Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 135
Filter
1.
Small ; 18(44): e2204120, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36135780

ABSTRACT

Colloidal semiconductor CdSe nanoplatelets (NPLs) feature ultranarrow and anisotropic emissions. However, the optical performance of blue-emitting NPLs is deteriorated by trap states, currently exhibiting tainted emissions and inferior photoluminescence quantum yields (PLQYs). Here, near trap-free blue-emitting NPLs are achieved by the controlled growth of the core/crown. Deep trap states in NPLs can be partially suppressed with the asymmetrical crown growth and are further suppressed with the growth of the small core and the alloyed symmetrical crown, yielding NPLs with pure blue emissions and near-unity PLQYs. Exciton dynamic research based on these NPLs indicates that the trap emission stems from surface traps. Besides, light-emitting diodes exhibiting ultranarrow emission centered around 461 nm with full-width-at-half-maximums down to 11 nm are fabricated using these NPLs.

2.
Small ; 18(22): e2107161, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35527340

ABSTRACT

All-inorganic lead-free Cs3 Cu2 I5  perovskite-derivant quantum dots (QDs) have attracted tremendous attention due to their nontoxicity and unique optoelectronic properties. However, the traditional hot-injection method requires high temperatures and multiple ligands to confine the growth of QDs. Herein, a strategy is reported to spontaneously synthesize ultrasmall Cs3 Cu2 I5  QDs within metal-organic-frameworks (MOFs) MOF-74 at room temperature (RT) with an average diameter of 4.33 nm. The obtained Cs3 Cu2 I5  QDs exhibit an evident deep-blue emission with Commission Internationale de L'Eclairage coordinates of (0.17, 0.07), owing to the strong quantum confinement effect. Due to the protection of MOF-74, the Cs3 Cu2 I5  QDs demonstrate superior stability, and the photoluminescence quantum yield retains 89% of the initial value after the storage of 1440 h under the environment with relative humidity exceeding 70%. Besides, triplet-triplet annihilation upconversion emission is observed within the composite of Cs3 Cu2 I5 @MOF-74, which brings out apparent temperature-dependent photoluminescence. This study reveals a facile method for fabricating ultrasmall lead-free perovskite-derivant QDs at RT without multiple ligands. Besides, the temperature-dependent photoluminescence of Cs3 Cu2 I5 @MOF-74 may open up a new way to develop the applications of temperature sensors or other related optoelectronic devices.

3.
Biochem Cell Biol ; 99(5): 629-635, 2021 10.
Article in English | MEDLINE | ID: mdl-34460347

ABSTRACT

The PI3K/AKT pathway plays an important role in the development of osteosarcoma. RNF38 interferes with activation of the AKT pathway. Cryptochrome1 (CRY1) inhibits osteosarcoma proliferation through the AKT pathway. We aimed to clarify whether RNF38 affects the proliferation of osteosarcoma cells by regulating the PI3K/AKT pathway through its interaction with CRY1. The mRNA levels of RNF38 were determined using qRT-PCR. Protein levels of RNF38, p-p70S6, p70S6, +p-AKT, AKT, p-mTOR, mTOR, and CRY1 were detected by western blotting. The proliferation of osteosarcoma cells was detected using CCK-8 and colony formation assays. The interaction between CRY1 and RNF38 was detected by co-immunoprecipitation and GST pull-down assays. RNF38 expression was higher in Saos-2 and U20S cells than in hFOB cells. Overexpression of RNF38 promoted the proliferation of osteosarcoma cells, the number of colonies, and p-AKT and p-mTOR levels, suggesting that overexpression of RNF38 activated the PI3K/AKT pathway. In addition, RNF38 directly binds to the N-terminal of CRY1. The simultaneous knockdown of RNF38 and CRY1 restored the level of p-AKT, which was reduced by RNF38 knockdown alone. RNF38 affects the proliferation of osteosarcoma cells by regulating the PI3K/AKT pathway through its interaction with CRY1.


Subject(s)
Carrier Proteins/metabolism , Cryptochromes/metabolism , Osteosarcoma/metabolism , Binding Sites , Carrier Proteins/genetics , Cell Proliferation , Cells, Cultured , Humans , Osteosarcoma/pathology
4.
Mol Med ; 27(1): 127, 2021 10 15.
Article in English | MEDLINE | ID: mdl-34654365

ABSTRACT

OBJECTIVE: D-Serine is a crucial endogenous co-agonist of N-methyl-D-aspartate receptors (NMDARs) in the central nervous system and can affect the function of the brain derived neurotrophic factor (BDNF) system, which plays an essential role in modulating synaptic plasticity. The current study aimed to systematically evaluate the role and mechanisms of D-serine in depressive behavior in nucleus accumbens (NAc). METHODS: D-Serine concentration in the chronic social defeat stress (CSDS) model in NAc was measured using high-performance liquid chromatography (HPLC). The antidepressant-like effects of D-serine were identified using forced swim test (FST) and tail suspension test (TST) in control mice and then assessed in CSDS model. We applied social interaction and sucrose preference tests to identify the susceptibility of CSDS model. Western blotting was further performed to assess the changes of BDNF signaling cascade in NAc after CSDS and D-serine treatment. The BDNF signaling inhibitor (K252a) was also used to clarify the antidepressant-like mechanism of D-serine. Moreover, D-serine effects on synaptic plasticity in NAc were investigated using electrophysiological methods. RESULTS: D-Serine concentration was decreased in depression susceptible mice in NAc. D-Serine injections into NAc exhibited antidepressant-like effects in FST and TST without affecting the locomotor activity of mice. D-Serine was also effective in CSDS model of depression. Moreover, D-serine down-regulated the BDNF signaling pathway in NAc during CSDS procedure. Furthermore, BDNF signaling inhibitor (K252a) enhanced the antidepressant effects of D-serine. We also found that D-serine was essential for NMDARs-dependent long-term depression (LTD). CONCLUSION: D-Serine exerts antidepressant-like effects in mice mediated through restraining the BDNF signaling pathway and regulating synaptic plasticity in NAc.


Subject(s)
Brain-Derived Neurotrophic Factor/metabolism , Neuronal Plasticity/drug effects , Nucleus Accumbens/drug effects , Serine/pharmacology , Signal Transduction/drug effects , Animals , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Chromatography, High Pressure Liquid/methods , Depression/metabolism , Depression/physiopathology , Hindlimb/drug effects , Hindlimb/physiopathology , Hindlimb Suspension/physiology , Male , Mice, Inbred C57BL , Motor Activity/drug effects , Motor Activity/physiology , Nucleus Accumbens/metabolism , Nucleus Accumbens/physiology , Serine/metabolism , Stress, Psychological/metabolism , Stress, Psychological/physiopathology
5.
Anal Chem ; 93(27): 9495-9504, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34196181

ABSTRACT

Collisional electrochemistry between single particles and a biomimetic polarized micro-liquid/liquid interface has emerged as a novel and powerful analytical method for measurements of single particles. Using this platform, rapid detection of liposomes at the single particle level is reported herein. Individual potassium, sodium, or protonated dopamine-encapsulated (pristine or protein-decorated) liposomes collide and fuse with the polarized micro-liquid/liquid interface accompanying the release of ions, which are recorded as spike-like current transients of stochastic nature. The sizing and concentration of the liposomes can be readily estimated by quantifying the amount of encapsulated ions in individual liposomes via integrating each current spike versus time and the spike frequency, respectively. We call this type of nanosensing technology "Faradaic counter". The estimated liposome size distribution by this method is in line with the dynamic light scattering (DLS) measurements, implying that the quantized current spikes are indeed caused by the collisions of individual liposomes. The reported electrochemical sensing technology may become a viable alternative to DLS and other commercial nanoparticle analysis systems, for example, nanoparticle tracking analysis.


Subject(s)
Dopamine , Liposomes , Ions , Particle Size , Potassium , Sodium
6.
J Org Chem ; 86(17): 12344-12353, 2021 09 03.
Article in English | MEDLINE | ID: mdl-34370464

ABSTRACT

A green and efficient visible-light induced functionalization of anilines under mild conditions has been reported. Utilizing nontoxic, cost-effective, and water-soluble diacetyl as photosensitizer and acetylating reagent, and water as the solvent, a variety of anilines were converted into the corresponding aryl ketones, iodides, and bromides. With advantages of environmentally friendly conditions, simple operation, broad substrate scope, and functional group tolerance, this reaction represents a valuable method in organic synthesis.


Subject(s)
Aniline Compounds , Water , Acetylation , Catalysis , Molecular Structure
7.
Pattern Recognit ; 113: 107828, 2021 May.
Article in English | MEDLINE | ID: mdl-33495661

ABSTRACT

Understanding chest CT imaging of the coronavirus disease 2019 (COVID-19) will help detect infections early and assess the disease progression. Especially, automated severity assessment of COVID-19 in CT images plays an essential role in identifying cases that are in great need of intensive clinical care. However, it is often challenging to accurately assess the severity of this disease in CT images, due to variable infection regions in the lungs, similar imaging biomarkers, and large inter-case variations. To this end, we propose a synergistic learning framework for automated severity assessment of COVID-19 in 3D CT images, by jointly performing lung lobe segmentation and multi-instance classification. Considering that only a few infection regions in a CT image are related to the severity assessment, we first represent each input image by a bag that contains a set of 2D image patches (with each cropped from a specific slice). A multi-task multi-instance deep network (called M 2 UNet) is then developed to assess the severity of COVID-19 patients and also segment the lung lobe simultaneously. Our M 2 UNet consists of a patch-level encoder, a segmentation sub-network for lung lobe segmentation, and a classification sub-network for severity assessment (with a unique hierarchical multi-instance learning strategy). Here, the context information provided by segmentation can be implicitly employed to improve the performance of severity assessment. Extensive experiments were performed on a real COVID-19 CT image dataset consisting of 666 chest CT images, with results suggesting the effectiveness of our proposed method compared to several state-of-the-art methods.

8.
BMC Oral Health ; 21(1): 94, 2021 03 04.
Article in English | MEDLINE | ID: mdl-33663477

ABSTRACT

BACKGROUND: The present study aimed to quantitate the wear of the highly transparent Yttria-stabilized tetragonal zirconia polycrystals (Y-TZP) ceramic monolithic zirconia crown on the enamel in vivo and discuss the prone position of the wear and the underlying mechanism. METHODS: A total of 43 patients with 43 posterior teeth were selected for full zirconia crown restoration and examined immediately, at 6 months, and at 1 year after restoration. During the follow-up visit, the fine impression of the patients' monolithic zirconia crowns, the antagonist teeth, the corresponding contralateral natural teeth, the super plaster cast, and epoxy resin model was ontained. The model of epoxy resin was observed under a stereo microscope, and the microstructure parts were observed under a scanning electron microscope. RESULTS: After 1 year, the mean depth and volume of wearing of the monolithic zirconia crown were the smallest (all P < 0.01), while those of the antagonist teeth were significantly larger than those of the natural teeth (P < 0.0001), and no significant difference was found among the natural teeth (P = 0.3473, P = 0.6996). The amount of wear after one year was remarkably higher than that at 6 months (P < 0.0001). The microscopic observation revealed the tendency of wearing of the monolithic zirconia crown on the antagonist teeth at the protruding early contact points. Electron micrographs of tooth scars showed that the wearing mechanism of the monolithic zirconia crown on natural teeth was mainly abrasive and fatigue wear. CONCLUSIONS: Although the self-wearing is insignificant, the monolithic zirconia crown can cause wear of the antagonist teeth via occlusal or early contact significantly; the amount of wearing is higher than that of natural teeth and increases over time. The wearing mechanism is mainly abrasive and fatigue wear.


Subject(s)
Dental Restoration Wear , Tooth Wear , Crowns , Humans , Materials Testing , Zirconium
9.
J Cell Mol Med ; 24(3): 2319-2329, 2020 02.
Article in English | MEDLINE | ID: mdl-31880857

ABSTRACT

Cardiac fibrosis is a key factor to determine the prognosis in patient with myocardial infarction (MI). The aim of this study is to investigate whether the transcriptional factor paired-related homeobox 2 (Prrx2) regulates Wnt5a gene expression and the role in myocardial fibrosis following MI. The MI surgery was performed by ligation of left anterior descending coronary artery. Cardiac remodelling was assessed by measuring interstitial fibrosis performed with Masson staining. Cell differentiation was examined by analysis the expression of alpha-smooth muscle actin (α-SMA). Both Prrx2 and Wnt5a gene expressions were up-regulated in mice following MI, accompanied with increased mRNA and protein levels of α-SMA, collagen I and collagen III, compared to mice with sham surgery. Adenovirus-mediated gene knock down of Prrx2 increased survival rate, alleviated cardiac fibrosis, decreased infarction sizes and improved cardiac functions in mice with MI. Importantly, inhibition of Prrx2 suppressed ischaemia-induced Wnt5a gene expression and Wnt5a signalling. In cultured cardiac fibroblasts, TGF-ß increased gene expressions of Prrx2 and Wnt5a, and induced cell differentiations, which were abolished by gene silence of either Prrx2 or Wnt5a. Further, overexpression of Prrx2 or Wnt5a mirrored the effects of TGF-ß on cell differentiations of cardiac fibroblasts. Gene silence of Wnt5a also ablated cell differentiations induced by Prrx2 overexpression in cardiac fibroblasts. Mechanically, Prrx2 was able to bind with Wnt5a gene promoter to up-regulate Wnt5a gene expression. In conclusions, targeting Prrx2-Wnt5a signalling should be considered to improve cardiac remodelling in patients with ischaemic heart diseases.


Subject(s)
Fibrosis/genetics , Homeodomain Proteins/genetics , Myocardial Infarction/genetics , Up-Regulation/genetics , Wnt-5a Protein/genetics , Animals , Cell Differentiation/genetics , Collagen Type I/genetics , Collagen Type III/genetics , Fibroblasts/pathology , Gene Expression Regulation/genetics , Heart/physiology , Male , Mice , Myocardial Infarction/pathology , Myocardium/pathology , Myofibroblasts/pathology , Promoter Regions, Genetic/genetics , Signal Transduction/genetics , Transforming Growth Factor beta1/genetics
10.
IUBMB Life ; 72(10): 2194-2203, 2020 10.
Article in English | MEDLINE | ID: mdl-32780551

ABSTRACT

Microglia polarization is associated with the pathogenesis of depression. A previous study shows that long non-coding RNA uc.80- is down-regulated in the hippocampus of depressed rats. Thus, this article aims to investigate the role of uc.80- in microglia polarization in depression. We first established depression model rats by chronic unpredictable mild stress (CUMS) regiment. We found that hippocampus of depressed rats exhibited an increase of M1 microglias and a decrease of M2 microglias. uc.80- was down-regulated in hippocampus of depressed rats. Furthermore, the detection of behaviouristics of depressed rats showed that uc.80- overexpression alleviated depression of rats. In addition, uc.80- overexpression promoted M2 polarization of microglias in vivo and in vitro. uc.80- overexpression led to a decrease in apoptosis of hippocampal neurons in vivo and in vitro. In conclusion, our study confirms that lncRNA uc.80- overexpression ameliorates depression in rats by promoting M2 polarization of microglias. Thus, our work suggests that uc.80- may be a target gene for depression treatment.


Subject(s)
Depression/genetics , Hippocampus/pathology , Microglia/pathology , RNA, Long Noncoding/genetics , Animals , Apoptosis/drug effects , Apoptosis/genetics , Cells, Cultured , Culture Media, Conditioned/pharmacology , Depression/pathology , Disease Models, Animal , Gene Expression Regulation , Hippocampus/physiology , Male , Microglia/physiology , Neurons/pathology , Neurons/physiology , Rats, Sprague-Dawley , Stress, Psychological/genetics
11.
J Org Chem ; 85(23): 15638-15644, 2020 Dec 04.
Article in English | MEDLINE | ID: mdl-33118349

ABSTRACT

A novel and simple Z-alkene synthesis by the photocatalyzed coupling reactions of alkylpyridium salts, which were prepared from primary amines, with terminal aryl alkynes at room temperature is reported here. A wide range of primary amines, which contain different functional groups, were tolerated under these conditions. The mild reaction conditions, broad substrate scope, functional group tolerance, and operational simplicity make this deaminative coupling reaction a valuable method in organic syntheses.

12.
Analyst ; 145(5): 1641-1645, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-31965123

ABSTRACT

A completely water soluble azobenzene chemosensor 1 for selective detection of Hg2+ was synthesized. Taking advantage of the absorption changes corresponding to the transition moments polarized along the short axis of an azobenzene, 1 showed characteristic UV-Vis signal changes in the band around 240 nm for Hg2+ in wide pH ranges, which also showed good tolerance to various metal ions and photoirradiation. Upon addition of Hg2+ into the solution of 1, a favored formation of trans-1 was observed, which is attributed to an intramolecular coordination of the PEG chain and Nß to Hg2+ confirmed by a control experiment test.

13.
Chem Rec ; 19(8): 1768-1778, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31012993

ABSTRACT

Organic light-emitting diodes (OLEDs) have great potential applications in display and solid-state lighting. Stability, cost and high operational efficiency are key issues governing the future commercial application of OLEDs. In this context, searching for multifunctional emitting materials with acceptable light-emitting and charge-transporting characteristics has gained increasing attention. For achieving high-performance and low-cost OLEDs, the suitable molecular design featured with different electronic and optical nature should be incorporated by combining the advantages of both functional units into the same molecules. This review highlights recent and current advances in developing bifunctional or multifunctional molecules, with the focus on structures, properties, and applications in OLEDs and organic laser.

14.
Clin Exp Hypertens ; 41(8): 708-716, 2019.
Article in English | MEDLINE | ID: mdl-30472896

ABSTRACT

Objective: Vascular dementia is the second leading cause of dementia, which is strongly associated with diabetes. Ectopic expression of miR-133a in endothelial cells is involved in endothelial dysfunction in diabetes. Whether berberine, as a natural product in Coptis chinensis, improves vascular dementia induced by diabetes remains unknown.Methods: Diabetes and subsequent vascular dementia were induced in rats by injecting streptozotocin (50 mg/kg/day) for five consecutive days. The expression of miR-133a was determined by fluorescence in situ hybridization. The learning and memory were evaluated by step-down, step-through, and morris water maze (MWM) tests.Results: In streptozotocin-injected rats, hyperglycemia dramatically induced miR-133a ectopic expressions in vascular endothelium, reduced GTPCH1 gene expressions and BH4 levels, which were reversed by berberine administration (1.0 g/kg/day, 8 weeks). Hyperglycemia also inhibited acetylcholine-induced vasorelaxation in middle cerebral artery and reduced blood supply to the brain, which were bypassed by berberine. Ex vivo studies indicated that miR-133a agomirs abolished these beneficial effects of berberine on acetylcholine-induced vasorelaxation, while supplement of L-sepiapterin prevented endothelial dysfunction in middle cerebral artery isolated from rats. By performing step-down, step-through, and MWM tests, we observed that hyperglycemia significantly caused the impairments of learning and memory in streptozotocin-injected rats. Importantly, these aberrant phenotypes in diabetic rats were normalized by berberine therapy. Finally, berberine reduced miR-133a expression, and increased both BH4 levels and NO production in cultured endothelial cells treated with high glucose.Conclusion: Berberine improves vascular dementia in diabetes, which is possibly related to the suppression of miR-133a ectopic expression in endothelial cells.


Subject(s)
Berberine/pharmacology , Dementia, Vascular/prevention & control , Diabetes Mellitus, Experimental/genetics , Ectopic Gene Expression/drug effects , Endothelium, Vascular/metabolism , Memory/drug effects , MicroRNAs/genetics , Animals , Cells, Cultured , Dementia, Vascular/etiology , Dementia, Vascular/genetics , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , In Situ Hybridization, Fluorescence , Male , MicroRNAs/biosynthesis , Rats , Rats, Sprague-Dawley
15.
Biochem Biophys Res Commun ; 501(2): 501-506, 2018 06 22.
Article in English | MEDLINE | ID: mdl-29738767

ABSTRACT

OBJECTIVE: To explore the role of miR-411/FasL in acute spinal cord injury (ASCI). METHODS: The ASCI rat model was established, and expression of miR-411 and Fas ligand (FasL) was examined. Basso, Beattie and Bresnahan (BBB) score was used to evaluate the rats' neurological function. PC12 oxygen-glucose deprivation (OGD) model was also established. Gene manipulation (including miR-411 mimic or inhibitor) was used to modulate gene expression. Luciferase reporter assay was conducted to confirm the targeting relationship between miR-411 and FasL. Flow cytometry was applied in the measurement of PC12 cell apoptosis. Finally, the miR-411 mimic was injected into the vertebral canal of ASCI rats to determine the effects of miR-411 in vivo. RESULTS: Compared with sham group, the expression of miR-411 and FasL was significantly decreased and increased in ASCI group, respectively (P < 0.05). Similarly, the expression of miR-411 and FasL was significantly lower and higher in OGD group than that in control group, respectively (P < 0.05). miR-411 directly controlled the FasL expression. miR-411 mimic can dramatically reduce the increased percentage of apoptosis cells caused by OGD when comparing to mimic control, which was greatly reversed by the overexpression of FasL (P < 0.05). Further, the BBB score was significantly elevated in the miR-411 mimic group when comparing to mimic control group, with decreased FasL expression (P < 0.05). CONCLUSION: miR-411 mimic suppressed PC12 cell apoptosis via FasL, and relieved ASCI in rats.


Subject(s)
Down-Regulation , Fas Ligand Protein/genetics , MicroRNAs/genetics , Spinal Cord Injuries/genetics , Animals , Apoptosis , Disease Models, Animal , Gene Expression Regulation , Glucose/metabolism , Oxygen/metabolism , PC12 Cells , Rats , Spinal Cord Injuries/metabolism , Spinal Cord Injuries/pathology
16.
J Biomed Sci ; 25(1): 4, 2018 Jan 16.
Article in English | MEDLINE | ID: mdl-29338713

ABSTRACT

BACKGROUND: Aseptic loosening of artificial hip joint is a major complication affecting the long-term use of the artificial hip joint, and is the main cause of joint replacement failure. However, the mechanism of aseptic loosening of THR has not yet cleared. The aim of this study was to investigate the underlying mechanism of DANCR in osteoblast differentiation (OD). METHODS: We detected the expressions of DANCR and FOXO1 in clinical samples and mesenchymal stem cells (MSCs) by qRT-PCR and western blotting. The effects of polymethylmethacrylate (PMMA) on OD of MSCs were examined by alkaline phosphatase (ALP) activity and Alizarin Red S (ARS) staining. The expressions of OD markers were measured by qRT-PCR and western blotting. The mechanism of DANCR in OD was detected by RNA pull-down, RNA immunoprecipitation (RIP) assay and ubiquitination assays. RESULTS: Compared with the surrounding normal tissues, DANCR expression was up-regulated and FOXO1 expression was down-regulated in periprosthetic tissues. PMMA suppressed ALP activity, increased DANCR expression, and decreased the expressions of FOXO1, Runx2, Osterix (Ostx) and osteocalcin (OCN). ARS staining showed that PMMA inhibited the OD of MSCs. Knockdown of DANCR attenuated the inhibitory effect of PMMA on OD. Knockdown of FOXO1 could reverse the effect of si-DANC. RNA pull-down and RIP assay implicated that DANCR bound to FOXO1. Ubiquitination assay indicated that si-DANCR could repress Skp2-mediated ubiquitination of FOXO1. CONCLUSION: LncRNA DANCR could inhibit OD by regulating FOXO1 expression.


Subject(s)
Arthroplasty, Replacement, Hip/adverse effects , Forkhead Box Protein O1/genetics , Osteoblasts/physiology , Osteolysis/genetics , Postoperative Complications/physiopathology , RNA, Long Noncoding/genetics , Aged , Aged, 80 and over , Cell Differentiation , Female , Forkhead Box Protein O1/metabolism , Humans , Male , Mesenchymal Stem Cells/metabolism , Middle Aged , Osteolysis/etiology , Osteolysis/physiopathology , RNA, Long Noncoding/adverse effects
17.
J Org Chem ; 83(12): 6762-6768, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29768006

ABSTRACT

Efficient syntheses of 3,3-difluorooxindoles and 3-fluorooxindoles via fluorination of hydrazonoindolin-2-one with Selectfluor are reported. Under different solvent conditions, this method produced 3,3-difluorooxindoles and 3-fluorooxindoles selectively. The broad substrate scope and mild reaction conditions make this transformation a valuable method in drug discovery and development.

18.
Nanotechnology ; 29(39): 395204, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29972683

ABSTRACT

In this work, an atomic layer deposited (ALD) Al2O3 ultrathin layer was introduced to passivate the ZnO-nanoparticle (NP) buffer layer of inverted polymer solar cells (PSCs) based on P3HT:PCBM. The surface morphology of the ZnO-NP/Al2O3 interface was systematically analyzed by using a variety of tools, in particular transmission electron microscopy (TEM), evidencing a conformal ALD-Al2O3 deposition. The thickness of the Al2O3 layers was optimized at the nanoscale to boost electron transport of the ZnO-NP layer, which can be attributed to the suppression of oxygen vacancy defects in ZnO-NPs confirmed by photoluminescence measurement. The optimal inverted PSCs passivated by ALD-Al2O3 exhibited an ∼22% higher power conversion efficiency than the control devices with a pristine ZnO-NP buffer layer. The employment of the ALD-Al2O3 passivation layer with precisely controlled thickness provides a promising approach to develop high efficiency PSCs with novel polymer materials.

19.
Small ; 13(21)2017 06.
Article in English | MEDLINE | ID: mdl-28387470

ABSTRACT

In many 2D materials reported thus far, the forces confining atoms in a 2D plane are often strong interactions, such as covalent bonding. Herein, the first demonstration that hydrogen (H)-bonding can be utilized to assemble polydiacetylene (a conductive polymer) toward a 2D material, which is stable enough to be free-standing, is shown. The 2D material is well characterized by a large number of techniques (mainly different microscopy techniques). The H-bonding allows splitting of the material into ribbons, which can reassemble, similar to a zipper, leading to the first example of a healable 2D material. Moreover, such technology can easily create 2D, organic, conductive nanowire arrays with sub-2-nm resolution. This material may have potential applications in stretchable electronics and nanowire cross-bar arrays.

20.
Aging Clin Exp Res ; 28(1): 165-6, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26025463

ABSTRACT

Evidence has demonstrated that omega-3 fatty acids intake may be associated with age-related cognitive decline. However, randomized controlled trials (RCTs) have drawn inconsistent conclusions. We performed a meta-analysis to assess the association between omega-3 fatty acids and risk of cognitive decline in the elderly. A strategic literature search of PubMed, EMBASE, and Cochrane Library (updated to December 2014) was performed. We retrieved six randomized controlled studies as eligible for our meta-analysis. Among these six studies, the duration time ranged from 3 to 40 months. The dose of omega-3 fatty acids (DHA + EPA) ranged from 400 to 1800 mg. The result of our meta-analysis expressed that omega-3 fatty acids statistically decrease the rate of cognitive decline in MMSE score (WMD = 0.15, [0.05, 0.25]; p = 0.003). In conclusion, our meta-analysis indicated that omega-3 fatty acids may help to prevent cognitive decline in the elderly.


Subject(s)
Cognition Disorders , Fatty Acids, Omega-3 , Aged , Cognition Disorders/diagnosis , Cognition Disorders/metabolism , Cognition Disorders/prevention & control , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-3/pharmacology , Humans , Intelligence Tests , Randomized Controlled Trials as Topic , Risk Factors , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL