Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
Neuropathology ; 41(4): 306-314, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34254369

ABSTRACT

Angiomatoid fibrous histiocytoma (AFH) is an uncommon soft tissue neoplasm that can exhibit diverse morphological features, including myxoid change. Rarely, the tumor occurs intracranially and poses considerable diagnostic challenges to neuropathologists. This is compounded by a recently coined entity, referred to as intracranial myxoid mesenchymal tumor (IMMT). These tumors show significant overlaps with intracranial myxoid AFH from clinicopathological and molecular genetic viewpoints. We described an unusual intracranial tumor in a 30-year-old man. The tumor exhibited "classic" histological features of myxoid AFH and EWSR1:CREM fusion, a relatively novel variant of EWSR1:CREB family fusion, first identified in IMMT. We also performed a comprehensive literature review comparing the clinicopathological features of intracranial AFHs and IMMTs. Peritumoral lymphoplasmacytic cuffing appears to be the only morphological finding that is consistently absent in reported cases of IMMT while being present in most intracranial AFHs. Otherwise, both tumors showed considerable overlaps in clinical, histological, and immunohistochemical features and have a common molecular genetic signature of EWSR1:CREB family fusion, including EWSR1:CREM fusion. Our case appeared to be the first described EWSR1:CREM-fused intracranial tumor to show prominent peritumoral lymphoplasmacytic cuffing and myxoid change in addition to most of the other "classic" morphologic features of AFH. As such, while the current literature appears to be lacking when it comes to defining intracranial myxoid AFH and IMMT as separate nosological entities, they likely represent a morphological spectrum of a common entity characterized by EWSR1 rearrangement, akin to solitary fibrous tumors and hemangiopericytomas with the signal transducer and activator of transcription 6 gene (STAT6) rearrangement.


Subject(s)
Brain Neoplasms , Histiocytoma, Benign Fibrous , Histiocytoma, Malignant Fibrous , Soft Tissue Neoplasms , Adult , Brain Neoplasms/genetics , Cyclic AMP Response Element Modulator/genetics , Gene Fusion , Humans , Male , RNA-Binding Protein EWS/genetics
2.
NPJ Biofilms Microbiomes ; 5(1): 35, 2019.
Article in English | MEDLINE | ID: mdl-31728202

ABSTRACT

The influence of the biofilm matrix on molecular diffusion is commonly hypothesized to be responsible for emergent characteristics of biofilms such as nutrient trapping, signal accumulation and antibiotic tolerance. Hence quantifying the molecular diffusion coefficient is important to determine whether there is an influence of biofilm microenvironment on the mobility of molecules. Here, we use single plane illumination microscopy fluorescence correlation spectroscopy (SPIM-FCS) to obtain 3D diffusion coefficient maps with micrometre spatial and millisecond temporal resolution of entire Pseudomonas aeruginosa microcolonies. We probed how molecular properties such as size and charge as well as biofilm properties such as microcolony size and depth influence diffusion of fluorescently labelled dextrans inside biofilms. The 2 MDa dextran showed uneven penetration and a reduction in diffusion coefficient suggesting that the biofilm acts as a molecular sieve. Its diffusion coefficient was negatively correlated with the size of the microcolony. Positively charged dextran molecules and positively charged antibiotic tobramycin preferentially partitioned into the biofilm and remained mobile inside the microcolony, albeit with a reduced diffusion coefficient. Lastly, we measured changes of diffusion upon induction of dispersal and detected an increase in diffusion coefficient inside the biofilm before any loss of biomass. Thus, the change in diffusion is a proxy to detect early stages of dispersal. Our work shows that 3D diffusion maps are very sensitive to physiological changes in biofilms, viz. dispersal. However, this study also shows that diffusion, as mediated by the biofilm matrix, does not account for the high level of antibiotic tolerance associated with biofilms.


Subject(s)
Anti-Bacterial Agents/analysis , Biofilms/growth & development , Dextrans/analysis , Diffusion , Extracellular Polymeric Substance Matrix/chemistry , Pseudomonas aeruginosa/growth & development , Tobramycin/analysis , Imaging, Three-Dimensional , Spatio-Temporal Analysis , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL