Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Breed Sci ; 73(3): 332-342, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37840983

ABSTRACT

Many agronomic traits that are important in rice breeding are controlled by multiple genes. The extensive time and effort devoted so far to identifying and selecting such genes are still not enough to target multiple agronomic traits in practical breeding in Japan because of a lack of suitable plant materials in which to efficiently detect and validate beneficial alleles from diverse genetic resources. To facilitate the comprehensive analysis of genetic variation in agronomic traits among Asian cultivated rice, we developed 12 sets of chromosome segment substitution lines (CSSLs) with the japonica background, 11 of them in the same genetic background, using donors representing the genetic diversity of Asian cultivated rice. Using these materials, we overviewed the chromosomal locations of 1079 putative QTLs for seven agronomic traits and their allelic distribution in Asian cultivated rice through multiple linear regression analysis. The CSSLs will allow the effects of putative QTLs in the highly homogeneous japonica background to be validated.

2.
Sensors (Basel) ; 23(15)2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37571608

ABSTRACT

Three-dimensional measurement is a high-throughput method that can record a large amount of information. Three-dimensional modelling of plants has the possibility to not only automate dimensional measurement, but to also enable visual assessment to be quantified, eliminating ambiguity in human judgment. In this study, we have developed new methods that could be used for the morphological analysis of plants from the information contained in 3D data. Specifically, we investigated characteristics that can be measured by scale (dimension) and/or visual assessment by humans. The latter is particularly novel in this paper. The characteristics that can be measured on a scale-related dimension were tested based on the bounding box, convex hull, column solid, and voxel. Furthermore, for characteristics that can be evaluated by visual assessment, we propose a new method using normal vectors and local curvature (LC) data. For these examinations, we used our highly accurate all-around 3D plant modelling system. The coefficient of determination between manual measurements and the scale-related methods were all above 0.9. Furthermore, the differences in LC calculated from the normal vector data allowed us to visualise and quantify the concavity and convexity of leaves. This technique revealed that there were differences in the time point at which leaf blistering began to develop among the varieties. The precise 3D model made it possible to perform quantitative measurements of lettuce size and morphological characteristics. In addition, the newly proposed LC-based analysis method made it possible to quantify the characteristics that rely on visual assessment. This research paper was able to demonstrate the following possibilities as outcomes: (1) the automation of conventional manual measurements, and (2) the elimination of variability caused by human subjectivity, thereby rendering evaluations by skilled experts unnecessary.


Subject(s)
Imaging, Three-Dimensional , Lactuca , Lactuca/growth & development , Computer Simulation
3.
Plant J ; 107(5): 1569-1580, 2021 09.
Article in English | MEDLINE | ID: mdl-34197670

ABSTRACT

A cultivation facility that can assist users in controlling the soil water condition is needed for accurately phenotyping plants under drought stress in an artificial environment. Here we report the Internet of Things-based pot system controlling optional treatment of soil water condition (iPOTs), an automatic irrigation system that mimics the drought condition in a growth chamber. The Wi-Fi-enabled iPOTs system allows water supply from the bottom of the pot, based on the soil water level set by the user, and automatically controls the soil water level at a desired depth. The iPOTs also allows users to monitor environmental parameters, such as soil temperature, air temperature, humidity, and light intensity, in each pot. To verify whether the iPOTs mimics the drought condition, we conducted a drought stress test on rice (Oryza sativa L.) varieties and near-isogenic lines, with diverse root system architecture, using the iPOTs system installed in a growth chamber. Similar to the results of a previous drought stress field trial, the growth of shallow-rooted rice accessions was severely affected by drought stress compared with that of deep-rooted accessions. The microclimate data obtained using the iPOTs system increased the accuracy of plant growth evaluation. Transcriptome analysis revealed that pot positions in the growth chamber had little impact on plant growth. Together, these results suggest that the iPOTs system is a reliable platform for phenotyping plants under drought stress.


Subject(s)
Internet of Things , Oryza/genetics , Soil/chemistry , Stress, Physiological , Water/physiology , Droughts , Gene Expression Profiling , Genotype , Oryza/physiology , Phenotype , Protein Interaction Maps
4.
Breed Sci ; 72(1): 75-84, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36045893

ABSTRACT

In this study, we developed an all-around 3D plant modeling system that operates using images and is capable of measuring plants non-destructively without any contact. During the fabrication of this device, we selected a method capable of performing 3D model reconstruction from multiple images. We then developed an improved SfM-MVS (Structure from Motion / Multi-View-Stereo) method that enables 3D reconstruction by simply capturing images with a camera. The resulting image-based method offers a high degree of freedom because the hardware and software can comprise commercially available products, and it permits the use of one or more cameras according to the shape and size of the plant. The advantages of the image-based method are that 3D reconstruction can be conducted at any time as long as the images are already taken, and that the desired locations can be observed, measured, and analyzed from 2D images and a 3D point cloud. The device we developed is capable of 3D measurements and modeling of plants from a few millimeters to 2.4 m of height using this method. This article explains this device, the principles of its composition, and the accuracy of the models obtained from it.

5.
Breed Sci ; 72(1): 85-95, 2022 Mar.
Article in English | MEDLINE | ID: mdl-36045895

ABSTRACT

Plant phenotyping technology has been actively developed in recent years, but the introduction of these technologies into the field of agronomic research has not progressed as expected, in part due to the need for flexibility and low cost. "DIY" (Do It Yourself) methodologies are an efficient way to overcome such obstacles. Devices with modular functionality are critical to DIY experimentation, allowing researchers flexibility of design. In this study, we developed a plant conveyance system using a commercial AGV (Automated Guided Vehicle) as a case study of DIY plant phenotyping. The convey module consists of two devices, a running device and a plant-handling device. The running device was developed based on a commercial AGV Kit. The plant-handling device, plant stands, and pot attachments were originally designed and fabricated by us and our associates. Software was also developed for connecting the devices and operating the system. The run route was set with magnetic tape, which can be easily changed or rerouted. Our plant delivery system was developed with low cost and having high flexibility, as a unit that can contribute to others' DIY' plant research efforts as well as our own. It is expected that the developed devices will contribute to diverse phenotype observations of plants in the greenhouse as well as to other important functions in plant breeding and agricultural production.

6.
BMC Plant Biol ; 21(1): 398, 2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34433428

ABSTRACT

BACKGROUND: The root distribution in the soil is one of the elements that comprise the root system architecture (RSA). In monocots, RSA comprises radicle and crown roots, each of which can be basically represented by a single curve with lateral root branches or approximated using a polyline. Moreover, RSA vectorization (polyline conversion) is useful for RSA phenotyping. However, a robust software that can enable RSA vectorization while using noisy three-dimensional (3D) volumes is unavailable. RESULTS: We developed RSAtrace3D, which is a robust 3D RSA vectorization software for monocot RSA phenotyping. It manages the single root (radicle or crown root) as a polyline (a vector), and the set of the polylines represents the entire RSA. RSAtrace3D vectorizes root segments between the two ends of a single root. By utilizing several base points on the root, RSAtrace3D suits noisy images if it is difficult to vectorize it using only two end nodes of the root. Additionally, by employing a simple tracking algorithm that uses the center of gravity (COG) of the root voxels to determine the tracking direction, RSAtrace3D efficiently vectorizes the roots. Thus, RSAtrace3D represents the single root shape more precisely than straight lines or spline curves. As a case study, rice (Oryza sativa) RSA was vectorized from X-ray computed tomography (CT) images, and RSA traits were calculated. In addition, varietal differences in RSA traits were observed. The vector data were 32,000 times more compact than raw X-ray CT images. Therefore, this makes it easier to share data and perform re-analyses. For example, using data from previously conducted studies. For monocot plants, the vectorization and phenotyping algorithm are extendable and suitable for numerous applications. CONCLUSIONS: RSAtrace3D is an RSA vectorization software for 3D RSA phenotyping for monocots. Owing to the high expandability of the RSA vectorization and phenotyping algorithm, RSAtrace3D can be applied not only to rice in X-ray CT images but also to other monocots in various 3D images. Since this software is written in Python language, it can be easily modified and will be extensively applied by researchers in this field.


Subject(s)
Oryza/anatomy & histology , Oryza/growth & development , Phenotype , Plant Roots/anatomy & histology , Plant Roots/growth & development , Software , Algorithms , Crops, Agricultural/anatomy & histology , Crops, Agricultural/growth & development , Image Processing, Computer-Assisted/methods , Imaging, Three-Dimensional/methods
7.
Breed Sci ; 71(2): 167-175, 2021 Apr.
Article in English | MEDLINE | ID: mdl-34377064

ABSTRACT

Fruit shape of cultivated strawberry (Fragaria × ananassa Duch.) is an important breeding target. To detect genomic regions associated with this trait, its quantitative evaluation is needed. Previously we created a multi-parent advanced-generation inter-cross (MAGIC) strawberry population derived from six founder parents. In this study, we used this population to quantify fruit shape. Elliptic Fourier descriptors (EFDs) were generated from 2 969 two-dimensional binarized fruit images, and principal component (PC) scores were calculated on the basis of the EFD coefficients. PC1-PC3 explained 96% of variation in shape and thus adequately quantified it. In genome-wide association study, the PC scores were used as phenotypes. Genome wide association study using mixed linear models revealed 2 quantitative trait loci (QTLs) for fruit shape. Our results provide a novel and effective method to analyze strawberry fruit morphology; the detected QTLs and presented method can support marker-assisted selection in practical breeding programs to improve fruit shape.

8.
Plant Cell Physiol ; 59(10): 2030-2038, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-30010970

ABSTRACT

High-throughput and accurate measurements of plant traits facilitate identification of gene function. Along with recent advances in quantitative genomics, there is a growing need for precise quantification of multiple traits in plants. However, it is difficult continuously to quantify plant adaptive responses to environmental stress responses such as drought because multiple environmental factors are intricately involved in the phenotype. To solve this problem, we developed an automatic phenotyping system for evaluating the growth responses of individual Arabidopsis plants to a wide range of environmental conditions. The RIKEN Integrated Plant Phenotyping System (RIPPS) controls soil moisture for single plants by automatically weighing and watering 120 continuously rotating pots under controlled light, humidity and temperature growth conditions. RIPPS also records individual rosette size and expansion rate by photographing plants every 2 h. We used RIPPS to establish phenotype evaluation methods for Arabidopsis growth response and water use efficiency under various water conditions, and analyzed the involvement of ABA metabolism in determining water use efficiency. We also used RIPPS to analyze salinity tolerance in Arabidopsis plants.


Subject(s)
Arabidopsis/metabolism , Plant Proteins/metabolism , Arabidopsis/genetics , Gene Expression Regulation, Plant/genetics , Gene Expression Regulation, Plant/physiology , Phenotype , Plant Proteins/genetics
9.
Breed Sci ; 68(3): 305-315, 2018 Jun.
Article in English | MEDLINE | ID: mdl-30100797

ABSTRACT

Canopy temperature can be a good indicator of stomatal conductance. To understand the genetic basis of phenotypic differences in stomatal conductance between average and high-yielding rice (Oryza sativa L.) cultivars, we conducted a quantitative trait locus (QTL) analysis of canopy temperature. We developed reciprocal series of backcross inbred lines (BC1F6) derived from a cross between the average-yielding japonica cultivar 'Koshihikari' and the high-yielding indica cultivar 'Takanari'. A stable QTL, qCTd11 (QTL for canopy temperature difference on chromosome 11) on the short arm of chromosome 11, accounted for 10.4 and 19.8% of the total phenotypic variance in the two lines; the 'Takanari' allele decreased the canopy temperature difference value. A chromosome segment substitution line carrying the Takanari qCTd11 showed a greater reduction in canopy temperature than 'Koshihikari', and had higher stomatal conductance and photosynthetic rate. These results suggest that qCTd11 is not only involved in canopy temperature, but is also involved in both stomatal conductance and photosynthetic rate.

10.
Breed Sci ; 67(4): 363-369, 2017 Sep.
Article in English | MEDLINE | ID: mdl-29085246

ABSTRACT

Most soybean cultivars possess broad leaflets; however, a recessive allele on the Ln locus is known to cause the alteration of broad to narrow leaflets. The recessive allele ln has also been considered to increase the number of seeds per pod (NSP) and has the potential to improve yield. Recently, Gm-JAG1 (Glyma20g25000), a gene controlling Ln, has been shown to complement leaf shape and silique length in Arabidopsis mutants. However, whether Gm-JAG1 is responsible for those traits in soybean is not yet known. In this study, we investigated the pleiotropic effect of soybean Ln gene on leaflet shape and NSP by using two independent soybean Gm-jag1 mutants and four ln near isogenic lines (NILs). The leaflet shape was evaluated using a leaf image analysis software, SmartLeaf, which was customized from SmartGrain. The leaflets of both the Gm-jag1 mutants were longer and narrower than those of the wild-type plants. Interestingly, the image analysis results clarified that the perimeter of the mutant leaflets did not change, although their leaflet area decreased. Furthermore, one mutant line with narrow leaflets showed significantly higher NSP than that in the wild (or Ln) genotype, indicating that soybean Ln gene pleiotropically controls leaflet shape and NSP.

11.
BMC Plant Biol ; 15: 115, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25953146

ABSTRACT

BACKGROUND: Heading date, a crucial factor determining regional and seasonal adaptation in rice (Oryza sativa L.), has been a major selection target in breeding programs. Although considerable progress has been made in our understanding of the molecular regulation of heading date in rice during last two decades, the previously isolated genes and identified quantitative trait loci (QTLs) cannot fully explain the natural variation for heading date in diverse rice accessions. RESULTS: To genetically dissect naturally occurring variation in rice heading date, we collected QTLs in advanced-backcross populations derived from multiple crosses of the japonica rice accession Koshihikari (as a common parental line) with 11 diverse rice accessions (5 indica, 3 aus, and 3 japonica) that originate from various regions of Asia. QTL analyses of over 14,000 backcrossed individuals revealed 255 QTLs distributed widely across the rice genome. Among the detected QTLs, 128 QTLs corresponded to genomic positions of heading date genes identified by previous studies, such as Hd1, Hd6, Hd3a, Ghd7, DTH8, and RFT1. The other 127 QTLs were detected in different chromosomal regions than heading date genes. CONCLUSIONS: Our results indicate that advanced-backcross progeny allowed us to detect and confirm QTLs with relatively small additive effects, and the natural variation in rice heading date could result from combinations of large- and small-effect QTLs. We also found differences in the genetic architecture of heading date (flowering time) among maize, Arabidopsis, and rice.


Subject(s)
Ecotype , Flowers/genetics , Flowers/physiology , Oryza/genetics , Oryza/physiology , Alleles , Chromosomes, Plant/genetics , Crosses, Genetic , Models, Genetic , Photoperiod , Physical Chromosome Mapping , Quantitative Trait Loci/genetics , Reproducibility of Results
12.
Plant Biotechnol J ; 13(6): 753-65, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25487714

ABSTRACT

The rice transcription factor WRKY45 plays a central role in the salicylic acid signalling pathway and mediates chemical-induced resistance to multiple pathogens, including Magnaporthe oryzae and Xanthomonas oryzae pv. oryzae. Previously, we reported that rice transformants overexpressing WRKY45 driven by the maize ubiquitin promoter were strongly resistant to both pathogens; however, their growth and yield were negatively affected because of the trade-off between the two conflicting traits. Also, some unknown environmental factor(s) exacerbated this problem. Here, we report the development of transgenic rice lines resistant to both pathogens and with agronomic traits almost comparable to those of wild-type rice. This was achieved by optimizing the promoter driving WRKY45 expression. We isolated 16 constitutive promoters from rice genomic DNA and tested their ability to drive WRKY45 expression. Comparisons among different transformant lines showed that, overall, the strength of WRKY45 expression was positively correlated with disease resistance and negatively correlated with agronomic traits. We conducted field trials to evaluate the growth of transgenic and control lines. The agronomic traits of two lines expressing WRKY45 driven by the OsUbi7 promoter (PO sUbi7 lines) were nearly comparable to those of untransformed rice, and both lines were pathogen resistant. Interestingly, excessive WRKY45 expression rendered rice plants sensitive to low temperature and salinity, and stress sensitivity was correlated with the induction of defence genes by these stresses. These negative effects were barely observed in the PO sUbi7 lines. Moreover, their patterns of defence gene expression were similar to those in plants primed by chemical defence inducers.


Subject(s)
Genes, Plant , Magnaporthe/pathogenicity , Oryza/microbiology , Transcription Factors/genetics , Xanthomonas/pathogenicity , Oryza/genetics , Promoter Regions, Genetic
13.
BMC Genet ; 15: 50, 2014 Apr 27.
Article in English | MEDLINE | ID: mdl-24767139

ABSTRACT

BACKGROUND: In genetic analysis of agronomic traits, quantitative trait loci (QTLs) that control the same phenotype are often closely linked. Furthermore, many QTLs are localized in specific genomic regions (QTL clusters) that include naturally occurring allelic variations in different genes. Therefore, linkage among QTLs may complicate the detection of each individual QTL. This problem can be resolved by using populations that include many potential recombination sites. Recently, multi-parent populations have been developed and used for QTL analysis. However, their efficiency for detection of linked QTLs has not received attention. By using information on rice, we simulated the construction of a multi-parent population followed by cycles of recurrent crossing and inbreeding, and we investigated the resulting genome structure and its usefulness for detecting linked QTLs as a function of the number of cycles of recurrent crossing. RESULTS: The number of non-recombinant genome segments increased linearly with an increasing number of cycles. The mean and median lengths of the non-recombinant genome segments decreased dramatically during the first five to six cycles, then decreased more slowly during subsequent cycles. Without recurrent crossing, we found that there is a risk of missing QTLs that are linked in a repulsion phase, and a risk of identifying linked QTLs in a coupling phase as a single QTL, even when the population was derived from eight parental lines. In our simulation results, using fewer than two cycles of recurrent crossing produced results that differed little from the results with zero cycles, whereas using more than six cycles dramatically improved the power under most of the conditions that we simulated. CONCLUSION: Our results indicated that even with a population derived from eight parental lines, fewer than two cycles of crossing does not improve the power to detect linked QTLs. However, using six cycles dramatically improved the power, suggesting that advanced intercrossing can help to resolve the problems that result from linkage among QTLs.


Subject(s)
Crosses, Genetic , Models, Genetic , Oryza/genetics , Quantitative Trait Loci , Computer Simulation , Genetic Drift , Genome, Plant , Inbreeding
14.
Int J Mol Sci ; 15(3): 4464-80, 2014 Mar 13.
Article in English | MEDLINE | ID: mdl-24633200

ABSTRACT

The application of combined nitrogen, especially nitrate, to soybean plants is known to strongly inhibit nodule formation, growth and nitrogen fixation. In the present study, we measured the effects of supplying 5 mM nitrate on the growth of nodules, primary root, and lateral roots under light at 28 °C or dark at 18 °C conditions. Photographs of the nodulated roots were periodically taken by a digital camera at 1-h intervals, and the size of the nodules was measured with newly developed computer software. Nodule growth was depressed approximately 7 h after the addition of nitrate under light conditions. The nodule growth rate under dark conditions was almost half that under light conditions, and nodule growth was further suppressed by the addition of 5 mM nitrate. Similar results were observed for the extending growth rate of the primary root as those for nodule growth supplied with 5 mM nitrate under light/dark conditions. In contrast, the growth of lateral roots was promoted by the addition of 5 mM nitrate. The 2D-PAGE profiles of nodule protein showed similar patterns between the 0 and 5 mM nitrate treatments, which suggested that metabolic integrity may be maintained with the 5 mM nitrate treatment. Further studies are required to confirm whether light or temperature condition may give the primary effect on the growth of nodules and roots.


Subject(s)
Glycine max/drug effects , Nitrates/pharmacology , Plant Roots/drug effects , Root Nodules, Plant/drug effects , Darkness , Dose-Response Relationship, Drug , Electrophoresis, Gel, Two-Dimensional , Light , Plant Proteins/metabolism , Plant Roots/growth & development , Plant Roots/metabolism , Root Nodules, Plant/growth & development , Root Nodules, Plant/metabolism , Glycine max/growth & development , Glycine max/metabolism , Symbiosis/drug effects , Temperature , Time-Lapse Imaging , Video Recording
15.
Plant Physiol ; 160(4): 1871-80, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23054566

ABSTRACT

Seed shape and size are among the most important agronomic traits because they affect yield and market price. To obtain accurate seed size data, a large number of measurements are needed because there is little difference in size among seeds from one plant. To promote genetic analysis and selection for seed shape in plant breeding, efficient, reliable, high-throughput seed phenotyping methods are required. We developed SmartGrain software for high-throughput measurement of seed shape. This software uses a new image analysis method to reduce the time taken in the preparation of seeds and in image capture. Outlines of seeds are automatically recognized from digital images, and several shape parameters, such as seed length, width, area, and perimeter length, are calculated. To validate the software, we performed a quantitative trait locus (QTL) analysis for rice (Oryza sativa) seed shape using backcrossed inbred lines derived from a cross between japonica cultivars Koshihikari and Nipponbare, which showed small differences in seed shape. SmartGrain removed areas of awns and pedicels automatically, and several QTLs were detected for six shape parameters. The allelic effect of a QTL for seed length detected on chromosome 11 was confirmed in advanced backcross progeny; the cv Nipponbare allele increased seed length and, thus, seed weight. High-throughput measurement with SmartGrain reduced sampling error and made it possible to distinguish between lines with small differences in seed shape. SmartGrain could accurately recognize seed not only of rice but also of several other species, including Arabidopsis (Arabidopsis thaliana). The software is free to researchers.


Subject(s)
Image Processing, Computer-Assisted/methods , Seeds/anatomy & histology , Software , Algorithms , Chromosome Mapping , Chromosomes, Plant/genetics , Crosses, Genetic , Inbreeding , Phenotype , Quantitative Trait Loci/genetics , Seeds/genetics
16.
Plant Physiol ; 158(3): 1208-19, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22209874

ABSTRACT

We identified a short-grain mutant (Short grain1 (Sg1) Dominant) via phenotypic screening of 13,000 rice (Oryza sativa) activation-tagged lines. The causative gene, SG1, encodes a protein with unknown function that is preferentially expressed in roots and developing panicles. Overexpression of SG1 in rice produced a phenotype with short grains and dwarfing reminiscent of brassinosteroid (BR)-deficient mutants, with wide, dark-green, and erect leaves. However, the endogenous BR level in the SG1 overexpressor (SG1:OX) plants was comparable to the wild type. SG1:OX plants were insensitive to brassinolide in the lamina inclination assay. Therefore, SG1 appears to decrease responses to BRs. Despite shorter organs in the SG1:OX plants, their cell size was not decreased in the SG1:OX plants. Therefore, SG1 decreases organ elongation by decreasing cell proliferation. In contrast to the SG1:OX plants, RNA interference knockdown plants that down-regulated SG1 and a related gene, SG1-LIKE PROTEIN1, had longer grains and internodes in rachis branches than in the wild type. Taken together, these results suggest that SG1 decreases responses to BRs and elongation of organs such as seeds and the internodes of rachis branches through decreased cellular proliferation.


Subject(s)
Brassinosteroids/metabolism , Oryza/growth & development , Oryza/genetics , Plant Proteins/metabolism , Amino Acid Sequence , Cell Proliferation , Cell Size , Gene Expression Regulation, Plant , Genes, Plant , Molecular Sequence Data , Oryza/metabolism , Phenotype , Plant Proteins/genetics , Plant Roots/genetics , Plant Roots/growth & development , Plant Roots/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , RNA Interference , Seeds/genetics , Seeds/growth & development , Seeds/metabolism
17.
Biotechnol Lett ; 35(11): 1945-52, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23873215

ABSTRACT

Long-lived mRNAs stored in mature seeds can remain active for long periods even if seeds undergo severe desiccation. They are then translated at the initiation of germination. To clarify the mechanism for stabilization of long-lived mRNAs during seed desiccation, fluctuations in RNA-binding protein (RBP) profiles that occur during seed formation in rice were analyzed. Proteomic analysis revealed that glycine-rich RBP 1A (GRP1A) is a highly abundant RBP in mature rice seeds. In addition, real-time RT-PCR analysis showed that putative RBP RZ-1A (RZ-1A) is seed specific. Moreover, transcripts of these two RBPs were clearly up-regulated during desiccation in rice seeds. The features of these two RBPs resemble those of late embryogenesis abundant proteins that function as molecular chaperones in dry seeds. Therefore, GRP1A and RZ-1A may have important roles in the stability of long-lived mRNAs in rice seeds.


Subject(s)
Desiccation , Oryza/chemistry , Oryza/growth & development , RNA-Binding Proteins/analysis , Seeds/chemistry , Amino Acid Sequence , Electrophoresis, Gel, Two-Dimensional , Electrophoresis, Polyacrylamide Gel , Gene Expression Profiling , Gene Expression Regulation , Molecular Sequence Data , Plant Proteins/analysis , Proteome/analysis , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
18.
Plant Biotechnol (Tokyo) ; 40(1): 1-8, 2023 Mar 25.
Article in English | MEDLINE | ID: mdl-38213927

ABSTRACT

Nitrogen (N) fertilization is one of the most crucial factors that contribute to increasing food production requiring the generation of rice cultivars with improved N use efficiency (NUE) to maintain yield during low N fertilizer application. To assay NUE extent, we developed a screening system to evaluate shoot growth of each rice cultivar under gradient changes in N concentrations. This system comprises a gradient hydroponic culture and growth visualization systems. The former allows gradient changes in ammonium concentrations, while the latter records the increment in shoot length of individual rice seedlings at given time periods using a fixed-point camera. We chose 69 cultivars including two controls (Oryza sativa L. cv. Nipponbare [WRC01] and Kasalath [WRC02]) from the World Rice Core Collection to investigate shoot growth responses under ammonium-sufficient, ammonium-limited, and low ammonium concentration gradients without transplanting stress. We observed three growth patterns in response to different ammonium concentrations. Subsequently, we selected three representative cultivars (Kasalath, WRC03, and WRC05) for the characteristic responses under the different ammonium environments. Distinct expression patterns of glutamine synthetase 1;2 (OsGS1;2) but OsGS1;1 were observed in response to varying ammonium concentration regimes, indicating that the expression patterns of OsGS1;2 may be a growth marker in terms of shoot growth when transitioning from ammonium-limited to low ammonium concentrations. This system with the level of OsGS1;2 allows us to screen for candidate cultivars that return high NUE in low N environments.

19.
Plant Cell Physiol ; 53(4): 687-98, 2012 Apr.
Article in English | MEDLINE | ID: mdl-22383627

ABSTRACT

Dry seeds contain translatable, long-lived mRNAs that are stored during seed maturation. Early studies using transcriptional inhibitors supported the view that protein synthesis during the initial phase of germination occurs on long-lived mRNA templates. Rice seeds were treated with the transcriptional inhibitor actinomycin D (Act D), and the embryonic proteins translated from long-lived mRNAs during germination were identified using a proteomic analysis. De novo transcription was not required for germination of rice seeds, since >80% of seeds germinated when transcription was prevented by treatment with Act D. In contrast, germination was completely inhibited in the presence of cycloheximide, an inhibitor of translation. Thus, de novo protein synthesis is necessary for germination of rice seeds. The proteomic analysis revealed that 20 proteins are up-regulated during germination, even after Act D treatment. Many of the up-regulated proteins are involved in carbohydrate metabolism and cytoskeleton formation. These results indicate that some of the germination-specific proteins involved in energy production and maintenance of cell structure in rice seeds are synthesized from long-lived mRNAs. The timing of translation of eight up-regulated proteins was clearly later than that of the other up-regulated proteins under conditions in which transcription was inhibited by Act D, suggesting that translation of long-lived mRNAs in rice seeds is regulated according to the germination phase.


Subject(s)
Oryza/genetics , Oryza/metabolism , Proteomics/methods , Seeds/genetics , Seeds/metabolism , Cyclopentanes/pharmacology , Gene Expression Regulation, Plant/drug effects , Germination/genetics , Germination/physiology , Oryza/drug effects , Oryza/physiology , Oxylipins/pharmacology , Seeds/drug effects , Seeds/physiology
20.
Proc Natl Acad Sci U S A ; 106(34): 14705-10, 2009 Aug 25.
Article in English | MEDLINE | ID: mdl-19706555

ABSTRACT

Phytochromes are believed to be solely responsible for red and far-red light perception, but this has never been definitively tested. To directly address this hypothesis, a phytochrome triple mutant (phyAphyBphyC) was generated in rice (Oryza sativa L. cv. Nipponbare) and its responses to red and far-red light were monitored. Since rice only has three phytochrome genes (PHYA, PHYB and PHYC), this mutant is completely lacking any phytochrome. Rice seedlings grown in the dark develop long coleoptiles while undergoing regular circumnutation. The phytochrome triple mutants also show this characteristic skotomorphogenesis, even under continuous red or far-red light. The morphology of the triple mutant seedlings grown under red or far-red light appears completely the same as etiolated seedlings, and they show no expression of the light-induced genes. This is direct evidence demonstrating that phytochromes are the sole photoreceptors for perceiving red and far-red light, at least during rice seedling establishment. Furthermore, the shape of the triple mutant plants was dramatically altered. Most remarkably, triple mutants extend their internodes even during the vegetative growth stage, which is a time during which wild-type rice plants never elongate their internodes. The triple mutants also flowered very early under long day conditions and set very few seeds due to incomplete male sterility. These data indicate that phytochromes play an important role in maximizing photosynthetic abilities during the vegetative growth stage in rice.


Subject(s)
Light , Oryza/radiation effects , Photoreceptors, Plant/physiology , Phytochrome/physiology , Cluster Analysis , Cotyledon/genetics , Cotyledon/growth & development , Cotyledon/radiation effects , Flowers/genetics , Flowers/growth & development , Flowers/radiation effects , Gene Expression Profiling , Gene Expression Regulation, Developmental/radiation effects , Gene Expression Regulation, Plant/radiation effects , Mutation , Oligonucleotide Array Sequence Analysis , Oryza/genetics , Oryza/growth & development , Phenotype , Photoreceptors, Plant/genetics , Phytochrome/genetics , Phytochrome A/genetics , Phytochrome A/physiology , Phytochrome B/genetics , Phytochrome B/physiology , Plant Infertility/genetics , Plant Infertility/radiation effects , Seedlings/genetics , Seedlings/growth & development , Seedlings/radiation effects , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL