Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters

Publication year range
1.
Phys Rev Lett ; 116(24): 247201, 2016 Jun 17.
Article in English | MEDLINE | ID: mdl-27367402

ABSTRACT

We present a physical picture for the emergence of the Dzyaloshinskii-Moriya (DM) interaction based on the idea of the Doppler shift by an intrinsic spin current induced by spin-orbit interaction under broken inversion symmetry. The picture is confirmed by a rigorous effective Hamiltonian theory, which reveals that the DM coefficient is given by the magnitude of the intrinsic spin current. Our approach is directly applicable to first principles calculations and clarifies the relation between the interaction and the electronic band structures. Quantitative agreement with experimental results is obtained for the skyrmion compounds Mn_{1-x}Fe_{x}Ge and Fe_{1-x}Co_{x}Ge.

2.
Phys Rev Lett ; 114(19): 196601, 2015 May 15.
Article in English | MEDLINE | ID: mdl-26024187

ABSTRACT

A microscopic formalism to calculate thermal transport coefficients is presented based on a thermal vector potential, whose time derivative is related to a thermal force. The formalism is free from the unphysical divergences reported to arise when Luttinger's formalism is applied naively, because the equilibrium ("diamagnetic") currents are treated consistently. The mathematical structure for the thermal transport coefficients is shown to be identical with that for the electric ones if the electric charge is replaced by the energy. The results indicate that the thermal vector potential couples to the energy current via the minimal coupling.

3.
Sci Rep ; 13(1): 21153, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036601

ABSTRACT

Soliton-based computing relies on their unique properties for transporting energy and emerging intact from head-on collisions. Magnetic domain walls are often referred to as solitons disregarding the strict mathematical definition requiring the above scattering property. Here we demonstrate the conditions of elastic and inelastic scattering for spin-orbit torque-induced dynamics of relativistic domain walls on the technologically relevant Mn[Formula: see text]Au antiferromagnetic material. We show that even domain walls with opposite winding numbers can experience elastic scattering and we present the corresponding phase diagram as a function of the spin-orbit field strength and duration. The elastic collision requires minimum domain walls speed, which we explain assuming an attractive potential created by domain wall pair. On the contrary, when the domain walls move at lower speeds, their collision is inelastic and results in a dispersing breather. Our findings will be important for the development of soliton-based computing using antiferromagnetic spintronics and we discuss their prospects for building NOT and XOR gates.

4.
Phys Rev Lett ; 109(12): 127204, 2012 Sep 21.
Article in English | MEDLINE | ID: mdl-23005981

ABSTRACT

We present a theoretical discovery of an unconventional mechanism of inverse Faraday effect which acts selectively on topological magnetic structures. The effect, topological inverse Faraday effect, is induced by the spin Berry's phase of the magnetic structure when a circularly polarized light is applied. Thus a spin-orbit interaction is not necessary unlike that in the conventional inverse Faraday effect. We demonstrate by numerical simulation that topological inverse Faraday effect realizes ultrafast switching of a magnetic vortex within a switching time of 150 ps without magnetic field.

5.
Nature ; 432(7014): 203-6, 2004 Nov 11.
Article in English | MEDLINE | ID: mdl-15538364

ABSTRACT

A magnetic domain wall (DW) is a spatially localized change of magnetization configuration in a magnet. This topological object has been predicted to behave at low energy as a composite particle with finite mass. This particle will couple directly with electric currents as well as magnetic fields, and its manipulation using electric currents is of particular interest with regard to the development of high-density magnetic memories. The DW mass sets the ultimate operation speed of these devices, but has yet to be determined experimentally. Here we report the direct observation of the dynamics of a single DW in a ferromagnetic nanowire, which demonstrates that such a topological particle has a very small but finite mass of 6.6 x 10(-23) kg. This measurement was realized by preparing a tunable DW potential in the nanowire, and detecting the resonance motion of the DW induced by an oscillating current. The resonance also allows low-current operation, which is crucial in device applications; a DW displacement of 10 microm was induced by a current density of 10(10) A m(-2).

6.
Sci Rep ; 7(1): 1640, 2017 05 09.
Article in English | MEDLINE | ID: mdl-28487513

ABSTRACT

Domain walls in ferromagnetic nanowires are potential building-blocks of future technologies such as racetrack memories, in which data encoded in the domain walls are transported using spin-polarised currents. However, the development of energy-efficient devices has been hampered by the high current densities needed to initiate domain wall motion. We show here that a remarkable reduction in the critical current density can be achieved for in-plane magnetised coupled domain walls in CoFe/Ru/CoFe synthetic ferrimagnet tracks. The antiferromagnetic exchange coupling between the layers leads to simple Néel wall structures, imaged using photoemission electron and Lorentz transmission electron microscopy, with a width of only ~100 nm. The measured critical current density to set these walls in motion, detected using magnetotransport measurements, is 1.0 × 1011 Am-2, almost an order of magnitude lower than in a ferromagnetically coupled control sample. Theoretical modelling indicates that this is due to nonadiabatic driving of anisotropically coupled walls, a mechanism that can be used to design efficient domain-wall devices.

7.
J Electron Microsc (Tokyo) ; 54 Suppl 1: i69-74, 2005.
Article in English | MEDLINE | ID: mdl-16157646

ABSTRACT

The dynamics of a domain wall in ferromagnetic nanowires under electric current is theoretically studied. The driving mechanism is shown to depend on wall thickness. Thick walls, as in metallic wires, are propelled by the spin torque arising from spin polarization of current, while thin walls, as in nanocontacts and magnetic semiconductors, are driven by the pressure from charge current. The condition for small-current operation, which is a key issue when integrated into devices, is discussed.

8.
Nat Commun ; 6: 8135, 2015 Sep 02.
Article in English | MEDLINE | ID: mdl-26330292

ABSTRACT

Gauge fields, typified by the electromagnetic field, often appear as emergent phenomena due to geometrical properties of a curved Hilbert subspace, and provide a key mechanism for understanding such exotic phenomena as the anomalous and topological Hall effects. Non-abelian gauge potentials serve as a source of non-singular magnetic monopoles. Here we show that unlike conventional solid materials, the non-abelianness of emergent gauge potentials in spinor Bose-Fermi atomic mixtures can be continuously varied by changing the relative particle-number densities of bosons and fermions. The non-abelian feature is captured by an explicit dependence of the measurable spin current density of fermions in the mixture on the variable coupling constant. Spinor mixtures also provide us with a method to coherently and spontaneously generate a pure spin current without relying on the spin Hall effect. Such a spin current is expected to have potential applications in the new generation of atomtronic devices.

9.
Nat Commun ; 4: 2011, 2013.
Article in English | MEDLINE | ID: mdl-23771026

ABSTRACT

Energy barriers in magnetization reversal dynamics have long been of interest because the barrier height determines the thermal stability of devices as well as the threshold force triggering their dynamics. Especially in memory and logic applications, there is a dilemma between the thermal stability of bit data and the operation power of devices, because larger energy barriers for higher thermal stability inevitably lead to larger magnetic fields (or currents) for operation. Here we show that this is not the case for current-induced magnetic domain-wall motion induced by adiabatic spin-transfer torque. By quantifying domain-wall depinning energy barriers by magnetic field and current, we find that there exist two different pinning barriers, extrinsic and intrinsic energy barriers, which govern the thermal stability and threshold current, respectively. This unique two-barrier system allows low-power operation with high thermal stability, which is impossible in conventional single-barrier systems.

10.
Phys Rev Lett ; 99(26): 266603, 2007 Dec 31.
Article in English | MEDLINE | ID: mdl-18233596

ABSTRACT

Pumping of charge current by spin dynamics in the presence of the Rashba spin-orbit interaction is theoretically studied. Considering a disordered electron, the exchange coupling and spin-orbit interactions are treated perturbatively. It is found that the dominant current induced by spin dynamics is interpreted as a consequence of the conversion from spin current via the inverse spin Hall effect. We also find that the current has an additional component from a fictitious conservative field. The results are applied to the case of a moving domain wall.

11.
Phys Rev Lett ; 94(7): 076601, 2005 Feb 25.
Article in English | MEDLINE | ID: mdl-15783838

ABSTRACT

A large spin current applied to a uniform ferromagnet leads to a spin-wave instability as pointed out recently. In this Letter, it is shown that such spin-wave instability is absent in a state containing a domain wall, which indicates that nucleation of magnetic domains occurs above a certain critical spin current. This scenario is supported also by an explicit energy comparison of the two states under spin current.

12.
Phys Rev Lett ; 92(8): 086601, 2004 Feb 27.
Article in English | MEDLINE | ID: mdl-14995801

ABSTRACT

A self-contained theory of the domain wall dynamics in ferromagnets under finite electric current is presented. The current has two effects: one is momentum transfer, which is proportional to the charge current and wall resistivity (rho(w)); the other is spin transfer, proportional to spin current. For thick walls, as in metallic wires, the latter dominates and the threshold current for wall motion is determined by the hard-axis magnetic anisotropy, except for the case of very strong pinning. For thin walls, as in nanocontacts and magnetic semiconductors, the momentum-transfer effect dominates, and the threshold current is proportional to V(0)/rho(w), V0 being the pinning potential.

13.
Phys Rev Lett ; 91(7): 076806, 2003 Aug 15.
Article in English | MEDLINE | ID: mdl-12935044

ABSTRACT

Quantum devices and computers will need operational units in different architectural configurations for their functioning. The unit should be a simple "quantum toy," an easy to handle superposition state. Here such a novel unit of quantum mechanical flux state (or persistent current) in a conducting ring with three ferromagnetic quantum dots is presented. The state is labeled by the two directions of the persistent current, which is driven by the spin chirality of the dots, and is controlled by the spin (the spin Josephson effect). It is demonstrated that by the use of two connected rings, one can carry out unitary transformations on the input flux state by controlling one spin in one of the rings, enabling us to prepare superposition states. The flux is shown to be a quantum operation gate, and may be useful in quantum computing.

SELECTION OF CITATIONS
SEARCH DETAIL