Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 765
Filter
1.
Nature ; 620(7974): 634-642, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438525

ABSTRACT

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Subject(s)
Allergens , Avoidance Learning , Hypersensitivity , Mast Cells , Animals , Mice , Allergens/immunology , Avoidance Learning/physiology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Stomach/immunology , Vagotomy , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Th2 Cells/immunology , Cytokines/immunology , Leukotrienes/biosynthesis , Leukotrienes/immunology , Intestine, Small/immunology
2.
Nature ; 579(7800): 518-522, 2020 03.
Article in English | MEDLINE | ID: mdl-32214245

ABSTRACT

Carbonaceous (C-type) asteroids1 are relics of the early Solar System that have preserved primitive materials since their formation approximately 4.6 billion years ago. They are probably analogues of carbonaceous chondrites2,3 and are essential for understanding planetary formation processes. However, their physical properties remain poorly known because carbonaceous chondrite meteoroids tend not to survive entry to Earth's atmosphere. Here we report on global one-rotation thermographic images of the C-type asteroid 162173 Ryugu, taken by the thermal infrared imager (TIR)4 onboard the spacecraft Hayabusa25, indicating that the asteroid's boulders and their surroundings have similar temperatures, with a derived thermal inertia of about 300 J m-2 s-0.5 K-1 (300 tiu). Contrary to predictions that the surface consists of regolith and dense boulders, this low thermal inertia suggests that the boulders are more porous than typical carbonaceous chondrites6 and that their surroundings are covered with porous fragments more than 10 centimetres in diameter. Close-up thermal images confirm the presence of such porous fragments and the flat diurnal temperature profiles suggest a strong surface roughness effect7,8. We also observed in the close-up thermal images boulders that are colder during the day, with thermal inertia exceeding 600 tiu, corresponding to dense boulders similar to typical carbonaceous chondrites6. These results constrain the formation history of Ryugu: the asteroid must be a rubble pile formed from impact fragments of a parent body with microporosity9 of approximately 30 to 50 per cent that experienced a low degree of consolidation. The dense boulders might have originated from the consolidated innermost region or they may have an exogenic origin. This high-porosity asteroid may link cosmic fluffy dust to dense celestial bodies10.

3.
Nat Immunol ; 14(6): 554-63, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23624557

ABSTRACT

Microenvironment-based alterations in phenotypes of mast cells influence the susceptibility to anaphylaxis, yet the mechanisms underlying proper maturation of mast cells toward an anaphylaxis-sensitive phenotype are incompletely understood. Here we report that PLA2G3, a mammalian homolog of anaphylactic bee venom phospholipase A2, regulates this process. PLA2G3 secreted from mast cells is coupled with fibroblastic lipocalin-type PGD2 synthase (L-PGDS) to provide PGD2, which facilitates mast-cell maturation via PGD2 receptor DP1. Mice lacking PLA2G3, L-PGDS or DP1, mast cell-deficient mice reconstituted with PLA2G3-null or DP1-null mast cells, or mast cells cultured with L-PGDS-ablated fibroblasts exhibited impaired maturation and anaphylaxis of mast cells. Thus, we describe a lipid-driven PLA2G3-L-PGDS-DP1 loop that drives mast cell maturation.


Subject(s)
Group III Phospholipases A2/immunology , Mast Cells/immunology , Paracrine Communication/immunology , Prostaglandin D2/immunology , Receptors, Prostaglandin/immunology , Animals , Blotting, Western , Bone Marrow Cells/immunology , Bone Marrow Cells/metabolism , Cell Differentiation/genetics , Cell Differentiation/immunology , Cells, Cultured , Fibroblasts/cytology , Fibroblasts/immunology , Fibroblasts/metabolism , Gene Expression Profiling , Group III Phospholipases A2/genetics , Group III Phospholipases A2/metabolism , Humans , Intramolecular Oxidoreductases/genetics , Intramolecular Oxidoreductases/immunology , Intramolecular Oxidoreductases/metabolism , Lipocalins/genetics , Lipocalins/immunology , Lipocalins/metabolism , Mast Cells/metabolism , Mast Cells/ultrastructure , Mice , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Knockout , Microscopy, Electron, Transmission , Oligonucleotide Array Sequence Analysis , Paracrine Communication/genetics , Prostaglandin D2/metabolism , Receptors, Prostaglandin/genetics , Receptors, Prostaglandin/metabolism , Reverse Transcriptase Polymerase Chain Reaction
4.
Dev Biol ; 498: 97-105, 2023 06.
Article in English | MEDLINE | ID: mdl-37019373

ABSTRACT

Gse1 is a component of the CoREST complex that acts as an H3K4 and H3K9 demethylase and regulates gene expression. Here, we examined the expression and role of Gse1 in mouse development. Gse1 is expressed in male and female germ cells and plays both maternal and zygotic roles. Thus, maternal deletion of Gse1 results in a high incidence of prenatal death, and zygotic deletion leads to embryonic lethality from embryonic day 12.5 (E12.5) and perinatal death. Gse1 is expressed in the junctional zone and the labyrinth of the developing placenta. Gse1 mutant (Gse1Δex3/Δex3) placenta begins to exhibit histological defects from E14.5, being deficient in MCT4+ syncytiotrophoblast II. The number of various cell types was largely maintained in the mutant placenta at E10.5, but several genes were upregulated in giant trophoblasts at E10.5. Placenta-specific deletion of Gse1 with Tat-Cre suggested that defects in Gse1Δex3/Δex3 embryos are due to placental function deficiency. These results suggest that Gse1 is required for placental development in mice, and in turn, is essential for embryonic development.


Subject(s)
Placenta , Placentation , Mice , Pregnancy , Female , Animals , Male , Embryonic Development/genetics , Trophoblasts
5.
J Biol Chem ; 299(4): 104587, 2023 04.
Article in English | MEDLINE | ID: mdl-36889584

ABSTRACT

Dendritic cells (DCs) present foreign antigens to T cells via the major histocompatibility complex (MHC), thereby inducing acquired immune responses. ATP accumulates at sites of inflammation or in tumor tissues, which triggers local inflammatory responses. However, it remains to be clarified how ATP modulates the functions of DCs. In this study, we investigated the effects of extracellular ATP on mouse bone marrow-derived dendritic cells (BMDCs) as well as the potential for subsequent T cell activation. We found that high concentrations of ATP (1 mM) upregulated the cell surface expression levels of MHC-I, MHC-II, and co-stimulatory molecules CD80 and CD86 but not those of co-inhibitory molecules PD-L1 and PD-L2 in BMDCs. Increased surface expression of MHC-I, MHC-II, CD80, and CD86 was inhibited by a pan-P2 receptor antagonist. In addition, the upregulation of MHC-I and MHC-II expression was inhibited by an adenosine P1 receptor antagonist and by inhibitors of CD39 and CD73, which metabolize ATP to adenosine. These results suggest that adenosine is required for the ATP-induced upregulation of MHC-I and MHC-II. In the mixed leukocyte reaction assay, ATP-stimulated BMDCs activated CD4 and CD8T cells and induced interferon-γ (IFN-γ) production by these T cells. Collectively, these results suggest that high concentrations of extracellular ATP upregulate the expression of antigen-presenting and co-stimulatory molecules but not that of co-inhibitory molecules in BMDCs. Cooperative stimulation of ATP and its metabolite adenosine was required for the upregulation of MHC-I and MHC-II. These ATP-stimulated BMDCs induced the activation of IFN-γ-producing T cells upon antigen presentation.


Subject(s)
Dendritic Cells , T-Lymphocytes , Mice , Animals , Antigen Presentation , Lymphocyte Activation , Adenosine Triphosphate/metabolism
6.
Int J Cancer ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38688826

ABSTRACT

Mouse models are vital for assessing risk from environmental carcinogens, including ionizing radiation, yet the interspecies difference in the dose response precludes direct application of experimental evidence to humans. Herein, we take a mathematical approach to delineate the mechanism underlying the human-mouse difference in radiation-related cancer risk. We used a multistage carcinogenesis model assuming a mutational action of radiation to analyze previous data on cancer mortality in the Japanese atomic bomb survivors and in lifespan mouse experiments. Theoretically, the model predicted that exposure will chronologically shift the age-related increase in cancer risk forward by a period corresponding to the time in which the spontaneous mutational process generates the same mutational burden as that the exposure generates. This model appropriately fitted both human and mouse data and suggested a linear dose response for the time shift. The effect per dose decreased with increasing age at exposure similarly between humans and mice on a per-lifespan basis (0.72- and 0.71-fold, respectively, for every tenth lifetime). The time shift per dose was larger by two orders of magnitude in humans (7.8 and 0.046 years per Gy for humans and mice, respectively, when exposed at ~35% of their lifetime). The difference was mostly explained by the two orders of magnitude difference in spontaneous somatic mutation rates between the species plus the species-independent radiation-induced mutation rate. Thus, the findings delineate the mechanism underlying the interspecies difference in radiation-associated cancer mortality and may lead to the use of experimental evidence for risk prediction in humans.

7.
J Pharmacol Exp Ther ; 389(1): 76-86, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38290974

ABSTRACT

Mast cell stabilizers, including disodium cromoglycate (DSCG), were found to have potential as the agonists of an orphan G protein-coupled receptor, GPR35, although it remains to be determined whether GPR35 is expressed in mast cells and involved in suppression of mast cell degranulation. Our purpose in this study is to verify the expression of GPR35 in mast cells and to clarify how GPR35 modulates the degranulation. We explored the roles of GPR35 using an expression system, a mast cell line constitutively expressing rat GPR35, peritoneal mast cells, and bone marrow-derived cultured mast cells. Immediate allergic responses were assessed using the IgE-mediated passive cutaneous anaphylaxis (PCA) model. Various known GPR35 agonists, including DSCG and newly designed compounds, suppressed IgE-mediated degranulation. GPR35 was expressed in mature mast cells but not in immature bone marrow-derived cultured mast cells and the rat mast cell line. Degranulation induced by antigens was significantly downmodulated in the mast cell line stably expressing GPR35. A GPR35 agonist, zaprinast, induced a transient activation of RhoA and a transient decrease in the amount of filamentous actin. GPR35 agonists suppressed the PCA responses in the wild-type mice but not in the GPR35-/- mice. These findings suggest that GPR35 should prevent mast cells from undergoing degranulation induced by IgE-mediated antigen stimulation and be the primary target of mast cell stabilizers. SIGNIFICANCE STATEMENT: The agonists of an orphan G protein-coupled receptor, GPR35, including disodium cromoglycate, were found to suppress degranulation of rat and mouse mature mast cells, and their antiallergic effects were abrogated in the GPR35-/- mice, indicating that the primary target of mast cell stabilizers should be GPR35.


Subject(s)
Cromolyn Sodium , Mast Cell Stabilizers , Rats , Mice , Animals , Cromolyn Sodium/pharmacology , Mast Cell Stabilizers/pharmacology , Mast Cells , Receptors, G-Protein-Coupled/metabolism , Immunoglobulin E/metabolism , Immunoglobulin E/pharmacology , Cell Degranulation
8.
Hepatology ; 77(2): 395-410, 2023 02 01.
Article in English | MEDLINE | ID: mdl-34995376

ABSTRACT

BACKGROUND AND AIMS: Intrahepatic cholangiocarcinoma (ICC) is a deadly but poorly understood disease, and its treatment options are very limited. The aim of this study was to identify the molecular drivers of ICC and search for therapeutic targets. APPROACH AND RESULTS: We performed a Sleeping Beauty transposon-based in vivo insertional mutagenesis screen in liver-specific Pten -deficient mice and identified TNF receptor-related factor 3 ( Traf3 ) as the most significantly mutated gene in murine ICCs in a loss-of-function manner. Liver-specific Traf3 deletion caused marked cholangiocyte overgrowth and spontaneous development of ICC in Pten knockout and KrasG12D mutant mice. Hepatocyte-specific, but not cholangiocyte-specific, Traf3 -deficient and Pten -deficient mice recapitulated these phenotypes. Lineage tracing and single-cell RNA sequencing suggested that these ICCs were derived from hepatocytes through transdifferentiation. TRAF3 and PTEN inhibition induced a transdifferentiation-like phenotype of hepatocyte-lineage cells into proliferative cholangiocytes through NF-κB-inducing kinase (NIK) up-regulation in vitro. Intrahepatic NIK levels were elevated in liver-specific Traf3 -deficient and Pten -deficient mice, and NIK inhibition alleviated cholangiocyte overgrowth. In human ICCs, we identified an inverse correlation between TRAF3 and NIK expression, with low TRAF3 or high NIK expression associated with poor prognosis. Finally, we showed that NIK inhibition by a small molecule inhibitor or gene silencing suppressed the growth of multiple human ICC cells in vitro and ICC xenografts in vivo. CONCLUSIONS: TRAF3 inactivation promotes ICC development through NIK-mediated hepatocyte transdifferentiation. The oncogenic TRAF3-NIK axis may be a potential therapeutic target for ICC.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Humans , Mice , Animals , Signal Transduction/physiology , TNF Receptor-Associated Factor 3/genetics , TNF Receptor-Associated Factor 3/metabolism , Cell Transdifferentiation , Hepatocytes/metabolism , Receptors, Tumor Necrosis Factor/metabolism , Cholangiocarcinoma/genetics , Cholangiocarcinoma/metabolism , Bile Ducts, Intrahepatic/metabolism , Bile Duct Neoplasms/metabolism , NF-kappa B/metabolism , NF-kappaB-Inducing Kinase
9.
Hepatology ; 77(1): 77-91, 2023 01 01.
Article in English | MEDLINE | ID: mdl-35567547

ABSTRACT

BACKGROUND AND AIMS: Immunotherapy has become the standard-of-care treatment for hepatocellular carcinoma (HCC), but its efficacy remains limited. To identify immunotherapy-susceptible HCC, we profiled the molecular abnormalities and tumor immune microenvironment (TIME) of rapidly increasing nonviral HCC. APPROACHES AND RESULTS: We performed RNA-seq of tumor tissues in 113 patients with nonviral HCC and cancer genome sequencing of 69 genes with recurrent genetic alterations reported in HCC. Unsupervised hierarchical clustering classified nonviral HCCs into three molecular classes (Class I, II, III), which stratified patient prognosis. Class I, with the poorest prognosis, was associated with TP53 mutations, whereas class III, with the best prognosis, was associated with cadherin-associated protein beta 1 (CTNNB1) mutations. Thirty-eight percent of nonviral HCC was defined as an immune class characterized by a high frequency of intratumoral steatosis and a low frequency of CTNNB1 mutations. Steatotic HCC, which accounts for 23% of nonviral HCC cases, presented an immune-enriched but immune-exhausted TIME characterized by T cell exhaustion, M2 macrophage and cancer-associated fibroblast (CAF) infiltration, high PD-L1 expression, and TGF-ß signaling activation. Spatial transcriptome analysis suggested that M2 macrophages and CAFs may be in close proximity to exhausted CD8+ T cells in steatotic HCC. An in vitro study showed that palmitic acid-induced lipid accumulation in HCC cells upregulated PD-L1 expression and promoted immunosuppressive phenotypes of cocultured macrophages and fibroblasts. Patients with steatotic HCC, confirmed by chemical-shift MR imaging, had significantly longer PFS with combined immunotherapy using anti-PD-L1 and anti-VEGF antibodies. CONCLUSIONS: Multiomics stratified nonviral HCCs according to prognosis or TIME. We identified the link between intratumoral steatosis and immune-exhausted immunotherapy-susceptible TIME.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/metabolism , Multiomics , Prognosis , CD8-Positive T-Lymphocytes , Tumor Microenvironment
10.
Clin Genet ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38733153

ABSTRACT

Maturity-Onset Diabetes of the Young (MODY) is a diabetes mellitus subtype caused by a single gene. The detection rate of the responsible gene is 27% in the United Kingdom, indicating that the causative gene remains unknown in the majority of clinically diagnosed MODY cases. To improve the detection rate, we applied comprehensive genetic testing using whole exome sequencing (WES) followed by Multiplex Ligation-dependent Probe Amplification (MLPA) and functional analyses. Twenty-one unrelated Japanese participants with MODY were enrolled in the study. To detect copy number variations (CNVs), WES was performed first, followed by MLPA analysis for participants who were negative on the basis of WES. Undetermined variants were analyzed according to their functional properties. WES identified 7 pathogenic and 3 novel likely pathogenic variants in the 21 participants. Functional analyses revealed that 1 in 3 variants was pathogenic. MLPA analysis applied to the remaining 13 undetermined samples identified 4 cases with pathogenic CNVs: 3 in HNF4A and 1 in HNF1B. Pathogenic variants were identified in 12 participants (12/21, 57.1%) - relatively high rate reported to date. Notably, one-third of the participants had CNVs in HNF4A or HNF1B, indicating a limitation of WES-only screening.

11.
BMC Pulm Med ; 24(1): 214, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38698432

ABSTRACT

BACKGROUND: In western Yokohama, our hospital and primary care clinics manage adults with asthma via a coordinated care system. We investigated the changes in the fractional expired nitric oxide (FeNO), forced expiratory volume in 1 second (FEV1), and forced oscillation technique (FOT) parameters over 3 years in a cohort of patients in our collaborative system. METHODS: From 288 adults with well controlled asthma managed under the Yokohama Seibu Hospital coordinated care system between January 2009 and May 2018, we selected 99 subjects to undergo spirometry, FeNO and FOT testing over 3 years and analyzed the changes in these parameters. RESULTS: Of the 99 patients enrolled, 17 (17.2%) experienced at least one exacerbation (insufficiently controlled (IC)), whereas, 82 (82.8%) remained in well controlled during the 3-year study period. Of well-controlled patients, 54 patients (54.5%) met the criteria for clinical remission under treatment (CR); the remaining 28 patients did not meet the CR criteria (WC). There were no differences in FeNO, FEV1, or FOT parameters at baseline among the IC, WC, and CR groups. The levels of FEV1 decreased gradually, whereas the levels of FeNO decreased significantly over 3 years. The levels of percent predicted FEV1 (%FEV1) significantly increased. We also observed significant improvement in FOT parameters; reactance at 5 Hz (R5), resonant frequency (Fres), and integral of reactance up to the resonant frequency (AX). The CR group demonstrated significant relationships between the change in FeNO and the change in FEV1 and between the change in FEV1 and the change in FOT parameters. No significant correlations emerged in the IC or WC group. CONCLUSION: The decrease in FeNO and increase in %FEV1, we observed in all study participants suggest that the coordinated care system model benefits patients with asthma. Although it is difficult to predict at baseline which patients will experience an exacerbation, monitoring changes in FeNO and FEV1 is useful in managing patients with asthma. Furthermore, monitoring changes in R5, Fres, and AX via forced oscillation technique testing is useful for detecting airflow limitation.


Subject(s)
Asthma , Spirometry , Humans , Male , Female , Asthma/physiopathology , Asthma/therapy , Asthma/diagnosis , Forced Expiratory Volume , Middle Aged , Adult , Nitric Oxide/analysis , Nitric Oxide/metabolism , Aged , Fractional Exhaled Nitric Oxide Testing
12.
Odontology ; 2024 Feb 03.
Article in English | MEDLINE | ID: mdl-38308677

ABSTRACT

Dental drilling sounds can induce anxiety in some patients. This study aimed to use functional magnetic resonance imaging (fMRI) to assess the relationship between dental fear and auditory stimuli. Thirty-four right-handed individuals (21 women and 13 men; average age, 31.2 years) were selected. The level of dental fear was assessed using the dental fear survey (DFS). Based on a threshold DFS score > 52, participants were categorized into two groups: dental fear (DF) group (n = 12) and control group (n = 22). Two types of stimuli were presented in a single session: dental and neutral sounds. Cerebral activation during the presentation of these sounds was evaluated using contrast-enhanced blood oxygenation level-dependent fMRI. In the DF group, dental sounds induced significantly stronger activation in the left inferior frontal gyrus and left caudate nucleus (one-sample t test, P < 0.001). In contrast, in the control group, significantly stronger activation was observed in the bilateral Heschl's gyri and left middle frontal gyrus (one-sample t test, P < 0.001). Additionally, a two-sample t test revealed that dental sounds induced a significantly stronger activation in the left caudate nucleus in the DF group than in the control group (P < 0.005). These findings suggest that the cerebral activation pattern in individuals with DF differs from that in controls. Increased activation of subcortical regions may be associated with sound memory during dental treatment.

13.
J Anesth ; 2024 Mar 17.
Article in English | MEDLINE | ID: mdl-38494577

ABSTRACT

PURPOSE: Sodium-glucose cotransporter 2 inhibitors (SGLT2is) are commonly prescribed anti-diabetic medications with various beneficial effects; however, they have also been associated with ketoacidosis. The aim of this study was to determine the incidence of SGLT2i-associated perioperative ketoacidosis (SAPKA) in surgical patients. METHODS: We conducted a multicenter, prospective cohort study across 16 centers in Japan, enrolling surgical patients with diabetes who were prescribed SGLT2is between January 2021 and August 2022. Patients were monitored until the third postoperative day to screen for SAPKA, defined as urine ketone positivity with a blood pH of < 7.30 and HCO3 level ≤ 18.0 mEq/L, excluding cases of respiratory acidosis. RESULTS: In total, 759 of the 762 evaluated patients were included in the final analysis. Among these, three patients (0.40%) had urine ketones with a blood pH of < 7.30; however, blood gas analysis revealed respiratory acidosis in all three, and none of them was considered to have SAPKA. The estimated incidence of SGLT2i-associated postoperative ketoacidosis was 0% (95% confidence interval, 0%-0.4%). CONCLUSIONS: The observed incidence of SAPKA in our general surgical population was lower than expected. However, given that the study was observational in nature, interpretation of study results warrants careful considerations for biases.

14.
J Youth Adolesc ; 53(5): 1155-1170, 2024 May.
Article in English | MEDLINE | ID: mdl-38102531

ABSTRACT

During emerging adulthood, individuals' subjective well-being declines owing to challenges regarding identity, work, and romantic relationships. Although the relationships among personality traits, self-construal, and well-being have been examined, studies have focused on personal rather than relational subjective well-being. Furthermore, self-construal's moderating effect on the relationship between personality traits and subjective well-being remains unclear. Therefore, this study examined the relationships among the Big-five personality traits and subjective well-being (life satisfaction, happiness, and interdependent happiness) and the moderating effect of self-construal among 1548 Japanese emerging adults (Mage = 22.24, SD = 1.01). Regression analysis indicated that all aspects of subjective well-being were negatively associated with neuroticism and positively associated with extraversion, independent and interdependent self-construal. Further, agreeableness was positively associated with personal and relational well-being. Independent or interdependent self-construal can moderate the relationships between neuroticism, extraversion, and agreeableness and subjective well-being. Overall, these findings provide valuable insights for improving Japanese emerging adults' well-being.


Subject(s)
Happiness , Personality , Adult , Humans , Young Adult , Neuroticism , Regression Analysis
15.
Biochem Biophys Res Commun ; 657: 100-107, 2023 05 21.
Article in English | MEDLINE | ID: mdl-37001284

ABSTRACT

The mouse placenta is composed of three different trophoblast layers that are occupied by particular trophoblast subtypes to maintain placental function and pregnancy. Accurate control of trophoblast differentiation is required for proper placental function; however, the molecular mechanisms underlying cell fate decisions in trophoblast stem cells remain poorly understood. Epidermal growth factor (EGF) signaling is involved in multiple biological processes including cell survival, proliferation, and differentiation. The effect of EGF on trophoblast function has been reported in various species; however, the role of EGF signaling in mouse trophoblast specification remains unclear. In this study, we aimed to elucidate the role of EGF signaling in mouse trophoblast differentiation using mouse trophoblast stem cells (mTSCs) in an in vitro culture system. EGF stimulation at the early stage of differentiation repressed mTSC differentiation into spongiotrophoblast cells (SpT). Gene deletion and inhibitor experiments showed that the effect of EGF exposure went through epidermal growth factor receptor (Egfr) activity in mTSCs. EGF stimuli induced acute downstream activation of MAPK/ERK, PI3K/AKT, and JNK pathways, and inhibition of the MAPK/ERK pathway, but not others, alleviated EGF-mediated repression of SpT differentiation. Moreover, expression of Mash2, a master regulator of SpT differentiation, was repressed by EGF stimulation, and MAPK/ERK inhibition counteracted this repression. The Mash2 overexpression recovered SpT marker expression, indicating that the decrease in Mash2 expression was due to abnormal SpT differentiation in EGF-treated mTSCs. Our findings suggest that the EGF-Egfr-MAPK/ERK-Mash2 axis is a core regulatory mechanism for the EGF-mediated repression of SpT differentiation.


Subject(s)
Epidermal Growth Factor , Trophoblasts , Mice , Animals , Female , Pregnancy , Trophoblasts/metabolism , Epidermal Growth Factor/pharmacology , Epidermal Growth Factor/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Placenta/metabolism , ErbB Receptors/metabolism , Cell Differentiation/genetics , Stem Cells/metabolism
16.
Genes Cells ; 27(7): 505-511, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35430764

ABSTRACT

Pre-mRNA splicing imprints mRNAs by depositing multi-protein complexes, termed exon junction complexes (EJCs). The EJC core consists of four proteins, eIF4AIII, MLN51, Y14 and Magoh. Magoh is a human homolog of Drosophila mago nashi protein, which is involved in oskar mRNA localization in Drosophila oocytes. Here we determined the effects of Magoh mutations equivalent to those of Drosophila mago nashi mutant proteins that cause mis-localization of oskar mRNA. We found that Magoh I90T mutation caused mis-localization of Magoh protein in the cytoplasm by reducing its binding activity to Y14. On the other hand, G18R mutation did not affect its binding to Y14, but this mutation reduced its association with spliced mRNAs. Our results strongly suggest that Magoh mutations equivalent to Drosophila mago nashi mutants cause improper EJC formation by reducing incorporation of Magoh into EJC.


Subject(s)
Drosophila , Nuclear Proteins , Animals , Drosophila/genetics , Exons/genetics , Mutation , Nuclear Proteins/metabolism , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
17.
Hepatol Res ; 53(4): 301-311, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36507871

ABSTRACT

AIM: To determine the impact of direct-acting antiviral therapy on the long-term prognosis of decompensated cirrhotic patients. METHODS: A total of 37 patients with hepatitis C virus-induced decompensated cirrhosis treated with sofosbuvir and velpatasvir (SOF/VEL group) were prospectively enrolled. For historical control, 65 hepatitis C virus-positive decompensated cirrhotic patients who did not receive direct-acting antiviral therapy were included (control group). The incidence rates of hepatocellular carcinoma (HCC), decompensated events with hospitalization, and overall survival were compared between both groups. RESULTS: A total of 41 patients experienced decompensated events during 15.0 months in the control group, and six patients during 21.6 months in the SOF/VEL group. The cumulative incidence rates of decompensated events after 2 years were significantly higher in the control group (53.1%) than in the SOF/VEL group (14.5%; p < 0.001). A total of 27 patients died within 22.0 months in the control group, and three patients died within 25.6 months in the SOF/VEL group. The overall survival rates after 2 years were significantly lower in the control group (67.6%) than in the SOF/VEL group (91.3%; p = 0.010). A total of 13 patients in the control group developed HCC during 15.8 months, and 10 patients during 17.3 months in the SOF/VEL group. The HCC incidence rates after 2 years were 20.3% and 29.6% in the control and SOF/VEL groups, respectively, with no significant difference (p = 0.327). CONCLUSIONS: SOF/VEL therapy may suppress the development of decompensated events and improve the prognosis in decompensated cirrhotic patients; however, the incidence of HCC remains prevalent in these patients irrespective of SOF/VEL therapy.

18.
Blood Purif ; 52(4): 373-381, 2023.
Article in English | MEDLINE | ID: mdl-36521435

ABSTRACT

INTRODUCTION: Treating diabetic nephropathy with low-density lipoprotein (LDL) apheresis reduces proteinuria and improves prognosis. However, its impact on patients' quality of life (QoL) is unclear. This study evaluated the effect of LDL apheresis on QoL in patients with diabetes, proteinuria, and hypercholesterolemia. METHODS: In this nationwide multicenter prospective study, we enrolled 40 patients with diabetes. Inclusion criteria were proteinuria (defined as an albumin/creatinine ratio ≥3 g/g), serum creatinine levels <2 mg/dL, and serum LDL ≥120 mg/dL despite drug treatment. LDL apheresis was performed 6-12 times within 12 weeks. The 36-item Short Form Health Survey (SF-36) was used to analyze QoL. RESULTS: The study enrolled 35 patients (27 men and 8 women; mean age 58.9 ± 11.9 years). A comparison of baseline SF-36 values with those at the end of the course of apheresis found an improvement in the mean physical component summary (37.9 ± 11.4 vs. 40.6 ± 10.5, p = 0.051) and a significant increase in the mean mental component summary (MCS) (49.4 ± 8.4 vs. 52.5 ± 10.9, p = 0.026). A multivariable linear regression analysis revealed a history of coronary heart disease negatively correlated with the MCS increase at the end of the course of apheresis (ß coefficient -6.935, 95% confidence interval, 13.313 to-0.556, p = 0.034). CONCLUSION: Our results suggest that LDL apheresis may improve the mental and physical QoL in patients with diabetes, proteinuria, and hypercholesterolemia.


Subject(s)
Blood Component Removal , Diabetes Mellitus , Diabetic Nephropathies , Hypercholesterolemia , Male , Humans , Female , Middle Aged , Aged , Quality of Life , Prospective Studies , Blood Component Removal/methods , Lipoproteins, LDL , Proteinuria/therapy , Diabetic Nephropathies/therapy , Treatment Outcome , Diabetes Mellitus/therapy
19.
Endocr J ; 70(6): 629-634, 2023 Jun 28.
Article in English | MEDLINE | ID: mdl-37045781

ABSTRACT

Glucokinase is a glycolytic enzyme that catalyzes the phosphorylation of glucose to glucose-6-phospate in the first step of the glycolytic pathway. It also regulates the threshold for insulin secretion from pancreatic beta cells by catalyzing the phosphorylation of glucose and plays an important role as a glucose sensor. Pathogenic variants in the glucokinase gene (GCK) cause non-progressive but persistent mild fasting hyperglycemia, also recognized as maturity-onset diabetes of the young 2 (MODY2). This report presents the case of two Japanese siblings with MODY2, who were initially diagnosed with impaired glucose intolerance at 20 and 17 years of age, and later developed diabetes mellitus. They had no history of obesity, were negative for islet-related autoantibodies and their serum C-peptide level were within the normal range. Diabetic complications were not observed. Next-generation sequencing revealed a novel heterozygous variant in GCK (NM_000162.5: c.1088A>G, p.Asp363Gly) in both siblings. This variant has not been reported previously. In silico functional analyses, using SIFT and MutationTaster, suggested that the variant was damaging. To confirm the functional impact of the mutated GCK, the HiBiT-tagged p.Asp363Gly variant and the wild-type GCK were transiently expressed in HEK293T cells. The cells expressing the variant GCK exhibited 79% less bioluminescence, compared to those expressing the wild-type GCK, suggesting that the pathophysiology of the variant was a result of haploinsufficiency.


Subject(s)
Diabetes Mellitus, Type 2 , Glucokinase , Humans , Glucokinase/genetics , Glucokinase/metabolism , Mutation , East Asian People , HEK293 Cells , Siblings , Diabetes Mellitus, Type 2/genetics , Diabetes Mellitus, Type 2/diagnosis , Glucose
20.
Acta Med Okayama ; 77(6): 635-645, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38145938

ABSTRACT

In the management of post-injury patients with activity limitations, methods to prevent musculoskeletal disorders and hasten recovery are important. This randomized controlled, single-blinded study was a preliminary investigation of the combined effect of nutritional support with neuromuscular electrical stimulation (NMES) on muscle strength and thickness. Healthy young adult males (median age, 21 years) were enrolled; each of their hands was randomly assigned to one of the following four groups: Placebo, Nutrition, NMES, and Nutrition + NMES. All participants received whey protein or placebo (3x/week for 6 weeks) and NMES training (3x/week for 6 weeks) on the abductor digiti minimi (ADM) muscle of either the left or right hand. ADM muscle strength and thickness were analyzed at baseline and at week 7. We analyzed 38 hands (9 Placebo, 10 Nutrition, 9 NMES, 10 Nutrition + NMES). There was significantly greater muscle strengthening in the Nutrition + NMES group compared to the Placebo group or the NMES group, but no significant difference in gain of muscle thickness. The combined intervention may be effective in improving muscle strength. Future clinical trials targeting various muscles after sports-related injuries are warranted.


Subject(s)
Muscle, Skeletal , Nutritional Support , Male , Humans , Young Adult , Adult , Electric Stimulation/methods , Muscle Strength/physiology
SELECTION OF CITATIONS
SEARCH DETAIL