Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters

Database
Language
Publication year range
1.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36917489

ABSTRACT

Intergenic genomic regions have essential regulatory and structural roles that impose constraints on their sequences. But regions that do not currently encode proteins also carry the potential to do so in the future. De novo gene emergence, the evolution of novel genes out of previously noncoding sequences has now been established as a potent force for genomic novelty. Recently, it was shown that intergenic regions in the genome of Saccharomyces cerevisiae harbor pervasive cryptic potential to, if theoretically translated, form transmembrane domains (TM domains) more frequently than expected by chance given their nucleotide composition, a property that we refer to as TM-forming enrichment. The source and biological relevance of this property is unknown. Here, we expand the investigation into the TM-forming potential of intergenic regions to the entire Saccharomycotina budding yeast subphylum, in an effort to explain this property and understand its importance. We find pervasive but variable enrichment in TM-forming potential across the subphylum regardless of the composition and average size of intergenic regions. This cryptic property is evenly spread across the genome, cannot be explained by the hydrophobic content of the sequence, and does not appear to localize to regions containing regulatory motifs. This TM-forming enrichment specifically, and not the actual TM-forming potential, is associated, across genomes, with more TM domains in evolutionarily young genes. Our findings shed light on this newly discovered feature of yeast genomes and constitute a first step toward understanding its evolutionary importance.


Subject(s)
Saccharomycetales , Yeasts , DNA, Intergenic/genetics , Yeasts/genetics , Saccharomyces cerevisiae/genetics , Genomics , Genome , Saccharomycetales/genetics
2.
NAR Genom Bioinform ; 4(4): lqac086, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36381424

ABSTRACT

Nearly one third of Saccharomyces cerevisiae protein coding sequences correspond to duplicate genes, equally split between small-scale duplicates (SSD) and whole-genome duplicates (WGD). While duplicate genes have distinct properties compared to singletons, to date, there has been no systematic analysis of their positional preferences. In this work, we show that SSD and WGD genes are organized in distinct gene clusters that occupy different genomic regions, with SSD being more peripheral and WGD more centrally positioned close to centromeric chromatin. Duplicate gene clusters differ from the rest of the genome in terms of gene size and spacing, gene expression variability and regulatory complexity, properties that are also shared by singleton genes residing within them. Singletons within duplicate gene clusters have longer promoters, more complex structure and a higher number of protein-protein interactions. Particular chromatin architectures appear to be important for gene evolution, as we find SSD gene-pair co-expression to be strongly associated with the similarity of nucleosome positioning patterns. We propose that specific regions of the yeast genome provide a favourable environment for the generation and maintenance of small-scale gene duplicates, segregating them from WGD-enriched genomic domains. Our findings provide a valuable framework linking genomic innovation with positional genomic preferences.

3.
Cells ; 11(2)2022 01 13.
Article in English | MEDLINE | ID: mdl-35053381

ABSTRACT

Viroids are small, circular, highly structured pathogens that infect a broad range of plants, causing economic losses. Since their discovery in the 1970s, they have been considered as non-coding pathogens. In the last few years, the discovery of other RNA entities, similar in terms of size and structure, that were shown to be translated (e.g., cirRNAs, precursors of miRNA, RNA satellites) as well as studies showing that some viroids are located in ribosomes, have reignited the idea that viroids may be translated. In this study, we used advanced bioinformatic analysis, in vitro experiments and LC-MS/MS to search for small viroid peptides of the PSTVd. Our results suggest that in our experimental conditions, even though the circular form of PSTVd is found in ribosomes, no produced peptides were identified. This indicates that the presence of PSTVd in ribosomes is most probably not related to peptide production but rather to another unknown function that requires further study.


Subject(s)
RNA, Untranslated/genetics , Viroids/genetics , Base Sequence , Solanum lycopersicum/virology , Mass Spectrometry , Open Reading Frames/genetics , Peptides/metabolism , Polyribosomes/metabolism , Protein Biosynthesis , RNA, Circular/genetics , Ribosomes/metabolism , Nicotiana/virology
SELECTION OF CITATIONS
SEARCH DETAIL