were in the range of 90.3-104.1%, and the relative standard deviation was <5% (n = 3) under the optimal procedure and detection conditions. The limit of detection of the proposed method was 0.7 µg/L, and the limit of quantitation was 2.3 µg/L. Moreover, the imprinted polymer could keep high adsorption capacity for cyromazine after being reused six times at least. Finally, the synthesized graphene oxide molecularly imprinted polymer was successfully used as a satisfied sorbent for high selectivity separation and detection of cyromazine from seawater coupled with high-performance liquid chromatography.

8.
Mikrochim Acta ; 186(6): 362, 2019 05 18.
Article in English | MEDLINE | ID: mdl-31104121

ABSTRACT

A fluorescent nanoprobe consisting of CdTe quantum dots (QDs) and coated with molecularly imprinted layers was prepared and successfully applied to the determination of norfloxacin (NOR) in seawater and wastewater samples. The 3-mercaptopropionic acid capped QDs were prepared and then covered with a protective silica shell. A molecularly imprinted layer was finally synthesized around the silanized QDs using 3-aminopropyltriethoxysilane as functional monomer and norfloxacin as the template. Compared with the non-imprinted polymer, the fluorescence of the nanoprobe with imprinted polymer (measured at excitation/emission wavelengths of 300/596 nm) is strongly reduced in the presence of NOR, and the imprinting factor is 8.8. Under the optimal experimental conditions, the detection limit of the nanoprobe is 0.18 µM, and response is linear between 0.5 - 28 µM of NOR. The relative standard deviation of the detection of NOR is <7.2%. In order to evaluate the practicality of the probe, wastewater and seawater samples spiked with norfloxacin were analyzed by this method, and recoveries ranged from 96.2 - 106.0%. Graphical abstract Schematic presentation and fluorescence spectrum of fluorescent nanoprobe with selectivity for norfloxacin (NOR). CdTe quantum dots (QDs) are used as fluorescent carriers, 3-aminopropyltriethoxysilane (APTES) as template molecules, tetraethyl orthosilicate (TEOS) as crosslinking agent, and aqueous ammonia as initiator.


Subject(s)
Fluorescent Dyes/chemistry , Norfloxacin/analysis , Polymers/chemistry , Quantum Dots/chemistry , Seawater/analysis , Water Pollutants, Chemical/analysis , 3-Mercaptopropionic Acid/chemistry , Cadmium Compounds/chemistry , Fluorescent Dyes/chemical synthesis , Limit of Detection , Molecular Imprinting/methods , Propylamines/chemistry , Silanes/chemistry , Spectrometry, Fluorescence/methods , Tellurium/chemistry , Wastewater/analysis
9.
J Sep Sci ; 39(11): 2204-12, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27063936

ABSTRACT

The development of a simple and effective method for the isolation and purification of sulfadiazine residues in food of animal origin is of great significance since it is a great danger to human health. An off-line molecularly imprinted solid-phase extraction with high-performance liquid chromatography method was proposed for the selective pretreatment and determination of sulfadiazine in eggs, rapidly and effectively. The molecularly imprinted polymer was proved to have a homogeneous spherical structure and porous surface morphology with excellent adsorption capacity of 5258 µg/g for sulfadiazine. The newly established method showed a good linearity in the range of 0-200 µg/L, low limits of detection (0.06 µg/L), acceptable reproducibility (RSD, 2.60-5.03%, n = 3), and satisfactory relative recoveries (78.22-86.10%). It was demonstrated that the proposed molecularly imprinted solid-phase extraction with high-performance liquid chromatography method could be applied to determine sulfadiazine in eggs, which simplified the pretreatment procedure and improved the accuracy of the analysis process by reducing the loss of sulfadiazine in the fat-removing procedure compared with traditional methods. Molecularly imprinted solid-phase extraction with excellent selectivity and adsorption capacity is a simple, rapid, selective, and effective pretreatment method for the determination of sulfadiazine in egg samples.


Subject(s)
Eggs/analysis , Molecular Imprinting , Solid Phase Extraction , Sulfadiazine/analysis , Adsorption , Chromatography, High Pressure Liquid , Molecular Structure , Particle Size , Polymers/chemistry , Surface Properties
10.
Environ Sci Pollut Res Int ; 31(20): 30256-30268, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38602639

ABSTRACT

There are many studies on the toxic effects of single nanoparticles on microalgae; however, many types of nanoparticles are present in the ocean, and more studies on the combined toxic effects of multiple nanoparticles on microalgae are needed. The single and combined toxic effects of nCu and nSiO2 on Dunaliella salina were investigated through changes in instantaneous fluorescence rate (Ft) and antioxidant parameters during 96-h growth inhibition tests. It was found that the toxic effect of nCu on D. salina was greater than that of nSiO2, and both showed time and were dose-dependent with the greatest growth inhibition at 96 h. A total of 0.5 mg/L nCu somewhat promoted the growth of microalgae, but 4.5 and 5.5 mg/L nCu showed negative growth effects on microalgae. The Ft of D. salina was also inhibited by increasing concentrations of nanoparticles and exposure time. nCu suppressed the synthesis of TP and elevated the MDA content of D. salina, which indicated the lipid peroxidation of algal cells. The activities of SOD and CAT showed a trend of increasing and then decreasing with the increase of nCu concentration, suggesting that the enzyme activity first increased and then decreased. The toxic effect of a high concentration of nCu was reduced after the addition of nSiO2. SEM and EDS images showed that nSiO2 could adsorb nCu in seawater. nSiO2 also adsorbed Cu2+ in the cultures, thus reducing the toxic effect of nCu on D. salina to a certain extent. TEM image was used to observe the morphology of algal cells exposed to nCu.


Subject(s)
Microalgae , Microalgae/drug effects , Chlorophyceae/drug effects , Nanoparticles/toxicity
11.
Mar Environ Res ; 193: 106298, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38101202

ABSTRACT

To investigate the toxic mechanism of SiO2 nanoparticles (nSiO2) and polystyrene microplastics (mPS) on microalgae Nitzschia closterium f. minutissima, growth inhibition tests were carried out. The growth and biological responses of the algae exposed to nSiO2 (0.5, 1, 2, 5, 10, 30 mg L-1) and mPS (1, 5, 10, 30 and 75 mg L-1) were explored in f/2 media for 96 h. Both micro-/nano-particles (MNPs) inhibited the growth of N. closterium f. minutissima in a concentration- and time-dependent manner. The toxic effect of mPS on N. closterium f. minutissima is higher than that of nSiO2, because silicon is essential for diatoms to maintain cell wall integrity, and the addition of appropriate amounts of nSiO2 can be absorbed and used as a nutrient to promote diatom growth and protect the integrity of the siliceous shell to some extent. Both MNPs induce the production of excess oxidation and activate the cellular antioxidant defense system, leading to increased SOD and CAT activity as a means to resist oxidative damage to the cell, and eliminating excess ROS and maintaining normal cell morphology and metabolism. SEM is consistent with the results of MDA, showing that mPS with high concentrations attach to the surface of algal cells to produce heterogeneous aggregates and disrupt the cell wall and cell membrane, causing the cells to expand and rupture. This study contributes to the understanding of the size effect of MNPs on the growth of marine diatom.


Subject(s)
Closterium , Diatoms , Water Pollutants, Chemical , Microplastics , Silicon Dioxide/toxicity , Silicon Dioxide/metabolism , Plastics , Water Pollutants, Chemical/metabolism
12.
Aquat Toxicol ; 266: 106810, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38134819

ABSTRACT

There are few studies on the effects of nanoplastics on growth and hemolysin production of harmful algal bloom species at present. In this study, Karlodinium veneficum was exposed to different concentrations (0, 5, 25, 50, 75 mg/L) of polystyrene nanoplastics (PS-NPs, 100 nm) for 96 h. The effects of PS-NPs on growth of K. veneficum were investigated by measuring algal cell abundance, growth inhibition rate (IR), total protein (TP), malondialdehyde (MDA), glutathione reductase (GSH), superoxide dismutase (SOD), ATPase activity (Na+/K+ ATPase and Ca2+/Mg2+ ATPase). Scanning electron microscope and transmission electron microscope (SEM and TEM) images of microalgae with or without nanoplastics were also observed. The effects of PS-NPs on hemolysin production of K. veneficum were studied by measuring the changes of hemolytic toxin production of K. veneficum exposed to PS-NPs on 1, 3, 5 and 7 days. High concentrations (50 and 75 mg/L) of PS-NPs seriously affected the growth of K. veneficum and different degrees of damage to cell morphology and ultrastructure were found. Excessive free radicals and other oxidants were produced in the cells, which disrupted the intracellular redox balance state and caused oxidative damage to the cells, and the basic activities such as photosynthesis and energy metabolism were weakened. The athletic ability of K. veneficum was decreased, but the ability to produce hemolysin was enhanced. It was suggested that the presence of nanoplastics in seawater may strengthen the threat of harmful algal bloom species to aquatic ecosystems and human health.


Subject(s)
Dinoflagellida , Microalgae , Water Pollutants, Chemical , Humans , Polystyrenes/toxicity , Microplastics , Hemolysin Proteins/toxicity , Ecosystem , Water Pollutants, Chemical/toxicity , Adenosine Triphosphatases
13.
J Hazard Mater ; 476: 135079, 2024 Sep 05.
Article in English | MEDLINE | ID: mdl-38959835

ABSTRACT

Dinoflagellates Prorocentrum donghaiense and Karlodinium veneficum are the dominant species of harmful algal blooms in the East China Sea. The role of their allelopathy on the succession of marine phytoplankton populations is a subject of ongoing debate, particularly concerning the formation of blooms. To explore the allelopathy of K. veneficum on P. donghaiense, an investigation was conducted into photosynthetic performance (including PSII functional activities, photosynthetic electron transport chain, energy flux, photosynthetic different genes and photosynthetic performance) and photosynthetic damage-induced oxidative stress (MDA, SOD, and CAT activity). The growth of P. donghaiense was strongly restrained during the initial four days (1-6 folds, CK/CP), but the cells gradually resumed activity at low filtrate concentrations from the eighth day. On the fourth day of the strongest inhibition, allelochemicals reduced representative photosynthetic performance parameters PI and ΦPSII, disrupted related processes of photosynthesis, and elevated the levels of MDA content in P. donghaiense. Simultaneously, P. donghaiense repairs these impairments by up-regulating the expression of 13 photosynthetic genes, modifying photosynthetic processes, and activating antioxidant enzyme activities from the eighth day onward. Overall, this study provides an in-depth overview of allelopathic photosynthetic damage, the relationship between genes and photosynthesis, and the causes of oxidative damage induced by photosynthesis. ENVIRONMENTAL IMPLICATIONS: As a typical HAB species, Karlodinium veneficum is associated with numerous fish poisoning events, which have negative impacts on aquatic ecosystems and human health. Allelochemicals produced by K. veneficum can provide a competitive advantage by interfering with the survival, reproduction and growth of competing species. This study primarily investigated the effects of K. veneficum allelochemicals on the photosynthesis and photosynthetic genes of Prorocentrum donghaiense. Grasping the mechanism of allelochemicals inhibiting microalgae is helpful to better understand the succession process of algal blooms and provide a new scientific basis for effective prevention and control of harmful algal blooms.


Subject(s)
Allelopathy , Dinoflagellida , Harmful Algal Bloom , Photosynthesis , Dinoflagellida/drug effects , Dinoflagellida/metabolism , Photosynthesis/drug effects , Oxidative Stress/drug effects , Pheromones , China
14.
Chemosphere ; 357: 141953, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38614395

ABSTRACT

The effects of culture filtrate of Alexandrium tamarense on Prorocentrum donghaiense and Heterosigma akashiwo were investigated, including determination of algal density, photosynthesis, intracellular enzyme content and activity. The filtrate of A. tamarense had a stronger inhibitory effect on P. donghaiense than H. akashiwo, and the inhibitory effect decreased with higher temperature treatment of the filtrate. Instantaneous fluorescence (Ft) and maximum quantum yield of photosystem II (Fv/Fm) values of both kinds of target algae were reduced as exposed to the filtrate of A. tamarense, which proved that allelopathy could inhibit the normal operation of photosynthetic system. The increase of Malondialdehyde (MDA) content of the two kinds of target algae indicated that the cell membrane was seriously damaged by allelochemicals released by A. tamarense. The different responses of Superoxide Dismutase (SOD) and Catalase (CAT) activity in two kinds of target algae demonstrated the complexity and diversity of allelopathic mechanism. The filtrate of A. tamarense also influenced the metabolic function (ATPases) of P. donghaiense and H. akashiwo, and the influence on P. donghaiense was greater. Liquid-liquid extraction was used to extract and isolate allelochemicals from the filtrate of A. tamarense. It was found that only component I with molecular weight of 424.2573 and 434.2857 could inhibit the growth of P. donghaiense by HPLC-MS.


Subject(s)
Allelopathy , Catalase , Dinoflagellida , Malondialdehyde , Pheromones , Photosynthesis , Dinoflagellida/physiology , Pheromones/pharmacology , Malondialdehyde/metabolism , Photosynthesis/drug effects , Catalase/metabolism , Superoxide Dismutase/metabolism , Photosystem II Protein Complex/metabolism
15.
Mar Pollut Bull ; 198: 115780, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38006871

ABSTRACT

As a class of persistent organic pollutants (POPs), the spatial and temporal distribution of polychlorinated biphenyls (PCBs) in seawater is important for environmental assessment. Surface water samples were collected from 35 stations during summer and 36 stations during autumn of 2020 in the Bohai Bay. The concentration, composition, distribution and sources of PCBs were analyzed to assess the ecological impact of PCBs. The average concentration of ∑18PCBs was 124.6 ng/L (range of 28.1-445.5 ng/L) in summer and 122.8 ng/L (range of 21.0-581.4 ng/L) in autumn. PCBs in surface seawater of the Bohai Bay showed high near-shore and low far-shore characteristics, indicating the serious influence of land-based sources such as port activities and river inputs. Proportion analysis showed that Tetra-PCBs and Penta-PCBs were the major constituents in most stations. It was assessed as moderate and high risk (MRQ > 0.1) by mixture risk quotient (MRQ) and concentration addition (CA) model in surface seawater of the Bohai Bay. Principal component analysis (PCA) was used to explain the sources of PCBs in the Bohai Bay. PCBs in the Bohai Bay may come from commercial PCBs and their incineration products, municipal landfills, wood and coal combustion, and industrial activities, etc.


Subject(s)
Polychlorinated Biphenyls , Water Pollutants, Chemical , Polychlorinated Biphenyls/analysis , Geologic Sediments/analysis , Bays , Water Pollutants, Chemical/analysis , Environmental Monitoring , China , Risk Assessment
16.
J Chromatogr A ; 1722: 464859, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38604056

ABSTRACT

In this study, molecularly imprinted polymers (MIPs) were prepared for the specific recognition of organophosphorus pesticides and a rapid, efficient and simple method was established for the detection of dimethoate (DIT) in food samples. Fe3O4 magnetic nanoparticles were synthesized by co-precipitation, and Fe3O4/ZIF-8 complexes were prepared by a modified in-situ polymerization method, and then magnetic molecularly imprinted polymers (MMIPs) were prepared and synthetic route was optimized by applying density functional theory (DFT). The morphological characterization showed that the MMIPs were coarse porous spheres with an average particle size of 50 nm. The synthesized materials are highly selective for the organophosphorus pesticide dimethoate with an adsorption capacity of 461.50 mg·g-1 and are effective resistance to matrix effects. A novel method for the determination of DIT in cabbage was developed using the prepared MMIPs in combination with HPLC. The practical results showed that the method can meet the requirements for the determination of DIT in cabbage with recoveries of 85.6-121.1 % and detection limits of 0.033 µg·kg-1.


Subject(s)
Brassica , Dimethoate , Limit of Detection , Molecularly Imprinted Polymers , Dimethoate/analysis , Brassica/chemistry , Molecularly Imprinted Polymers/chemistry , Adsorption , Chromatography, High Pressure Liquid/methods , Molecular Imprinting/methods , Magnetite Nanoparticles/chemistry , Solid Phase Extraction/methods , Food Contamination/analysis
17.
Sci Total Environ ; 903: 166697, 2023 Dec 10.
Article in English | MEDLINE | ID: mdl-37660825

ABSTRACT

The drifting process of U. prolifera were simulated in a large-volume flowing water system with conditions similar to the field in the Yellow Sea. Biomass and chl-a content per unit of U. prolifera were monitored in the flowing water system by simulating nutrients and temperature variations of seawaters from starting place to terminus of U. prolifera in the South Yellow Sea. According to the variations of nutrients during the drifting process, the floating process can be divided into three stages. Differentially expressed genes and differential metabolites in the three stages of U. prolifera drifting process were identified, which are mainly related to glycometabolism, nitrogen metabolism, and selenium compound metabolism. The process from Stage I to Stage II are mainly related to the translation and molecular function of biological processes, and the main differential metabolites are primary metabolites, whereas, from Stage II to Stage III, secondary metabolites start to increase, indicating that U. prolifera resisted environmental stress by increasing lipids and producing secondary metabolites. It will provide some guidance for the comprehensive interpretation of the biological basis and ecological mechanisms of the large-scale U. prolifera green tides in the Yellow Sea.

18.
Mar Pollut Bull ; 187: 114587, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36669299

ABSTRACT

P-nitrophenol (4-NP) is the most persistent and highly toxic species among nitrophenol. In this work, a novel fluorescent probe for the detection of 4-NP in aqueous environment was constructed by combining the carbon dots (CQDs) with excellent optical properties and the molecularly imprinted polymer (MIP) with favorable selectivity. The CQDs were synthesized by hydrothermal method using citric acid hydrate as carbon source and o-phenylenediamine as surface modifier, then the molecularly imprinted polymers coating on the CQDs (MIP@CQDs) were obtained by sol-gel imprinting process. The fluorescence quenching of MIP@CQDs is the results of internal filtration effect and dynamic quenching when they encounter with 4-NP. The probe is suitable for the quantitative detection of trace 4-NP in actual aqueous samples, such as tap water, wastewater and seawater, with satisfying recoveries from 95.1 % to 107.8 %, wide detection linear ranges between 0 and 144 µmol/L, low detection limit of 0.41 µmol/L and high selectivity. The detection results are consistent with those of the HPLC method. This work provides a simple, rapid and effective fluorescent detection method for trace 4-NP in aqueous environment.


Subject(s)
Molecular Imprinting , Quantum Dots , Molecular Imprinting/methods , Carbon , Nitrophenols , Water , Limit of Detection
19.
J Agric Food Chem ; 71(2): 1046-1055, 2023 Jan 18.
Article in English | MEDLINE | ID: mdl-36621942

ABSTRACT

Chlorpyrifos, as a moderate toxic organophosphorus pesticide, is prone to lingering in the environment and cannot be monitored easily. In this study, a magnetic, microporous, molecularly imprinted polymer was synthesized by using the reversible addition-fragmentation chain transfer polymerization method. The synthesized materials were properly characterized in terms of morphology, selectivity, and sorption capacity and used as sorbents for magnetic solid phase extraction for the selective determination of chlorpyrifos in apple samples. Results showed that the magnetic microporous molecularly imprinted materials were rough and porous spheres at an average size of 5 nm. The materials were highly selective toward chlorpyrifos with a superior sorption capacity of 167.99 mg·g-1 and were resistant to the interference of competitive pollutants. After optimization, the recoveries of chlorpyrifos reached 96.2-106.5%, and the detection limit was 0.028 µg·kg-1 by HPLC. Based on these analytical validation results, the developed method could be effective at determining chlorpyrifos in apples.


Subject(s)
Chlorpyrifos , Malus , Molecular Imprinting , Pesticides , Molecularly Imprinted Polymers , Molecular Imprinting/methods , Polymerization , Organophosphorus Compounds , Polymers/chemistry , Chromatography, High Pressure Liquid , Adsorption , Magnetic Phenomena , Solid Phase Extraction/methods
20.
Sci Total Environ ; 866: 161267, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-36608820

ABSTRACT

Microplastic contaminations threaten the entire marine ecosystem and cause severe ecological stress. This study explored the energy metabolism change of Karenia mikimotoi under exposure to nanoplastics (NPs) and microplastics (MPs) (65 nm, 100 nm, and 1 µm polystyrene (PS), and 100 nm polymethyl methacrylate (PMMA)) at a concentration of 10 mg L-1. Membrane potential, esterase activity, polysaccharide content, and ATPase activity were detected to assess the energy metabolism of K. mikimotoi under MPs/NPs exposure. Transcriptome and metabolomic analyses were used to investigate the intrinsic mechanisms of energy metabolism changes. Smaller PS particles caused greater damage to the cell membrane potential, increased the polysaccharide content, and resulted in a heavier weakening of the ATPase enzymatic activity in K. mikimotoi cells, suggesting that smaller-sized PS had more influence on esterase activity and energy metabolism than the bigger-sized PS. The results evidenced that energy metabolism relates to the size and type of MPs/NPs, and nano-scale plastic particles could induce greater metabolic changes.


Subject(s)
Dinoflagellida , Water Pollutants, Chemical , Microplastics/toxicity , Plastics , Ecosystem , Polystyrenes , Adenosine Triphosphatases , Energy Metabolism , Esterases , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL