Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
1.
Fish Shellfish Immunol ; 150: 109596, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38692380

ABSTRACT

Streptococcosis, the most common bacterial disease of fish in recent years, is highly infectious and lethal, and has become an important factor hindering the healthy and sustainable development of aquaculture. Chicken egg yolk antibody (IgY) has the advantages of high antigen specificity, inexpensive and easy to obtain, simple preparation, no toxic side effects, and in line with animal welfare, which is a green and safe alternative to antibiotics. In this study, the potential of specific IgY in the treatment of gastrointestinal pathogens was explored by observing the effects of specific IgY on intestinal flora, pathological tissue, apoptosis, oxidative stress, and inflammatory response of tilapia. We used the specific IgY prepared in the early stage to feed tilapia for 10 days, and then the tilapia was challenged with Streptococcus agalactiae. The results showed that feeding IgY before challenge had a small effect on the intestinal flora, and after challenge specific IgY decreased the proportion of Streptococcus and increased the diversity of the intestinal flora; in histopathology, specific IgY decreased tissue damage and maintained the integrity of tissue structure. Further study found that specific IgY can reduce intestinal epithelial cell apoptosis and reduce caspase activity; at the same time, the content of MDA was decreased, and the activities of SOD, CAT, GSH-Px and GR were increased. In addition, specific IgY can down-regulate the expression levels of IL-8 and TNF-α genes and up-regulate the expression levels of IL-10 and TGF-Ɵ. The results of this study showed that specific IgY could improve the intestinal flora of tilapia infected with Streptococcus agalactiae, reduce intestinal cell apoptosis, oxidative stress injury and inflammatory response, thereby reducing tissue damage and protecting the health of tilapia. Overall, specific IgY can be further explored as a potential antibiotic alternative for gastrointestinal pathogen infections.


Subject(s)
Animal Feed , Apoptosis , Chickens , Cichlids , Fish Diseases , Gastrointestinal Microbiome , Immunoglobulins , Intestines , Oxidative Stress , Streptococcal Infections , Streptococcus agalactiae , Animals , Streptococcus agalactiae/physiology , Streptococcal Infections/veterinary , Streptococcal Infections/immunology , Oxidative Stress/drug effects , Apoptosis/drug effects , Immunoglobulins/immunology , Cichlids/immunology , Chickens/immunology , Fish Diseases/immunology , Gastrointestinal Microbiome/drug effects , Animal Feed/analysis , Intestines/immunology , Diet/veterinary , Egg Yolk/immunology , Egg Yolk/chemistry
2.
Fish Shellfish Immunol ; 149: 109474, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38513914

ABSTRACT

Grass carp hemorrhagic disease is a significant problem in grass carp aquaculture. It releases highly oxidizing hemoglobin (Hb) into tissues, induces rapid autooxidation, and subsequently discharges cytotoxic reactive oxygen species (ROS). However, the mechanism underlying Hb damage to the teleost remains unclear. Here, we employed ferrylHb and heme to incubate L8824 (grass carp liver) cells and quantitatively analyzed the corresponding molecular regulation using the RNA-seq method. Based on the RNA-seq analysis data, after 12Ā h of incubation of the L8824Ā cells with ferrylHb, a total of 3738 differentially expressed genes (DEGs) were identified, 1824 of which were upregulated, and 1914 were downregulated. A total of 4434 DEGs were obtained in the heme treated group, with 2227 DEGs upregulated and 2207 DEGs downregulated. KEGG enrichment analysis data revealed that the incubation of ferrylHb and heme significantly activated the pathways related to Oxidative Phosphorylation, Autophagy, Mitophagy and Protein Processing in Endoplasmic Reticulum. The genes associated with NF-κB, autophagy and apoptosis pathways were selected for further validation by quantitative real-time RT-PCR (qRT-PCR). The results were consistent with the RNA-seq data. Taken together, the incubation of Hb and heme induced the molecular regulation of L8824, which consequently led to programmed cell death through multiple pathways.


Subject(s)
Carps , Hemoglobins , Hepatocytes , Animals , Carps/immunology , Carps/genetics , Inflammation/veterinary , Inflammation/immunology , Cell Death , Fish Diseases/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Gene Expression Regulation/immunology , Gene Expression Regulation/drug effects
3.
Fish Shellfish Immunol ; 145: 109315, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38134975

ABSTRACT

In contrast to mammalian red blood cells (RBCs), Osteichthyes RBCs contain a nucleus and organelles, suggesting the involvement of more intricate mechanisms, particularly in the context of ferroptosis. In this study, we utilized RBCs from Clarias fuscus (referred to as Cf-RBCs) as a model system. We conducted RNA-seq analysis to quantify gene expression levels in Cf-RBCs after exposure to both Aeromonas hydrophila and lipopolysaccharides. Our analysis unveiled 1326 differentially expressed genes (DEGs) in Cf-RBCs following 4Ā h of incubation with A. hydrophila, comprising 715 and 611 genes with upregulated and downregulated expression, respectively. These DEGs were further categorized into functional clusters: 292 related to cellular processes, 241 involved in environmental information processing, 272 associated with genetic information processing, and 399 linked to organismal systems. Additionally, notable changes were observed in genes associated with the autophagy pathway at 4Ā h, and alterations in the ferroptosis pathway were observed at 8Ā h following A. hydrophila incubation. To validate these findings, we assessed the expression of cytokines (DMT1, TFR1, LC3, and GSS). All selected genes were significantly upregulated after exposure to A. hydrophila. Using flow cytometry, we evaluated the extent of ferroptosis, and the group incubated with A. hydrophila for 8Ā h exhibited higher levels of lipid peroxidation compared with the 4-h incubation group, even under baseline conditions. An evaluation of the glutathione redox system through GSSG/GSH ratios indicated an increased ratio in Cf-RBCs after exposure to A. hydrophila. In summary, our data suggest that A. hydrophila may induce ferroptosis in Cf-RBCs, potentially by triggering the cystine/glutamate antiporter system (system XC-), while Cf-RBCs counteract ferroptosis through the regulation of the glutathione redox system. These findings contribute to our understanding of the iron overload mechanism in Osteichthyes RBCs, provide insights into the management of bacterial diseases in Clarias fuscus, and offer potential strategies to mitigate economic losses in aquaculture.


Subject(s)
Aeromonas hydrophila , Gram-Negative Bacterial Infections , Animals , Aeromonas hydrophila/physiology , Apoptosis , Erythrocytes , Glutathione , Gram-Negative Bacterial Infections/microbiology , Mammals
4.
Fish Shellfish Immunol ; 154: 109923, 2024 Sep 24.
Article in English | MEDLINE | ID: mdl-39326687

ABSTRACT

IgY is an immunoglobulin primarily found in the serum and egg yolk of birds, amphibians, and reptiles. Recent years, IgY is considered to have a good application prospect in the immunodiagnostics and passive immunotherapy of aquatic diseases. In this study, we prepared a specific IgY against Streptococcus agalactiae in tilapia after immunizing the hens for 4 times. The result of ELISA detection showed that the IgY titers in water-soluble fraction (WSF) after 6 weeks of immunization reached 1:51200 and last for 4 weeks. Western blot (WB) analysis data showed that the specific IgY could recognize the target band, the specific IgY showed a concentration-dependent inhibitory effect on the growth of S. agalactiae, altered cell wall structure and aggluted of S. agalactiae. The quantitative reverse transcription PCR (qRT-PCR) analysis data suggested that the specific IgY downregulated the expression of pro-inflammatory factors (IL-8, TNF-α), upregulated the anti-inflammatory factors (IL-10, TGF-Ɵ). In addition, the histopathological results showed that the specific IgY significantly decreased the pathological manifestations, dramatically improved the survival rates of tilapia in injection, feeding, and immersion experiments. Collectively, our findings demonstrated that the broad potential of specific IgY for the prevention and treatment of S. agalactiae infection in tilapia.

5.
Fish Shellfish Immunol ; 150: 109603, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38704112

ABSTRACT

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.


Subject(s)
Carps , Fish Diseases , Hemolysis , Animals , Carps/immunology , Fish Diseases/immunology , Phenylhydrazines/adverse effects , Phenylhydrazines/toxicity , Kidney Diseases/veterinary , Kidney Diseases/etiology , Kidney Diseases/immunology , Kidney/immunology , Kidney/drug effects , Oxidative Stress/drug effects
6.
Fish Shellfish Immunol ; 149: 109526, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38554743

ABSTRACT

In teleost blood, red blood cells (RBCs) are the most common type of cell, and they differ from mammalian RBCs in having a nucleus and other organelles. As nucleated cells, teleost RBCs contribute to the immune response against pathogens, but their antibacterial mechanism remains unclear. Here, we utilized RNA-Seq to analyze gene expression patterns of grass carp (Ctenopharyngodon idellus) RBCs (GcRBCs) stimulated by Aeromonas hydrophila, Escherichia coli, and Staphylococcus aureus. Our transcriptomic data showed that bacterial stimulation generated many differentially expressed genes (DEGs). Furthermore, several inflammatory pathways responded to bacterial activation, and the TLR, IL-17, and tumor necrosis factor (TNF) signaling pathways were significantly activated based on Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, the findings of qRT-PCR showed markedly elevated expression of various cytokines, including IL-1Ɵ, IL4, IL6, IL8, IL12, and TNFα, in GcRBCs after incubation with bacteria. Reactive oxygen species (ROS) production in GcRBCs was markedly increased after the cells were stimulated with the three bacteria, and the expression of superoxide dismutase, glutathione peroxidase, and antioxidant enzymes, including catalase, was altered. Flow cytometry analysis showed that the apoptosis rate of GcRBCs was enhanced after stimulation with the three bacteria for different times. In summary, our findings reveal that bacterial stimulation activates the immune response of GcRBCs by regulating ROS release, cytokine expression, and the antioxidant system, leading to apoptosis of GcRBCs.


Subject(s)
Aeromonas hydrophila , Carps , Erythrocytes , Escherichia coli , Fish Diseases , Gram-Negative Bacterial Infections , Immunity, Innate , Animals , Carps/immunology , Carps/genetics , Fish Diseases/immunology , Erythrocytes/immunology , Aeromonas hydrophila/physiology , Immunity, Innate/genetics , Escherichia coli/immunology , Escherichia coli/physiology , Gram-Negative Bacterial Infections/immunology , Gram-Negative Bacterial Infections/veterinary , Staphylococcus aureus/physiology , Staphylococcus aureus/immunology , Fish Proteins/genetics , Fish Proteins/immunology , Staphylococcal Infections/immunology , Staphylococcal Infections/veterinary , Transcriptome/immunology , Escherichia coli Infections/immunology , Escherichia coli Infections/veterinary
7.
Lipids Health Dis ; 23(1): 21, 2024 Jan 22.
Article in English | MEDLINE | ID: mdl-38254149

ABSTRACT

BACKGROUND: Moyamoya disease (MMD) has attracted the attention of scholars because of its rarity and unknown etiology. METHODS: Data for this study were sourced from the Second Affiliated Hospital of Nanchang University. Regression analyses were conducted to examine the association in Lipoprotein [Lp(a)] and MMD. R and IBM SPSS were conducted. RESULTS: A cohort comprising 1012 MMD patients and 2024 controls was established through the propensity score matching method. Compared with controls, MMD patients showed higher median Lp(a) concentrations [18.5 (9.6-37.8) mg/dL vs. 14.9 (7.8-30.5) mg/dL, P < 0.001]. The odds ratios and 95% confidence intervals for Lp(a) were calculated in three models: unadjusted model, model 1 (adjusted for body mass index and systolic blood pressure), and model 2 (adjusted for model 1 plus triglyceride, C-reactive protein, homocysteine, and low-density lipoprotein cholesterol). Results were [1.613 (1.299-2.002), P < 0.001], [1.598 (1.286-1.986), P < 0.001], and [1.661 (1.330-2.074), P < 0.001], respectively. Furthermore, age, sex, or hypertension status had nothing to do with this relationship. CONCLUSIONS: Positive relationship exists between Lp(a) and MMD.


Subject(s)
Lipoprotein(a) , Moyamoya Disease , Humans , Moyamoya Disease/genetics , Body Mass Index , C-Reactive Protein
8.
Molecules ; 29(7)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38611780

ABSTRACT

This study investigates the synthesis of mesophase pitch using low-cost fluid catalytic cracking (FCC) slurry and waste fluid asphaltene (WFA) as raw materials through the co-carbonization method. The resulting mesophase pitch product and its formation mechanism were thoroughly analyzed. Various characterization techniques, including polarizing microscopy, softening point measurement, Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA), were employed to characterize and analyze the properties and structure of the mesophase pitch. The experimental results demonstrate that the optimal optical texture of the mesophase product is achieved under specific reaction conditions, including a temperature of 420 Ā°C, pressure of 1 MPa, reaction time of 6 h, and the addition of 2% asphaltene. It was observed that a small amount of asphaltene contributes to the formation of mesophase pitch spheres, facilitating the development of the mesophase. However, excessive content of asphaltene may cover the surface of the mesophase spheres, impeding the contact between them and consequently compromising the optical texture of the mesophase pitch product. Furthermore, the inclusion of asphaltene promotes polymerization reactions in the system, leading to an increase in the average molecular weight of the mesophase pitch. Notably, when the amount of asphaltene added is 2%, the mesophase pitch demonstrates the lowest ID/IG value, indicating superior molecular orientation and larger graphite-like microcrystals. Additionally, researchers found that at this asphaltene concentration, the mesophase pitch exhibits the highest degree of order, as evidenced by the maximum diffraction angle (2ƎĀø) and stacking height (Lc) values, and the minimum d002 value. Moreover, the addition of asphaltene enhances the yield and aromaticity of the mesophase pitch and significantly improves the thermal stability of the resulting product.

9.
Soft Matter ; 19(7): 1407-1417, 2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36723259

ABSTRACT

In this study, a facile one-pot strategy was developed to prepare porous polymeric microspheres via photopolymerization, where organic solvents functioned as porogens. In this strategy, an oil phase containing organic solvents and photopolymerizable materials was stabilized in water to form a stable oil-in-water emulsion. Upon UV irradiation, the photopolymerizable materials (photosensitive monomers/photosensitive prepolymers) underwent polymerization to form microspheres and the subsequent removal of organic solvents left pores in microspheres, leading to the generation of porous polymeric microspheres with high yielding. The effects of organic solvents and the chemical structure and concentration of photopolymerizable materials on the microsphere structure were systematically explored. It was found that the polarity of the organic solvents played a decisive role in the preparation of porous microspheres. In addition, the increases in the solvent content and functionalities of photopolymerizable materials were more favorable for the generation of porous microspheres. This strategy could be applicable for a wide selection of photopolymerizable materials, which endowed this strategy with good applicability. The preparation of porous microspheres by this method was facile and easy to handle, enabling the scalable preparation of porous microspheres. In addition, the whole process can be completed within a few minutes at ambient temperature, which was time-saving and energy-saving.

10.
J Sci Food Agric ; 103(12): 6055-6069, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37127927

ABSTRACT

BACKGROUND: Actinidia eriantha is one of the most important kiwifruit species in Actinidia. The relative high accumulation of organic acids in fruit of A. eriantha is an unfavorable factor for organoleptic quality. To identify key metabolic enzymes and genes involved in organic acids accumulation during fruit development, physiological, biochemical, and molecular experiments were conducted for the dynamic fruit samples of a new kiwifruit cultivar, A. eriantha 'Ganlv 1'. RESULTS: The contents of citric acid and malic acid increased greatly during fruit development, while quinic acid content decreased obviously. Significant positive correlations were observed between fruit titratable acidity and the contents of both citric acid and malic acid, and a significant negative correlation was found between fruit titratable acidity and the quinic acid content. The high accumulation of citric acid was found to be caused by the increased activity of citrate synthase (CS), and the decreased activities of two degradation-related enzymes, mitochondrial aconitase and nicotinamide adenine dinucleotide (NAD)-dependent isocitrate dehydrogenase. In addition, the accumulation of malic acid depended mainly on the increased synthesis catalyzed by NAD-dependent malate dehydrogenase (NAD-MDH) and phosphoenolpyruvate carboxylase. Further analysis suggested that AeCS2 and AeMDH2 played pivotal roles in controlling the activities of CS and NAD-MDH respectively. CONCLUSION: The high accumulation level of citric acid relied on both the strong synthesis ability and the weak degradation ability. The accumulation level of malic acid was mainly affected by the synthesis. The novel information would be helpful for our understanding of the formation of fruit acidity quality. Ā© 2023 Society of Chemical Industry.


Subject(s)
Actinidia , Fruit , Actinidia/genetics , Actinidia/metabolism , Citric Acid/metabolism , NAD/metabolism , Quinic Acid/metabolism , Acids/metabolism
11.
Omega (Westport) ; : 302228231224550, 2023 Dec 28.
Article in English | MEDLINE | ID: mdl-38152874

ABSTRACT

Understanding the current status and challenges of bereavement care will help facilitate the development of bereavement care in the emergency department. However, little is known about the status of bereavement care in Chinese emergency departments and nurses' perceptions of bereavement care. We used a self-made questionnaire to survey 124 head nurses and 870 emergency nurses in 21 hospitals in Jiangsu Province in September 2023. Among 124 emergency departments, 78 (62.90%) emergency departments provided bereavement care strategies, and the most frequent strategy was a waiting room, relevant information on funeral arrangements and the establishment of a relatively secluded environment conducive to the solace of the patient's family, or the provision of a dedicated farewell chamber. Emergency nurses believed that bereavement care is important but difficult to implement, with support resources, environment and human resources being the main challenges. In the future, further attention should be paid to the development of bereavement care in the emergency department, and the implementation of bereavement care should be supported in terms of policies, funds, resources and personnel.

12.
BMC Genomics ; 23(1): 179, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-35247966

ABSTRACT

BACKGROUND: The TIFY gene family is a group of plant-specific transcription factors involved in regulation of plant growth and development and a variety of stress responses. However, the TIFY family has not yet been well characterized in kiwifruit, a popular fruit with important nutritional and economic value. RESULTS: A total of 27 and 21 TIFY genes were identified in the genomes of Actinidia eriantha and A. chinensis, respectively. Phylogenetic analyses showed that kiwifruit TIFY genes could be classified into four major groups, JAZ, ZML, TIFY and PPD, and the JAZ group could be further clustered into six subgroups (JAZ I to JAZ VI). Members within the same group or subgroup have similar exon-intron structures and conserved motif compositions. The kiwifruit TIFY genes are unevenly distributed on the chromosomes, and the segmental duplication events played a vital role in the expansion of the TIFY genes in kiwifruit. Syntenic analyses of TIFY genes between kiwifruit and other five plant species (including Arabidopsis thaliana, Camellia sinensis, Oryza sativa, Solanum lycopersicum and Vitis vinifera) and between the two kiwifruit species provided valuable clues for understanding the potential evolution of the kiwifruit TIFY family. Molecular evolutionary analysis showed that the evolution of kiwifruit TIFY genes was primarily constrained by intense purifying selection. Promoter cis-element analysis showed that most kiwifruit TIFY genes possess multiple cis-elements related to stress-response, phytohormone signal transduction and plant growth and development. The expression pattern analyses indicated that TIFY genes might play a role in different kiwifruit tissues, including fruit at specific development stages. In addition, several TIFY genes with high expression levels during Psa (Pseudomonas syringae pv. actinidiae) infection were identified, suggesting a role in the process of Pas infection. CONCLUSIONS: In this study, the kiwifruit TIFY genes were identified from two assembled kiwifruit genomes. In addition, their basic physiochemical properties, chromosomal localization, phylogeny, gene structures and conserved motifs, synteny analyses, promoter cis-elements and expression patters were systematically examined. The results laid a foundation for further understanding the function of TIFY genes in kiwifruit, and provided a new potential approach for the prevention and treatment of Psa infection.


Subject(s)
Actinidia , Actinidia/genetics , Fruit/genetics , Fruit/metabolism , Gene Expression Profiling/methods , Gene Expression Regulation, Plant , Multigene Family , Phylogeny , Plant Proteins/metabolism
13.
Genome ; 65(11): 537-545, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-35944282

ABSTRACT

The 12-oxophytoeienoic acid reductase (OPR) is a kind of enzyme in the octadecanoid biosynthesis pathway that determines the biosynthesis of jasmonic acid. Although the roles of OPRs have been extensively studied in several crop plants, little is known about the biological functions of OPR-encoding genes in Capsicum annuum plants. In this study, seven OPR family genes (CaOPR1-7) were identified from the C. annuum genome. The physical and chemical properties of CaOPR1-7 were further analyzed, including gene expression patterns, promoter elements, and chromosomal locations. The results showed that the seven CaOPR homologues could be divided into two subgroups, and CaOPR6 was highly similar to AtOPR3 in Arabidopsis. The expression of CaOPR6 was significantly induced by various stresses such as cold, salt, and pathogen infection, indicating that CaOPR6 plays important roles in response to abiotic and biotic stresses. Overall, these findings improve the understanding of the biological functions of CaOPR6 in the development of pepper fruit and stress response of pepper plants, and facilitate further studies on the molecular biology of OPR proteins in Solanaceae vegetables.


Subject(s)
Arabidopsis , Capsicum , Capsicum/genetics , Capsicum/metabolism , Gene Expression Regulation, Plant , Plant Proteins/genetics , Plant Proteins/metabolism , Oxidoreductases/genetics , Oxidoreductases/metabolism , Fruit/genetics , Fruit/metabolism , Phylogeny , Arabidopsis/genetics , Plants
14.
Lipids Health Dis ; 21(1): 119, 2022 Nov 14.
Article in English | MEDLINE | ID: mdl-36376975

ABSTRACT

BACKGROUND AND AIMS: The role of serum lipoprotein(a) [Lp(a)] levels in atrial fibrillation (AF) is still uncertain, especially in the Chinese population. Here, we aimed to elucidate the potential relationship between Lp(a) quantiles and AF. METHODS: All data were collected through inpatients with electronic health records from the Second Affiliated Hospital of Nanchang University, Jiangxi Province, China. The propensity score matching (PSM) method was used to match control and case groups. Interactions between AF, Lp(a) quantiles, and other clinical indices were analyzed by logistic regression and stratified analysis. Statistical analyses were performed with IBM SPSS statistical software and R software. RESULTS: From 2017 to 2021, 4,511 patients with AF and 9,022 patients without AF were 1:2 matched by the propensity score matching method. A total of 46.9% of the study group was women, and the baseline mean age was 65Ā years. The AF group exhibited lower median Lp(a) than the non-AF group (15.95 vs. 16.90Ā mg/dL; P < 0.001). Based on the Lp(a) quantiles, the study population was divided into four groups: Q1 (≤ 8.71Ā mg/dL), Q2 (8.71-16.54Ā mg/dL), Q3 (16.54-32.42Ā mg/dL) and Q4 (> 32.42Ā mg/dL). The AF prevalence of each group decreased from 34.2% (Q1) to 30.9% (Q4) (P < 0.001). Lp(a) quantiles 1-3 significantly increased AF to 1.162-fold (1.049-1.286), 1.198-fold (1.083-1.327), and 1.111-fold (1.003-1.231) in the unadjusted logistic regression model, respectively. In the adjusted model, Lp(a) < 32.42Ā mg/dL still showed a significant inverse association with AF. In the stratified analysis, Lp(a) levels in female patients exhibited a significant negative correlation with AF (OR of Q1: 1.394[1.194-1.626], P = 0.001). Age and hypertension did not affect the adverse correlation. CONCLUSION: Low circulating Lp(a) levels were associated with AF, especially in the female Han population, suggesting that Lp(a) may be useful for risk stratification of AF in female individuals.


Subject(s)
Atrial Fibrillation , Hypertension , Humans , Female , Aged , Lipoprotein(a) , Retrospective Studies , Prevalence , Risk Factors
15.
Int J Mol Sci ; 23(18)2022 Sep 06.
Article in English | MEDLINE | ID: mdl-36142128

ABSTRACT

Actinidia eriantha is a unique germplasm resource for kiwifruit breeding. Genetic diversity and nutrient content need to be evaluated prior to breeding. In this study, we looked at the metabolites of three elite A. eriantha varieties (MM-11, MM-13 and MM-16) selected from natural individuals by using a UPLC-MS/MS-based metabolomics approach and transcriptome, with a total of 417 metabolites identified. The biosynthesis and metabolism of phenolic acid, flavonoids, sugars, organic acid and AsA in A. eriantha fruit were further analyzed. The phenolic compounds accounted for 32.37% of the total metabolites, including 48 phenolic acids, 60 flavonoids, 7 tannins and 20 lignans and coumarins. Correlation analysis of metabolites and transcripts showed PAL (DTZ79_15g06470), 4CL (DTZ79_26g05660 and DTZ79_29g0271), CAD (DTZ79_06g11810), COMT (DTZ79_14g02670) and FLS (DTZ79_23g14660) correlated with polyphenols. There are twenty-three metabolites belonging to sugars, the majority being sucrose, glucose arabinose and melibiose. The starch biosynthesis-related genes (AeglgC, AeglgA and AeGEB1) were expressed at lower levels compared with metabolism-related genes (AeamyA and AeamyB) in three mature fruits of three varieties, indicating that starch was converted to soluble sugar during fruit maturation, and the expression level of SUS (DTZ79_23g00730) and TPS (DTZ79_18g05470) was correlated with trehalose 6-phosphate. The main organic acids in A. eriantha fruit are citric acid, quinic acid, succinic acid and D-xylonic acid. Correlation analysis of metabolites and transcripts showed ACO (DTZ79_17g07470) was highly correlated with citric acid, CS (DTZ79_17g00890) with oxaloacetic acid, and MDH1 (DTZ79_23g14440) with malic acid. Based on the gene expression, the metabolism of AsA acid was primarily through the L-galactose pathway, and the expression level of GMP (DTZ79_24g08440) and MDHAR (DTZ79_27g01630) highly correlated with L-Ascorbic acid. Our study provides additional evidence for the correlation between the genes and metabolites involved in phenolic acid, flavonoids, sugars, organic acid and AsA synthesis and will help to accelerate the kiwifruit molecular breeding approaches.


Subject(s)
Actinidia , Lignans , Actinidia/genetics , Actinidia/metabolism , Arabinose , Ascorbic Acid/metabolism , Chromatography, Liquid , Citric Acid/metabolism , Coumarins/metabolism , Fruit/genetics , Fruit/metabolism , Galactose/metabolism , Glucose/metabolism , Humans , Hydroxybenzoates , Lignans/metabolism , Melibiose/metabolism , Metabolomics , Oxaloacetates/metabolism , Phosphates/metabolism , Plant Breeding , Polyphenols/metabolism , Quinic Acid/metabolism , Starch/metabolism , Succinates/metabolism , Sucrose/metabolism , Tandem Mass Spectrometry , Tannins/metabolism , Transcriptome , Trehalose/metabolism
16.
Genome ; 62(10): 643-656, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31418287

ABSTRACT

The plant aquaporins (AQPs) are highly conserved integral membrane proteins that participate in multiple developmental processes and responses to various stresses. In this study, a total of 35 AQP genes were identified in the watermelon genome. The phylogenetic analysis showed that these AQPs can be divided into five types, including 16 plasma membrane intrinsic proteins (PIPs), eight tonoplast intrinsic proteins (TIPs), eight nodulin 26-like intrinsic proteins (NIPs), two small basic intrinsic proteins (SIPs), and one uncategorized X intrinsic protein (XIP). A number of cis-elements related to plant responses to hormones and stresses were detected in the promoter sequences of ClAQP genes. Chromosome distribution analysis revealed that the genes are unevenly distributed on eight chromosomes, with chromosomes 1 and 4 possessing the most genes. Expression analysis at different developmental stages in flesh and rind indicated that most of ClAQPs have tissue-specific expression. Meanwhile, some other AQP genes showed differential expression in response to cold, salt, and ABA treatments, which is consistent with the organization of the stress-responsive cis-elements detected in the promoter regions. Our results lay a foundation for understanding the specific functions of ClAQP genes to help the genetic improvement of watermelon.


Subject(s)
Aquaporins/genetics , Citrullus/genetics , Citrullus/physiology , Genome, Plant , Stress, Physiological/genetics , Chromosomes, Plant , Gene Duplication , Gene Expression Regulation, Plant , Phylogeny , Promoter Regions, Genetic
18.
Ann Bot ; 118(7): 1257-1268, 2016 12.
Article in English | MEDLINE | ID: mdl-27582362

ABSTRACT

BACKGROUND AND AIMS: Limestone karst areas possess high floral diversity and endemism. The genus Primulina, which contributes to the unique calcicole flora, has high species richness and exhibit specific soil-based habitat associations that are mainly distributed on calcareous karst soils. The adaptive molecular evolutionary mechanism of the genus to karst calcium-rich environments is still not well understood. The Ca2+-permeable channel TPC1 was used in this study to test whether its gene is involved in the local adaptation of Primulina to karst high-calcium soil environments. METHODS: Specific amplification and sequencing primers were designed and used to amplify the full-length coding sequences of TPC1 from cDNA of 76 Primulina species. The sequence alignment without recombination and the corresponding reconstructed phylogeny tree were used in molecular evolutionary analyses at the nucleic acid level and amino acid level, respectively. Finally, the identified sites under positive selection were labelled on the predicted secondary structure of TPC1. KEY RESULTS: Seventy-six full-length coding sequences of Primulina TPC1 were obtained. The length of the sequences varied between 2220 and 2286 bp and the insertion/deletion was located at the 5' end of the sequences. No signal of substitution saturation was detected in the sequences, while significant recombination breakpoints were detected. The molecular evolutionary analyses showed that TPC1 was dominated by purifying selection and the selective pressures were not significantly different among species lineages. However, significant signals of positive selection were detected at both TPC1 codon level and amino acid level, and five sites under positive selective pressure were identified by at least three different methods. CONCLUSIONS: The Ca2+-permeable channel TPC1 may be involved in the local adaptation of Primulina to karst Ca2+-rich environments. Different species lineages suffered similar selective pressure associated with calcium in karst environments, and episodic diversifying selection at a few sites may play a major role in the molecular evolution of Primulina TPC1.


Subject(s)
Adaptation, Biological/genetics , Calcium Channels/genetics , Evolution, Molecular , Genes, Plant/genetics , Lamiales/genetics , Adaptation, Biological/physiology , Calcium/metabolism , Calcium Channels/physiology , Ecosystem , Lamiales/physiology , Phylogeny , Sequence Alignment , Sequence Analysis, DNA , Soil
19.
New Phytol ; 202(4): 1371-1381, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24533910

ABSTRACT

Genome size variation is of fundamental biological importance and has been a longstanding puzzle in evolutionary biology. Several hypotheses for genome size evolution including neutral, maladaptive, and adaptive models have been proposed, but the relative importance of these models remains controversial. Primulina is a genus that is highly diversified in the Karst region of southern China, where genome size variation and the underlying evolutionary mechanisms are poorly understood. We reconstructed the phylogeny of Primulina using DNA sequences for 104 species and determined the genome sizes of 101 species. We examined the phylogenetic signal in genome size variation, and tested the fit to different evolutionary models and for correlations with variation in latitude and specific leaf area (SLA). The results showed that genome size, SLA and latitudinal variation all displayed strong phylogenetic signals, but were best explained by different evolutionary models. Furthermore, significant positive relationships were detected between genome size and SLA and between genome size and latitude. Our study is the first to investigate genome size evolution on such a comprehensive scale and in the Karst region flora. We conclude that genome size in Primulina is phylogenetically conserved but its variation among species is a combined outcome of both neutral and adaptive evolution.


Subject(s)
Chromosomes, Plant/genetics , Genome, Plant/genetics , Magnoliopsida/genetics , China , DNA, Plant/genetics , Evolution, Molecular , Genome Size , Phylogeny , Polyploidy
20.
Front Immunol ; 15: 1354926, 2024.
Article in English | MEDLINE | ID: mdl-39372399

ABSTRACT

Background: Severe acute pancreatitis (SAP) is characterized by inflammation, with inflammatory immune cells playing a pivotal role in disease progression. This study aims to understand variations in specific immune cell subtypes in SAP, uncover their mechanisms of action, and identify potential biological markers for predicting Acute Pancreatitis (AP) severity. Methods: We collected peripheral blood from 7 untreated SAP patients and employed single-cell RNA sequencing for the first time to construct a transcriptome atlas of peripheral blood mononuclear cells (PBMCs) in SAP. Integrating SAP transcriptomic data with 6 healthy controls from the GEO database facilitated the analysis of immune cell roles in SAP. We obtained comprehensive transcriptomic datasets from AP samples in the GEO database and identified potential biomarkers associated with AP severity using the "Scissor" tool in single-cell transcriptomic data. Results: This study presents the inaugural construction of a peripheral blood single-cell atlas for SAP patients, identifying 20 cell subtypes. Notably, there was a significant decrease in effector T cell subsets and a noteworthy increase in monocytes compared to healthy controls. Moreover, we identified a novel monocyte subpopulation expressing high levels of PPBP and PF4 which was significantly elevated in SAP. The proportion of monocyte subpopulations with high CCL3 expression was also markedly increased compared to healthy controls, as verified by flow cytometry. Additionally, cell communication analysis revealed insights into immune and inflammation-related signaling pathways in SAP patient monocytes. Finally, our findings suggest that the subpopulation with high CCL3 expression, along with upregulated pro-inflammatory genes such as S100A12, IL1B, and CCL3, holds promise as biomarkers for predicting AP severity. Conclusion: This study reveals monocytes' crucial role in SAP initiation and progression, characterized by distinct pro-inflammatory features intricately linked to AP severity. A monocyte subpopulation with elevated PPBP and CCL3 levels emerges as a potential biomarker and therapeutic target.


Subject(s)
Monocytes , Pancreatitis , Single-Cell Analysis , Humans , Pancreatitis/immunology , Pancreatitis/genetics , Pancreatitis/diagnosis , Pancreatitis/blood , Male , Female , Monocytes/immunology , Monocytes/metabolism , Biomarkers , Middle Aged , Transcriptome , Adult , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Chemokine CCL3/genetics , Chemokine CCL3/blood , Gene Expression Profiling , Sequence Analysis, RNA , Severity of Illness Index
SELECTION OF CITATIONS
SEARCH DETAIL