Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 79
Filter
1.
Am J Hum Genet ; 110(9): 1470-1481, 2023 09 07.
Article in English | MEDLINE | ID: mdl-37582359

ABSTRACT

Sclerosing skeletal dysplasias result from an imbalance between bone formation and resorption. We identified three homozygous, C-terminally truncating AXIN1 variants in seven individuals from four families affected by macrocephaly, cranial hyperostosis, and vertebral endplate sclerosis. Other frequent findings included hip dysplasia, heart malformations, variable developmental delay, and hematological anomalies. In line with AXIN1 being a central component of the ß-catenin destruction complex, analyses of primary and genome-edited cells harboring the truncating variants revealed enhanced basal canonical Wnt pathway activity. All three AXIN1-truncating variants resulted in reduced protein levels and impaired AXIN1 polymerization mediated by its C-terminal DIX domain but partially retained Wnt-inhibitory function upon overexpression. Addition of a tankyrase inhibitor attenuated Wnt overactivity in the AXIN1-mutant model systems. Our data suggest that AXIN1 coordinates the action of osteoblasts and osteoclasts and that tankyrase inhibitors can attenuate the effects of AXIN1 hypomorphic variants.


Subject(s)
Hip Dislocation , Osteosclerosis , Tankyrases , Humans , Tankyrases/genetics , Tankyrases/metabolism , Axin Protein/genetics , Axin Protein/metabolism , Wnt Signaling Pathway/genetics , Osteosclerosis/genetics , beta Catenin/metabolism
2.
Am J Hum Genet ; 108(1): 8-15, 2021 01 07.
Article in English | MEDLINE | ID: mdl-33417889

ABSTRACT

The delineation of disease entities is complex, yet recent advances in the molecular characterization of diseases provide opportunities to designate diseases in a biologically valid manner. Here, we have formalized an approach to the delineation of Mendelian genetic disorders that encompasses two distinct but inter-related concepts: (1) the gene that is mutated and (2) the phenotypic descriptor, preferably a recognizably distinct phenotype. We assert that only by a combinatorial or dyadic approach taking both of these attributes into account can a unitary, distinct genetic disorder be designated. We propose that all Mendelian disorders should be designated as "GENE-related phenotype descriptor" (e.g., "CFTR-related cystic fibrosis"). This approach to delineating and naming disorders reconciles the complexity of gene-to-phenotype relationships in a simple and clear manner yet communicates the complexity and nuance of these relationships.


Subject(s)
Genetic Diseases, Inborn/diagnosis , Genetic Diseases, Inborn/genetics , Genomics/methods , Cystic Fibrosis/diagnosis , Cystic Fibrosis/genetics , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Genotype , Humans , Mutation/genetics , Phenotype
3.
Prenat Diagn ; 44(2): 237-246, 2024 02.
Article in English | MEDLINE | ID: mdl-37632214

ABSTRACT

OBJECTIVE: Recurrent deletions involving 17q12 are associated with a variety of clinical phenotypes, including congenital abnormalities of the kidney and urinary tract (CAKUT), maturity onset diabetes of the young, type 5, and neurodevelopmental disorders. Structural and/or functional renal disease is the most common phenotypic feature, although the prenatal renal phenotypes and the postnatal correlates have not been well characterized. METHOD: We reviewed pre- and postnatal medical records of 26 cases with prenatally or postnatally identified 17q12/HNF1B microdeletions (by chromosomal microarray or targeted gene sequencing), obtained through a multicenter collaboration. We specifically evaluated 17 of these cases (65%) with reported prenatal renal ultrasound findings. RESULTS: Heterogeneous prenatal renal phenotypes were noted, most commonly renal cysts (41%, n = 7/17) and echogenic kidneys (41%), although nonspecific dysplasia, enlarged kidneys, hydronephrosis, pelvic kidney with hydroureter, and lower urinary tract obstruction were also reported. Postnatally, most individuals developed renal cysts (73%, 11/15 live births), and there were no cases of end-stage renal disease during childhood or the follow-up period. CONCLUSION: Our findings demonstrate that copy number variant analysis to assess for 17q12 microdeletion should be considered for a variety of prenatally detected renal anomalies. It is important to distinguish 17q12 microdeletion from other etiologies of CAKUT as the prognosis for renal function and presence of associated findings are distinct and may influence pregnancy and postnatal management.


Subject(s)
Kidney Diseases, Cystic , Kidney Diseases , Urogenital Abnormalities , Vesico-Ureteral Reflux , Pregnancy , Female , Humans , Chromosome Deletion , Kidney/diagnostic imaging , Kidney/abnormalities , Kidney Diseases/congenital , Phenotype , Kidney Diseases, Cystic/diagnostic imaging , Kidney Diseases, Cystic/genetics , Hepatocyte Nuclear Factor 1-beta/genetics , Multicenter Studies as Topic
4.
Am J Med Genet A ; 191(4): 1050-1058, 2023 04.
Article in English | MEDLINE | ID: mdl-36751885

ABSTRACT

Bohring-Opitz syndrome (BOS) is a rare genetic condition caused by pathogenic variants in ASXL1, which is a gene involved in chromatin regulation. BOS is characterized by severe intellectual disabilities, distinctive facial features, hypertrichosis, facial nevus simplex, severe myopia, a typical posture in infancy, variable anomalies, and feeding issues. Wilms tumor has also been reported in two individuals. We report survey data from the largest known cohort of individuals with BOS with 34 participants from the ASXL Patient-Driven Registry and data on five additional individuals with notable findings. Important or novel findings include hepatoblastoma (n = 1), an additional individual with Wilms tumor, two families with a parent who is mosaic including a pair of siblings, birth weights within the normal range for the majority of participants, as well as presence of craniosynostosis and hernias. Data also include characterization of communication, motor skills, and care level including hospitalization frequency and surgical interventions. No phenotype-genotype correlation could be identified. The ASXL Registry is also presented as a crucial tool for furthering ASXL research and to support the ASXL community.


Subject(s)
Craniosynostoses , Intellectual Disability , Kidney Neoplasms , Liver Neoplasms , Wilms Tumor , Humans , Intellectual Disability/genetics , Repressor Proteins/genetics , Craniosynostoses/genetics
5.
Qual Life Res ; 32(7): 2059-2067, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37039911

ABSTRACT

PURPOSE: The primary goal of this analysis is to describe the health-related quality of life (HRQoL), medical history, and medication use among adolescents and adults individuals with Angelman syndrome (AS). METHODS: The analysis uses baseline data collected during the STARS study, a double-blind placebo controlled trial of gaboxadol (OV101) in adolescents and adults with AS. The HRQoL was estimated using EuroQoL 5-Dimension 5-Level (EQ-5D) health questionnaire proxy 1 version, which was completed by the caregivers. EQ-5D consists of two parts, a 5-dimension descriptive and a visual analogue scale (VAS) component. The utility score derived from EQ-5D ranges from 0 to 1 (perfect health) and VAS ranges from 0 to 100 (perfect health). RESULTS: 87 individuals with AS were included in the present analysis. The mean utility score was 0.44 ± 0.20 and VAS score was 84 ± 1.5. The EQ-5D data indicated that the self-care, mobility and daily activities were most impacted. All adolescents (100%) and most adults (93%) had at least moderate problems with self-care activities, such as washing or dressing themselves. More than half (55%) of the adolescents and adults had at least moderate issues with mobility and usual activities. Approximately, 30% of adolescents and adults had moderate to extreme problems with anxiety/depression. High baseline concomitant use of medications was observed across both age groups with an average of 5 medications being used per person. CONCLUSION: This study highlights the impact of AS on HRQoL and medication utilization among adolescents and adults individuals with AS.


Subject(s)
Angelman Syndrome , Quality of Life , Adult , Adolescent , Humans , Quality of Life/psychology , Surveys and Questionnaires , Depression , Caregivers , Health Status
6.
Am J Hum Genet ; 105(6): 1126-1147, 2019 12 05.
Article in English | MEDLINE | ID: mdl-31735293

ABSTRACT

The redox state of the neural progenitors regulates physiological processes such as neuronal differentiation and dendritic and axonal growth. The relevance of endoplasmic reticulum (ER)-associated oxidoreductases in these processes is largely unexplored. We describe a severe neurological disorder caused by bi-allelic loss-of-function variants in thioredoxin (TRX)-related transmembrane-2 (TMX2); these variants were detected by exome sequencing in 14 affected individuals from ten unrelated families presenting with congenital microcephaly, cortical polymicrogyria, and other migration disorders. TMX2 encodes one of the five TMX proteins of the protein disulfide isomerase family, hitherto not linked to human developmental brain disease. Our mechanistic studies on protein function show that TMX2 localizes to the ER mitochondria-associated membranes (MAMs), is involved in posttranslational modification and protein folding, and undergoes physical interaction with the MAM-associated and ER folding chaperone calnexin and ER calcium pump SERCA2. These interactions are functionally relevant because TMX2-deficient fibroblasts show decreased mitochondrial respiratory reserve capacity and compensatory increased glycolytic activity. Intriguingly, under basal conditions TMX2 occurs in both reduced and oxidized monomeric form, while it forms a stable dimer under treatment with hydrogen peroxide, recently recognized as a signaling molecule in neural morphogenesis and axonal pathfinding. Exogenous expression of the pathogenic TMX2 variants or of variants with an in vitro mutagenized TRX domain induces a constitutive TMX2 polymerization, mimicking an increased oxidative state. Altogether these data uncover TMX2 as a sensor in the MAM-regulated redox signaling pathway and identify it as a key adaptive regulator of neuronal proliferation, migration, and organization in the developing brain.


Subject(s)
Brain Diseases/pathology , Brain/abnormalities , Developmental Disabilities/pathology , Membrane Proteins/metabolism , Mitochondria/metabolism , Thioredoxins/metabolism , Adolescent , Adult , Brain Diseases/genetics , Brain Diseases/metabolism , Child , Child, Preschool , Cohort Studies , Developmental Disabilities/genetics , Developmental Disabilities/metabolism , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Follow-Up Studies , Humans , Infant , Infant, Newborn , Male , Membrane Proteins/genetics , Mitochondria/pathology , Oxidation-Reduction , Prognosis , Skin/metabolism , Skin/pathology , Thioredoxins/genetics , Transcriptome
7.
Mol Psychiatry ; 26(7): 3625-3633, 2021 07.
Article in English | MEDLINE | ID: mdl-32792659

ABSTRACT

Angelman Syndrome (AS) is a severe neurodevelopmental disorder due to impaired expression of UBE3A in neurons. There are several genetic mechanisms that impair UBE3A expression, but they differ in how neighboring genes on chromosome 15 at 15q11-q13 are affected. There is evidence that different genetic subtypes present with different clinical severity, but a systematic quantitative investigation is lacking. Here we analyze natural history data on a large sample of individuals with AS (n = 250, 848 assessments), including clinical scales that quantify development of motor, cognitive, and language skills (Bayley Scales of Infant Development, Third Edition; Preschool Language Scale, Fourth Edition), adaptive behavior (Vineland Adaptive Behavioral Scales, Second Edition), and AS-specific symptoms (AS Clinical Severity Scale). We found that clinical severity, as captured by these scales, differs between genetic subtypes: individuals with UBE3A pathogenic variants and imprinting defects (IPD) are less affected than individuals with uniparental paternal disomy (UPD); of those with UBE3A pathogenic variants, individuals with truncating mutations are more impaired than those with missense mutations. Individuals with a deletion that encompasses UBE3A and other genes are most impaired, but in contrast to previous work, we found little evidence for an influence of deletion length (class I vs. II) on severity of manifestations. The results of this systematic analysis highlight the relevance of genomic regions beyond UBE3A as contributing factors in the AS phenotype, and provide important information for the development of new therapies for AS. More generally, this work exemplifies how increasing genetic irregularities are reflected in clinical severity.


Subject(s)
Angelman Syndrome , Angelman Syndrome/genetics , Chromosomes, Human, Pair 15 , Genomic Imprinting/genetics , Genotype , Humans , Phenotype , Ubiquitin-Protein Ligases/genetics
8.
Brain ; 144(12): 3635-3650, 2021 12 31.
Article in English | MEDLINE | ID: mdl-34114611

ABSTRACT

Variants in KCNT1, encoding a sodium-gated potassium channel (subfamily T member 1), have been associated with a spectrum of epilepsies and neurodevelopmental disorders. These range from familial autosomal dominant or sporadic sleep-related hypermotor epilepsy to epilepsy of infancy with migrating focal seizures (EIMFS) and include developmental and epileptic encephalopathies. This study aims to provide a comprehensive overview of the phenotypic and genotypic spectrum of KCNT1 mutation-related epileptic disorders in 248 individuals, including 66 previously unpublished and 182 published cases, the largest cohort reported so far. Four phenotypic groups emerged from our analysis: (i) EIMFS (152 individuals, 33 previously unpublished); (ii) developmental and epileptic encephalopathies other than EIMFS (non-EIMFS developmental and epileptic encephalopathies) (37 individuals, 17 unpublished); (iii) autosomal dominant or sporadic sleep-related hypermotor epilepsy (53 patients, 14 unpublished); and (iv) other phenotypes (six individuals, two unpublished). In our cohort of 66 new cases, the most common phenotypic features were: (i) in EIMFS, heterogeneity of seizure types, including epileptic spasms, epilepsy improvement over time, no epilepsy-related deaths; (ii) in non-EIMFS developmental and epileptic encephalopathies, possible onset with West syndrome, occurrence of atypical absences, possible evolution to developmental and epileptic encephalopathies with sleep-related hypermotor epilepsy features; one case of sudden unexplained death in epilepsy; (iii) in autosomal dominant or sporadic sleep-related hypermotor epilepsy, we observed a high prevalence of drug-resistance, although seizure frequency improved with age in some individuals, appearance of cognitive regression after seizure onset in all patients, no reported severe psychiatric disorders, although behavioural/psychiatric comorbidities were reported in ∼50% of the patients, sudden unexplained death in epilepsy in one individual; and (iv) other phenotypes in individuals with mutation of KCNT1 included temporal lobe epilepsy, and epilepsy with tonic-clonic seizures and cognitive regression. Genotypic analysis of the whole cohort of 248 individuals showed only missense mutations and one inframe deletion in KCNT1. Although the KCNT1 mutations in affected individuals were seen to be distributed among the different domains of the KCNT1 protein, genotype-phenotype considerations showed many of the autosomal dominant or sporadic sleep-related hypermotor epilepsy-associated mutations to be clustered around the RCK2 domain in the C terminus, distal to the NADP domain. Mutations associated with EIMFS/non-EIMFS developmental and epileptic encephalopathies did not show a particular pattern of distribution in the KCNT1 protein. Recurrent KCNT1 mutations were seen to be associated with both severe and less severe phenotypes. Our study further defines and broadens the phenotypic and genotypic spectrums of KCNT1-related epileptic conditions and emphasizes the increasingly important role of this gene in the pathogenesis of early onset developmental and epileptic encephalopathies as well as of focal epilepsies, namely autosomal dominant or sporadic sleep-related hypermotor epilepsy.


Subject(s)
Epilepsy/genetics , Nerve Tissue Proteins/genetics , Potassium Channels, Sodium-Activated/genetics , Adolescent , Child , Child, Preschool , Cohort Studies , Female , Genotype , Humans , Infant , Male , Mutation , Phenotype , Young Adult
9.
Hum Mutat ; 42(6): 762-776, 2021 06.
Article in English | MEDLINE | ID: mdl-33847017

ABSTRACT

Bi-allelic TECPR2 variants have been associated with a complex syndrome with features of both a neurodevelopmental and neurodegenerative disorder. Here, we provide a comprehensive clinical description and variant interpretation framework for this genetic locus. Through international collaboration, we identified 17 individuals from 15 families with bi-allelic TECPR2-variants. We systemically reviewed clinical and molecular data from this cohort and 11 cases previously reported. Phenotypes were standardized using Human Phenotype Ontology terms. A cross-sectional analysis revealed global developmental delay/intellectual disability, muscular hypotonia, ataxia, hyporeflexia, respiratory infections, and central/nocturnal hypopnea as core manifestations. A review of brain magnetic resonance imaging scans demonstrated a thin corpus callosum in 52%. We evaluated 17 distinct variants. Missense variants in TECPR2 are predominantly located in the N- and C-terminal regions containing ß-propeller repeats. Despite constituting nearly half of disease-associated TECPR2 variants, classifying missense variants as (likely) pathogenic according to ACMG criteria remains challenging. We estimate a pathogenic variant carrier frequency of 1/1221 in the general and 1/155 in the Jewish Ashkenazi populations. Based on clinical, neuroimaging, and genetic data, we provide recommendations for variant reporting, clinical assessment, and surveillance/treatment of individuals with TECPR2-associated disorder. This sets the stage for future prospective natural history studies.


Subject(s)
Carrier Proteins/genetics , Hereditary Sensory and Autonomic Neuropathies , Intellectual Disability , Nerve Tissue Proteins/genetics , Adolescent , Carrier Proteins/chemistry , Child , Child, Preschool , Cohort Studies , Cross-Sectional Studies , Family , Female , Hereditary Sensory and Autonomic Neuropathies/complications , Hereditary Sensory and Autonomic Neuropathies/diagnosis , Hereditary Sensory and Autonomic Neuropathies/genetics , Hereditary Sensory and Autonomic Neuropathies/pathology , Humans , Infant , Intellectual Disability/complications , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Intellectual Disability/pathology , Magnetic Resonance Imaging , Male , Models, Molecular , Mutation, Missense , Nerve Tissue Proteins/chemistry , Neuroimaging/methods , Pedigree , Phenotype , Protein Conformation
10.
Am J Med Genet A ; 185(1): 203-207, 2021 01.
Article in English | MEDLINE | ID: mdl-33037779

ABSTRACT

Inherited optic neuropathies (IONs) are neurodegenerative disorders characterized by optic atrophy with or without extraocular manifestations. Optic atrophy-10 (OPA10) is an autosomal recessive ION recently reported to be caused by mutations in RTN4IP1, which encodes reticulon 4 interacting protein 1 (RTN4IP1), a mitochondrial ubiquinol oxydo-reductase. Here we report novel compound heterozygous mutations in RTN4IP1 in a male proband with developmental delay, epilepsy, optic atrophy, ataxia, and choreoathetosis. Workup was notable for transiently elevated lactate and lactate-to-pyruvate ratio, brain magnetic resonance imaging with optic atrophy and T2 signal abnormalities, and a nondiagnostic initial genetic workup, including chromosomal microarray and mitochondrial panel testing. Exome sequencing identified a paternally inherited missense variant (c.263T>G, p.Val88Gly) predicted to be deleterious and a maternally inherited deletion encompassing RTN4IP1. To our knowledge, this is the first report of a non-single nucleotide pathogenic variant associated with OPA10. This case highlights the expanding phenotypic spectrum of OPA10, the association between "syndromic" cases and severe RTN4IP1 mutations, and the importance of nonbiased genetic testing, such as ES, to analyze multiple genes and variants types, in patients suspected of having genetic disease.


Subject(s)
Carrier Proteins/genetics , Developmental Disabilities/genetics , Epilepsy/genetics , Mitochondrial Proteins/genetics , Optic Atrophy/genetics , Ataxia/diagnostic imaging , Ataxia/genetics , Ataxia/pathology , Carrier Proteins/ultrastructure , Child, Preschool , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/pathology , Epilepsy/diagnostic imaging , Epilepsy/pathology , Exome/genetics , Female , Genetic Predisposition to Disease , Genetic Testing/methods , Humans , Infant , Infant, Newborn , Magnetic Resonance Imaging , Male , Mitochondrial Proteins/ultrastructure , Mutation/genetics , Optic Atrophy/diagnostic imaging , Optic Atrophy/pathology , Pedigree , Protein Conformation , Structure-Activity Relationship , Exome Sequencing
11.
Am J Public Health ; 111(S2): S156-S162, 2021 07.
Article in English | MEDLINE | ID: mdl-34314210

ABSTRACT

Objectives. To determine how deaths of infants with genetic diagnoses are described in national mortality statistics. Methods. We present a retrospective cohort study of mortality data, obtained from the National Death Index (NDI), and clinical data for 517 infants born from 2011 to 2017 who died before 1 year of age in the United States. Results. Although 115 of 517 deceased infants (22%) had a confirmed diagnosis of a genetic disorder, only 61 of 115 deaths (53%) were attributed to International Classification of Diseases, 10th Revision codes representing congenital anomalies or genetic disorders (Q00-Q99) as the underlying cause of death because of inconsistencies in death reporting. Infants with genetic diagnoses whose underlying causes of death were coded as Q00-Q99 were more likely to have chromosomal disorders than monogenic conditions (43/61 [70%] vs 18/61 [30%]; P < .001), which reflects the need for improved accounting for monogenic disorders in mortality statistics. Conclusions. Genetic disorders, although a leading cause of infant mortality, are not accurately captured by vital statistics. Public Health Implications. Expanded access to genetic testing and further clarity in death reporting are needed to describe properly the contribution of genetic disorders to infant mortality.


Subject(s)
Cause of Death/trends , Congenital Abnormalities/mortality , Genetic Diseases, Inborn/mortality , Infant Mortality/trends , Vital Statistics , Cohort Studies , Female , Forecasting , Humans , Infant , Infant, Newborn , Male , Retrospective Studies , United States
12.
Cleft Palate Craniofac J ; 58(2): 237-243, 2021 02.
Article in English | MEDLINE | ID: mdl-32864997

ABSTRACT

OBJECTIVE: Ectodermal dysplasia (ED) comprises multiple syndromes that affect skin, hair, nails, and teeth, and sometimes are associated with orofacial clefting. The purpose of this study is to (1) identify the prevalence and characteristics of cleft lip and/or palate (CL/P) in patients with ED and (2) describe the management and outcomes. DESIGN: Retrospective review from 1990 to 2019. PATIENTS: All patients with ED treated at Boston Children's Hospital. MAIN OUTCOMES MEASURES: Prevalence of CL/P was calculated and clinical details recorded: phenotypic anomalies, cleft type, operative treatment, and results of repair. RESULTS: Of 170 patients with a purported diagnosis of ED, 24 (14%) had CL/P. Anatomic categories were bilateral CL/P (67%), unilateral CL/P (8%), and cleft palate only (25%). The most common ED syndrome (37%) was ectrodactyly, ectodermal dysplasia, and cleft lip/palate (EEC). Pathogenic variants in TP63 were the most frequent finding in the 11 patients who had genetic testing. Aberrations from a typical clinical course included failure of presurgical dentofacial orthopedics, dehiscence of nasolabial adhesion, and total palatal absence requiring free-flap construction. Two patients had prolonged postoperative admission for respiratory infection. High fistula (8%) and velopharyngeal insufficiency (33%) rates reflected the predominance of bilateral complete forms. CONCLUSIONS: As in other types of syndromic CL/P, cleft phenotypic expression in ED is more severe than the general cleft population. Further studies are needed to correlate genotype and phenotype for the distinct syndromes included in the ED spectrum.


Subject(s)
Cleft Lip , Cleft Palate , Ectodermal Dysplasia , Boston , Child , Cleft Lip/epidemiology , Cleft Lip/genetics , Cleft Palate/epidemiology , Cleft Palate/surgery , Ectodermal Dysplasia/epidemiology , Ectodermal Dysplasia/genetics , Humans , Retrospective Studies
13.
Hum Mutat ; 41(5): 1042-1050, 2020 05.
Article in English | MEDLINE | ID: mdl-32097528

ABSTRACT

Pathogenic variants in ZMYND11, which acts as a transcriptional repressor, have been associated with intellectual disability, behavioral abnormalities, and seizures. Only 11 affected individuals have been reported to date, and the phenotype associated with pathogenic variants in this gene have not been fully defined. Here, we present 16 additional patients with predicted pathogenic heterozygous variants in including four individuals from the same family, to further delineate and expand the genotypic and phenotypic spectrum of ZMYND11-related syndromic intellectual disability. The associated phenotype includes developmental delay, particularly affecting speech, mild-moderate intellectual disability, significant behavioral abnormalities, seizures, and hypotonia. There are subtle shared dysmorphic features, including prominent eyelashes and eyebrows, a depressed nasal bridge with bulbous nasal tip, anteverted nares, thin vermilion of the upper lip, and wide mouth. Novel features include brachydactyly and tooth enamel hypoplasia. Most identified variants are likely to result in premature truncation and/or nonsense-mediated decay. Two ZMYND11 variants located in the final exon-p.(Gln586*) (likely escaping nonsense-mediated decay) and p.(Cys574Arg)-are predicted to disrupt the MYND-type zinc-finger motif and likely interfere with binding to its interaction partners. Hence, the homogeneous phenotype likely results from a common mechanism of loss-of-function.


Subject(s)
Cell Cycle Proteins/genetics , Co-Repressor Proteins/genetics , DNA-Binding Proteins/genetics , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Alleles , Child , Child, Preschool , Facies , Female , Genetic Association Studies/methods , Genotype , Haploinsufficiency , Humans , Male , Mutation , Nonsense Mediated mRNA Decay , Phenotype , Syndrome , Zinc Fingers
14.
Genet Med ; 22(8): 1413-1417, 2020 08.
Article in English | MEDLINE | ID: mdl-32366965

ABSTRACT

PURPOSE: This study characterizes the clinical and genetic features of nine unrelated patients with de novo variants in the NR4A2 gene. METHODS: Variants were identified and de novo origins were confirmed through trio exome sequencing in all but one patient. Targeted RNA sequencing was performed for one variant to confirm its splicing effect. Independent discoveries were shared through GeneMatcher. RESULTS: Missense and loss-of-function variants in NR4A2 were identified in patients from eight unrelated families. One patient carried a larger deletion including adjacent genes. The cases presented with developmental delay, hypotonia (six cases), and epilepsy (six cases). De novo status was confirmed for eight patients. One variant was demonstrated to affect splicing and result in expression of abnormal transcripts likely subject to nonsense-mediated decay. CONCLUSION: Our study underscores the importance of NR4A2 as a disease gene for neurodevelopmental disorders and epilepsy. The identified variants are likely causative of the seizures and additional developmental phenotypes in these patients.


Subject(s)
Epilepsy , Intellectual Disability , Neurodevelopmental Disorders , Epilepsy/genetics , Humans , Intellectual Disability/genetics , Muscle Hypotonia , Neurodevelopmental Disorders/genetics , Nuclear Receptor Subfamily 4, Group A, Member 2 , Phenotype , Exome Sequencing
15.
Am J Med Genet A ; 182(8): 1890-1895, 2020 08.
Article in English | MEDLINE | ID: mdl-32573094

ABSTRACT

Esophageal atresia (EA) is a congenital anomaly occurring in 2.3 per 10,000 live births. Due to advances in prenatal imaging, EA is more readily diagnosed, but data on the associated genetic diagnoses, other anomalies, and postnatal outcome for fetuses diagnosed prenatally with EA are scarce. We collected data from two academic medical centers (n = 61). Our data included fetuses with suspected EA on prenatal imaging that was confirmed postnatally and had at least one genetic test. In our cohort of 61 cases, 29 (49%) were born prematurely and 19% of those born alive died in the first 9 years of life. The most commonly associated birth defects were cardiac anomalies (67%) and spine anomalies (50%). A diagnosis was made in 61% of the cases; the most common diagnoses were vertebral defects, anal atresia, cardiac anomalies, tracheoesophageal fistula with esophageal atresia, radial or renal dysplasia, and limb anomalies association (43%, although 12% met only 2 of the criteria), trisomy 21 (5%), and CHARGE syndrome (5%). Our findings suggest that most fetuses with prenatally diagnosed EA have one or more additional major anomaly that warrants a more comprehensive clinical genetics evaluation. Fetuses diagnosed prenatally appear to represent a cohort with a worse outcome.


Subject(s)
Abnormalities, Multiple/diagnosis , Congenital Abnormalities/diagnosis , Esophageal Atresia/diagnosis , Heart Defects, Congenital/diagnosis , Prenatal Diagnosis , Abnormalities, Multiple/diagnostic imaging , Abnormalities, Multiple/physiopathology , Congenital Abnormalities/diagnostic imaging , Congenital Abnormalities/physiopathology , Down Syndrome/diagnosis , Down Syndrome/diagnostic imaging , Down Syndrome/physiopathology , Esophageal Atresia/complications , Esophageal Atresia/diagnostic imaging , Esophageal Atresia/physiopathology , Esophagus/diagnostic imaging , Esophagus/physiopathology , Female , Fetus/abnormalities , Heart Defects, Congenital/complications , Heart Defects, Congenital/diagnostic imaging , Heart Defects, Congenital/physiopathology , Humans , Infant, Newborn , Kidney/diagnostic imaging , Kidney/physiopathology , Male , Pregnancy , Trachea/diagnostic imaging , Trachea/physiopathology
16.
18.
J Pediatr ; 213: 235-240, 2019 10.
Article in English | MEDLINE | ID: mdl-31235381

ABSTRACT

We describe an infant with a phenotype typical of early onset Marfan syndrome whose genetic evaluation, including Sanger sequencing and deletion/duplication testing of FBN1 and exome sequencing, was negative. Ultimately, genome sequencing revealed a deletion missed on prior testing, demonstrating the unique utility of genome sequencing for molecular genetic diagnosis.


Subject(s)
Fibrillin-1/genetics , Marfan Syndrome/diagnosis , Marfan Syndrome/genetics , Sequence Analysis, DNA , Exome , Fatal Outcome , Gene Deletion , Gene Dosage , Genetic Variation , Genome, Human , Humans , Infant , Male , Phenotype , Polymerase Chain Reaction
19.
Am J Med Genet A ; 179(3): 365-372, 2019 03.
Article in English | MEDLINE | ID: mdl-30588760

ABSTRACT

MYH7-related disease (MRD) is the most common hereditary primary cardiomyopathy (CM), with pathogenic MYH7 variants accounting for approximately 40% of familial hypertrophic CMs. MRDs may also present as skeletal myopathies, with or without CM. Since pathogenic MYH7 variants result in highly variable clinical phenotypes, from mild to fatal forms of cardiac and skeletal myopathies, genotype-phenotype correlations are not always apparent, and translation of the genetic findings to clinical practice can be complicated. Data on genotype-phenotype correlations can help facilitate more specific and personalized decisions on treatment strategies, surveillance, and genetic counseling. We present a series of six MRD pedigrees with rare genotypes, encompassing various clinical presentations and inheritance patterns. This study provides new insights into the spectrum of MRD that is directly translatable to clinical practice.


Subject(s)
Cardiac Myosins/genetics , Cardiomyopathies/diagnosis , Cardiomyopathies/genetics , Genetic Association Studies , Genotype , Mutation , Myosin Heavy Chains/genetics , Phenotype , Adult , Biological Variation, Population , Biopsy , Child , Child, Preschool , DNA Mutational Analysis , Echocardiography , Humans , Infant , Inheritance Patterns , Karyotyping , Pedigree
20.
Am J Med Genet A ; 179(6): 983-992, 2019 06.
Article in English | MEDLINE | ID: mdl-30942555

ABSTRACT

Maladaptive behaviors are challenging and a source of stress for caregivers of individuals with Angelman Syndrome (AS). There is limited information on how these maladaptive behaviors vary over time among individuals with AS due to different genetic etiologies. In this study, caregivers of 301 individuals with AS were asked questions about their child's behavior and completed the Aberrant Behavior Checklist-Community version (ABC-C). Developmental functioning was evaluated with either the Bayley Scales of Infant Development, Third Edition (Bayley-III) or the Mullen Scales of Early Learning (MSEL). Family functioning was assessed using the parent-completed Parenting Stress Index (PSI) and the Family Quality of Life questionnaire (FQoL). Approximately 70% of participants had AS due to a deletion on the maternally-inherited copy of chromosome 15q11q13. Results revealed that at baseline, individuals with AS had low scores in the domains of lethargy (mean: 2.6-4.2 depending on genotype) and stereotypy (mean: 2.3-4.2 depending on genotype). Higher cognitive functioning was associated with increased irritability (r = 0.32, p < .01). Hyperactivity (p < .05) and irritability (p < .05) increased with age across all genotypes and should be ongoing targets for both behavioral and pharmacological treatment. Concerns for short attention span were endorsed by more than 70% of caregivers at baseline. Maladaptive behaviors, particularly hyperactivity, irritability and aggression, adversely affected parental stress, and family quality of life.


Subject(s)
Angelman Syndrome/diagnosis , Angelman Syndrome/psychology , Stereotyped Behavior , Adolescent , Adult , Alleles , Angelman Syndrome/genetics , Child , Child, Preschool , Disease Susceptibility , Female , Genetic Predisposition to Disease , Genotype , Humans , Infant , Male , Parenting/psychology , Quality of Life , Severity of Illness Index , Stress, Psychological , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL