Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 209
Filter
1.
J Gen Virol ; 105(2)2024 Feb.
Article in English | MEDLINE | ID: mdl-38421278

ABSTRACT

Background. Chikungunya virus (CHIKV) causes chikungunya fever and has been responsible for major global epidemics of arthritic disease over the past two decades. Multiple CHIKV vaccine candidates are currently undergoing or have undergone human clinical trials, with one vaccine candidate receiving FDA approval. This scoping review was performed to evaluate the 'efficacy', 'safety' and 'duration of protection' provided by CHIKV vaccine candidates in human clinical trials.Methods. This scoping literature review addresses studies involving CHIKV vaccine clinical trials using available literature on the PubMed, Medline Embase, Cochrane Library and Clinicaltrial.gov databases published up to 25 August 2023. Covidence software was used to structure information and review the studies included in this article.Results. A total of 1138 studies were screened and, after removal of duplicate studies, 12 relevant studies were thoroughly reviewed to gather information. This review summarizs that all seven CHIKV vaccine candidates achieved over 90 % seroprotection against CHIKV after one or two doses. All vaccines were able to provide neutralizing antibody protection for at least 28 days.Conclusions. A variety of vaccine technologies have been used to develop CHIKV vaccine candidates. With one vaccine candidate having recently received FDA approval, it is likely that further CHIKV vaccines will be available commercially in the near future.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Chikungunya Fever , Chikungunya virus , Clinical Trials as Topic , Viral Vaccines , Humans , Chikungunya Fever/prevention & control , Chikungunya Fever/immunology , Chikungunya Fever/virology , Chikungunya virus/immunology , Viral Vaccines/immunology , Viral Vaccines/administration & dosage , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/blood , Antibodies, Viral/immunology , Antibodies, Viral/blood , Immunogenicity, Vaccine , Vaccine Efficacy
2.
Microsc Microanal ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38905154

ABSTRACT

There has been an increasing interest in atom probe tomography (APT) to characterize hydrated and biological materials. A major benefit of APT compared to microscopy techniques more commonly used in biology is its combination of outstanding three-dimensional (3D) spatial resolution and mass sensitivity. APT has already been successfully used to characterize biominerals, revealing key structural information at the atomic scale, however there are many challenges inherent to the analysis of soft hydrated materials. New preparation protocols, often involving specimen preparation and transfer at cryogenic temperature, enable APT analysis of hydrated materials and have the potential to enable 3D atomic scale characterization of biological materials in the near-native hydrated state. In this study, samples of pure water at the tips of tungsten needle specimens were prepared at room temperature by graphene encapsulation. A comparative study was conducted where specimens were transferred at either room temperature or cryo-temperature and analyzed by APT by varying the flight path and pulsing mode. The differences between the analysis workflows are presented along with recommendations for future studies, and the compatibility between graphene coating and cryogenic workflows is demonstrated.

3.
Thorax ; 78(6): 551-558, 2023 06.
Article in English | MEDLINE | ID: mdl-35534152

ABSTRACT

BACKGROUND: Considerable clinical heterogeneity in idiopathic pulmonary fibrosis (IPF) suggests the existence of multiple disease endotypes. Identifying these endotypes would improve our understanding of the pathogenesis of IPF and could allow for a biomarker-driven personalised medicine approach. We aimed to identify clinically distinct groups of patients with IPF that could represent distinct disease endotypes. METHODS: We co-normalised, pooled and clustered three publicly available blood transcriptomic datasets (total 220 IPF cases). We compared clinical traits across clusters and used gene enrichment analysis to identify biological pathways and processes that were over-represented among the genes that were differentially expressed across clusters. A gene-based classifier was developed and validated using three additional independent datasets (total 194 IPF cases). FINDINGS: We identified three clusters of patients with IPF with statistically significant differences in lung function (p=0.009) and mortality (p=0.009) between groups. Gene enrichment analysis implicated mitochondrial homeostasis, apoptosis, cell cycle and innate and adaptive immunity in the pathogenesis underlying these groups. We developed and validated a 13-gene cluster classifier that predicted mortality in IPF (high-risk clusters vs low-risk cluster: HR 4.25, 95% CI 2.14 to 8.46, p=3.7×10-5). INTERPRETATION: We have identified blood gene expression signatures capable of discerning groups of patients with IPF with significant differences in survival. These clusters could be representative of distinct pathophysiological states, which would support the theory of multiple endotypes of IPF. Although more work must be done to confirm the existence of these endotypes, our classifier could be a useful tool in patient stratification and outcome prediction in IPF.


Subject(s)
Idiopathic Pulmonary Fibrosis , Transcriptome , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Gene Expression Profiling , Cluster Analysis , Biomarkers
4.
J Virol ; 96(17): e0099922, 2022 09 14.
Article in English | MEDLINE | ID: mdl-36000846

ABSTRACT

Arthritogenic alphaviruses are mosquito-borne arboviruses that include several re-emerging human pathogens, including the chikungunya (CHIKV), Ross River (RRV), Mayaro (MAYV), and o'nyong-nyong (ONNV) virus. Arboviruses are transmitted via a mosquito bite to the skin. Herein, we describe intradermal RRV infection in a mouse model that replicates the arthritis and myositis seen in humans with Ross River virus disease (RRVD). We show that skin infection with RRV results in the recruitment of inflammatory monocytes and neutrophils, which together with dendritic cells migrate to draining lymph nodes (LN) of the skin. Neutrophils and monocytes are productively infected and traffic virus from the skin to LN. We show that viral envelope N-linked glycosylation is a key determinant of skin immune responses and disease severity. RRV grown in mammalian cells elicited robust early antiviral responses in the skin, while RRV grown in mosquito cells stimulated poorer early antiviral responses. We used glycan mass spectrometry to characterize the glycan profile of mosquito and mammalian cell-derived RRV, showing deglycosylation of the RRV E2 glycoprotein is associated with curtailed skin immune responses and reduced disease following intradermal infection. Altogether, our findings demonstrate skin infection with an arthritogenic alphavirus leads to musculoskeletal disease and envelope glycoprotein glycosylation shapes disease outcome. IMPORTANCE Arthritogenic alphaviruses are transmitted via mosquito bites through the skin, potentially causing debilitating diseases. Our understanding of how viral infection starts in the skin and how virus systemically disseminates to cause disease remains limited. Intradermal arbovirus infection described herein results in musculoskeletal pathology, which is dependent on viral envelope N-linked glycosylation. As such, intradermal infection route provides new insights into how arboviruses cause disease and could be extended to future investigations of skin immune responses following infection with other re-emerging arboviruses.


Subject(s)
Alphavirus Infections , Arthritis , Myositis , Polysaccharides , Ross River virus , Skin , Alphavirus Infections/complications , Alphavirus Infections/immunology , Animals , Antiviral Agents/immunology , Arthritis/complications , Arthritis/immunology , Culicidae/virology , Dendritic Cells , Disease Models, Animal , Glycosylation , Humans , Mass Spectrometry , Mice , Monocytes , Myositis/complications , Myositis/immunology , Neutrophils , Polysaccharides/chemistry , Polysaccharides/immunology , Ross River virus/immunology , Skin/immunology , Skin/virology , Viral Envelope Proteins/chemistry , Viral Envelope Proteins/immunology
5.
Allergy ; 78(1): 156-167, 2023 01.
Article in English | MEDLINE | ID: mdl-35986608

ABSTRACT

BACKGROUND: Interleukin (IL)-33 is an upstream regulator of type 2 (T2) eosinophilic inflammation and has been proposed as a key driver of some asthma phenotypes. OBJECTIVE: To derive gene signatures from in vitro studies of IL-33-stimulated cells and use these to determine IL-33-associated enrichment patterns in asthma. METHODS: Signatures downstream of IL-33 stimulation were derived from our in vitro study of human mast cells and from public datasets of in vitro stimulated human basophils, type 2 innate lymphoid cells (ILC2), regulatory T cells (Treg) and endothelial cells. Gene Set Variation Analysis (GSVA) was used to probe U-BIOPRED and ADEPT sputum transcriptomics to determine enrichment scores (ES) for each signature according to asthma severity, sputum granulocyte status and previously defined molecular phenotypes. RESULTS: IL-33-activated gene signatures were cell-specific with little gene overlap. Individual signatures, however, were associated with similar signalling pathways (TNF, NF-κB, IL-17 and JAK/STAT signalling) and immune cell differentiation pathways (Th17, Th1 and Th2 differentiation). ES for IL-33-activated gene signatures were significantly enriched in asthmatic sputum, particularly in patients with neutrophilic and mixed granulocytic phenotypes. IL-33 mRNA expression was not elevated in asthma whereas the expression of mRNA for IL1RL1, the IL-33 receptor, was up-regulated in the sputum of severe eosinophilic asthma. The mRNA expression for IL1RAP, the IL1RL1 co-receptor, was greatest in severe neutrophilic and mixed granulocytic asthma. CONCLUSIONS: IL-33-activated gene signatures are elevated in neutrophilic and mixed granulocytic asthma corresponding with IL1RAP co-receptor expression. This suggests incorporating T2-low asthma in anti-IL-33 trials.


Subject(s)
Asthma , Immunity, Innate , Interleukin-1 Receptor Accessory Protein , Humans , Asthma/diagnosis , Asthma/genetics , Endothelial Cells/metabolism , Interleukin-1 Receptor Accessory Protein/metabolism , Lymphocytes/metabolism , RNA, Messenger/metabolism , Sputum , Th2 Cells
6.
Mol Cell ; 57(2): 261-72, 2015 Jan 22.
Article in English | MEDLINE | ID: mdl-25544560

ABSTRACT

Glycogen is the major mammalian glucose storage cache and is critical for energy homeostasis. Glycogen synthesis in neurons must be tightly controlled due to neuronal sensitivity to perturbations in glycogen metabolism. Lafora disease (LD) is a fatal, congenital, neurodegenerative epilepsy. Mutations in the gene encoding the glycogen phosphatase laforin result in hyperphosphorylated glycogen that forms water-insoluble inclusions called Lafora bodies (LBs). LBs induce neuronal apoptosis and are the causative agent of LD. The mechanism of glycogen dephosphorylation by laforin and dysfunction in LD is unknown. We report the crystal structure of laforin bound to phosphoglucan product, revealing its unique integrated tertiary and quaternary structure. Structure-guided mutagenesis combined with biophysical and biochemical analyses reveal the basis for normal function of laforin in glycogen metabolism. Analyses of LD patient mutations define the mechanism by which subsets of mutations disrupt laforin function. These data provide fundamental insights connecting glycogen metabolism to neurodegenerative disease.


Subject(s)
Glycogen/metabolism , Lafora Disease/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/chemistry , Catalytic Domain , Crystallography, X-Ray , Humans , Models, Molecular , Oligosaccharides/chemistry , Phosphates/chemistry , Phosphorylation , Protein Binding , Protein Multimerization , Protein Structure, Secondary , Protein Tyrosine Phosphatases, Non-Receptor/physiology
7.
Adv Exp Med Biol ; 1421: 3-13, 2023.
Article in English | MEDLINE | ID: mdl-37524981

ABSTRACT

Biomedical visualization has a long history as a tool for education around public health. However, recent advances in our understanding of how to be more effective at communicating complex scientific ideas to a public audience necessitate a re-examination of approaches to biomedical visualization. Scientific knowledge has expanded dramatically in the twenty-first century, as has its availability beyond the scientific arena. This chapter briefly discusses the historical approaches in biomedical visualization from the perspective of Western public health. It also outlines the approach that biomedical visualization should take according to best practices in effective science communication.


Subject(s)
Communication , Knowledge , Educational Status
8.
Anal Chem ; 94(28): 9970-9974, 2022 07 19.
Article in English | MEDLINE | ID: mdl-35798333

ABSTRACT

Mass spectrometry imaging (MSI) encompasses a powerful suit of techniques which provide spatially resolved atomic and molecular information from almost any sample type. MSI is now widely used in preclinical research to provide insight into metabolic phenotypes of disease. Typically, fresh-frozen tissue preparations are considered optimal for biological MSI and other traditional preservation methods such as formalin fixation, alone or with paraffin embedding (FFPE), are considered less optimal or even incompatible. Due to the prevalence of FFPE tissue storage, particularly for rare and therefore high-value tissue samples, there is substantial motivation for optimizing MSI methods for analysis of FFPE tissue. Here, we present a novel modality, atmospheric-pressure infrared laser-ablation plasma postionization (AP-IR-LA-PPI), with the first proof-of-concept examples of MSI for FFPE and fresh-frozen tissues, with no post-sectioning sample preparation. We present ion images from FFPE and fresh tissues in positive and negative ion modes. Molecular annotations (via the Metaspace annotation engine) and on-tissue MS/MS provide additional confidence that the detected ions arise from a broad range of metabolite and lipid classes from both FFPE and fresh-frozen tissues.


Subject(s)
Formaldehyde , Tandem Mass Spectrometry , Formaldehyde/chemistry , Lasers , Paraffin Embedding/methods , Tissue Fixation/methods
9.
Respir Res ; 23(1): 203, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953815

ABSTRACT

BACKGROUND: The National Early Warning Score-2 (NEWS-2) is used to detect patient deterioration in UK hospitals but fails to take account of the detailed granularity or temporal trends in clinical observations. We used data-driven methods to develop dynamic early warning scores (DEWS) to address these deficiencies, and tested their accuracy in patients with respiratory disease for predicting (1) death or intensive care unit admission, occurring within 24 h (D/ICU), and (2) clinically significant deterioration requiring urgent intervention, occurring within 4 h (CSD). METHODS: Clinical observations data were extracted from electronic records for 31,590 respiratory in-patient episodes from April 2015 to December 2020 at a large acute NHS Trust. The timing of D/ICU was extracted for all episodes. 1100 in-patient episodes were annotated manually to record the timing of CSD, defined as a specific event requiring a change in treatment. Time series features were entered into logistic regression models to derive DEWS for each of the clinical outcomes. Area under the receiver operating characteristic curve (AUROC) was the primary measure of model accuracy. RESULTS: AUROC (95% confidence interval) for predicting D/ICU was 0.857 (0.852-0.862) for NEWS-2 and 0.906 (0.899-0.914) for DEWS in the validation data. AUROC for predicting CSD was 0.829 (0.817-0.842) for NEWS-2 and 0.877 (0.862-0.892) for DEWS. NEWS-2 ≥ 5 had sensitivity of 88.2% and specificity of 54.2% for predicting CSD, while DEWS ≥ 0.021 had higher sensitivity of 93.6% and approximately the same specificity of 54.3% for the same outcome. Using these cut-offs, 315 out of 347 (90.8%) CSD events were detected by both NEWS-2 and DEWS, at the time of the event or within the previous 4 h; 12 (3.5%) were detected by DEWS but not by NEWS-2, while 4 (1.2%) were detected by NEWS-2 but not by DEWS; 16 (4.6%) were not detected by either scoring system. CONCLUSION: We have developed DEWS that display greater accuracy than NEWS-2 for predicting clinical deterioration events in patients with respiratory disease. Prospective validation studies are required to assess whether DEWS can be used to reduce missed deteriorations and false alarms in real-life clinical settings.


Subject(s)
Clinical Deterioration , Early Warning Score , Respiration Disorders , Respiratory Tract Diseases , Hospital Mortality , Humans , Intensive Care Units , ROC Curve , Retrospective Studies
10.
J Chem Inf Model ; 62(9): 2077-2092, 2022 05 09.
Article in English | MEDLINE | ID: mdl-34699222

ABSTRACT

The use of machine learning methods for the prediction of reaction yield is an emerging area. We demonstrate the applicability of support vector regression (SVR) for predicting reaction yields, using combinatorial data. Molecular descriptors used in regression tasks related to chemical reactivity have often been based on time-consuming, computationally demanding quantum chemical calculations, usually density functional theory. Structure-based descriptors (molecular fingerprints and molecular graphs) are quicker and easier to calculate and are applicable to any molecule. In this study, SVR models built on structure-based descriptors were compared to models built on quantum chemical descriptors. The models were evaluated along the dimension of each reaction component in a set of Buchwald-Hartwig amination reactions. The structure-based SVR models outperformed the quantum chemical SVR models, along the dimension of each reaction component. The applicability of the models was assessed with respect to similarity to training. Prospective predictions of unseen Buchwald-Hartwig reactions are presented for synthetic assessment, to validate the generalizability of the models, with particular interest along the aryl halide dimension.


Subject(s)
Machine Learning , Prospective Studies
11.
J Med Internet Res ; 24(8): e39172, 2022 08 25.
Article in English | MEDLINE | ID: mdl-36006679

ABSTRACT

BACKGROUND: Patients struggling with rare diseases may face challenges caused by care providers being unfamiliar with their condition. The life span of people with rare diseases may be the same as that of healthy people, but their quality of life is different. Patients with chronic pain are constantly looking for ways to mitigate their pain. Pain killers are not a permanent solution. In addition to the medical and nonmedical costs of rare diseases for both patients and health care providers, there is a need for sustainable sources of information that are available to help with pain and improve their quality of life, with the goal of reducing physician visits and hospital admissions. OBJECTIVE: This study investigated the challenges that patients with genetic disorders face in managing their health conditions and finding disease-related information as well as the effect of online peer support groups on pain mitigation and care management. METHODS: Interviews were conducted via Zoom between July 2021 and December 2021. Eligible participants were those who were aged >18 years, had a medical diagnosis of any type of Ehlers-Danlos syndrome (EDS) with chronic pain, and were members of any support group. Participants were recruited through an announcement in the research and survey section of The Ehlers-Danlos Syndrome Society web page. Interviews were analyzed using the framework approach. Data were systematically searched to identify patterns, analyze them, and identify themes. Interview audio files were transcribed and independently coded by two researchers (SA and AT). Through an iterative process, a final coding table was agreed upon by the researchers and used to thematically analyze the data. RESULTS: We interviewed 30 participants (mean age 37.7, SD 15 years; n=28, 93% were women; n=23, 77% were residing in the United States). Thematic analysis revealed that participants (patients with EDS) were constantly in pain and most of them have not received accurate and timely diagnoses for many years. They expressed their challenges with health care providers regarding diagnosis and treatment, and complained about their providers' lack of support and knowledge. Participants' main sources of information were web-based searches, academic journals, The Ehlers-Danlos Syndrome Society web page, and online peer support groups on Facebook, Reddit, Twitter, and Instagram. Although pain killers, cannabis, and opioids are providing some pain relief, most patients (28/30, 93%) focused on nonmedical approaches, such as hot or ice packs, physical therapy, exercises, massage, mindfulness, and meditation. CONCLUSIONS: This study highlights the information gap between health care providers and patients with genetic disorders. Patients with EDS seek access to information from different web-based sources. To meet the needs of patients with genetic disorders, future interventions via web-based resources for improving the quality of care must be considered by health care professionals and government agencies.


Subject(s)
Chronic Pain , Ehlers-Danlos Syndrome , Physicians , Adult , Female , Humans , Internet , Male , Qualitative Research , Quality of Life , Rare Diseases/therapy , Self-Help Groups
12.
Thorax ; 76(1): 73-82, 2021 01.
Article in English | MEDLINE | ID: mdl-33214245

ABSTRACT

INTRODUCTION: Fibroblastic foci represent the cardinal pathogenic lesion in idiopathic pulmonary fibrosis (IPF) and comprise activated fibroblasts and myofibroblasts, the key effector cells responsible for dysregulated extracellular matrix deposition in multiple fibrotic conditions. The aim of this study was to define the major transcriptional programmes involved in fibrogenesis in IPF by profiling unmanipulated myofibroblasts within fibrotic foci in situ by laser capture microdissection. METHODS: The challenges associated with deriving gene calls from low amounts of RNA and the absence of a meaningful comparator cell type were overcome by adopting novel data mining strategies and by using weighted gene co-expression network analysis (WGCNA), as well as an eigengene-based approach to identify transcriptional signatures, which correlate with fibrillar collagen gene expression. RESULTS: WGCNA identified prominent clusters of genes associated with cell cycle, inflammation/differentiation, translation and cytoskeleton/cell adhesion. Collagen eigengene analysis revealed that transforming growth factor ß1 (TGF-ß1), RhoA kinase and the TSC2/RHEB axis formed major signalling clusters associated with collagen gene expression. Functional studies using CRISPR-Cas9 gene-edited cells demonstrated a key role for the TSC2/RHEB axis in regulating TGF-ß1-induced mechanistic target of rapamycin complex 1 activation and collagen I deposition in mesenchymal cells reflecting IPF and other disease settings, including cancer-associated fibroblasts. CONCLUSION: These data provide strong support for the human tissue-based and bioinformatics approaches adopted to identify critical transcriptional nodes associated with the key pathogenic cell responsible for fibrogenesis in situ and further identify the TSC2/RHEB axis as a potential novel target for interfering with excessive matrix deposition in IPF and other fibrotic conditions.


Subject(s)
Gene Expression Regulation , Idiopathic Pulmonary Fibrosis/genetics , RNA/genetics , Transcriptome/genetics , Cells, Cultured , Fibroblasts/metabolism , Fibroblasts/pathology , Gene Expression Profiling , Humans , Idiopathic Pulmonary Fibrosis/metabolism , Idiopathic Pulmonary Fibrosis/pathology , Lung/metabolism , Lung/pathology , Signal Transduction , Up-Regulation
13.
Anal Chem ; 93(40): 13450-13458, 2021 10 12.
Article in English | MEDLINE | ID: mdl-34597513

ABSTRACT

Elemental and molecular imaging play a crucial role in understanding disease pathogenesis. To accurately correlate elemental and molecular markers, it is desirable to perform sequential elemental and molecular imaging on a single-tissue section. However, very little is known about the impact of performing these measurements in sequence. In this work, we highlight some of the challenges and successes associated with performing elemental mapping in sequence with mass spectrometry imaging. Specifically, the feasibility of molecular mapping using the mass spectrometry imaging (MSI) techniques matrix-assisted laser desorption ionization (MALDI) and desorption electrospray ionization (DESI) in sequence with the elemental mapping technique particle-induced X-ray emission (PIXE) is explored. Challenges for integration include substrate compatibility, as well as delocalization and spectral changes. We demonstrate that while sequential imaging comes with some compromises, sequential DESI-PIXE imaging is sufficient to correlate sulfur, iron, and lipid markers in a single tissue section at the 50 µm scale.


Subject(s)
Trace Elements , Lipids , Molecular Imaging , Spectrometry, Mass, Electrospray Ionization , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization , Sulfur
14.
J Virol ; 94(8)2020 03 31.
Article in English | MEDLINE | ID: mdl-31996431

ABSTRACT

Ross River virus (RRV) belongs to the genus Alphavirus and is prevalent in Australia. RRV infection can cause arthritic symptoms in patients and may include rash, fever, arthralgia, and myalgia. Type I interferons (IFN) are the primary antiviral cytokines and trigger activation of the host innate immune system to suppress the replication of invading viruses. Alphaviruses are able to subvert the type I IFN system, but the mechanisms used are ill defined. In this study, seven RRV field strains were analyzed for induction of and sensitivity to type I IFN. The sensitivities of these strains to human IFN-ß varied significantly and were highest for the RRV 2548 strain. Compared to prototype laboratory strain RRV-T48, RRV 2548 also induced higher type I IFN levels both in vitro and in vivo and caused milder disease. To identify the determinants involved in type I IFN modulation, the region encoding the nonstructural proteins (nsPs) of RRV 2548 was sequenced, and 42 amino acid differences from RRV-T48 were identified. Using fragment swapping and site-directed mutagenesis, we discovered that substitutions E402A and R522Q in nsP1 as well as Q619R in nsP2 were responsible for increased sensitivity of RRV 2548 to type I IFN. In contrast, substitutions A31T, N219T, S580L, and Q619R in nsP2 led to induction of higher levels of type I IFN. With exception of E402A, all these variations are common for naturally occurring RRV strains. However, they are different from all known determinants of type I IFN modulation reported previously in nsPs of alphaviruses.IMPORTANCE By identifying natural Ross River virus (RRV) amino acid determinants for type I interferon (IFN) modulation, this study gives further insight into the mechanism of type I IFN modulation by alphaviruses. Here, the crucial role of type I IFN in the early stages of RRV disease pathogenesis is further demonstrated. This study also provides a comparison of the roles of different parts of the RRV nonstructural region in type I IFN modulation, highlighting the importance of nonstructural protein 1 (nsP1) and nsP2 in this process. Three substitutions in nsP1 and nsP2 were found to be independently associated with enhanced type I IFN sensitivity, and four independent substitutions in nsP2 were important in elevated type I IFN induction. Such evidence has clear implications for RRV immunobiology, persistence, and pathology. The identification of viral proteins that modulate type I IFN may also have importance for the pathogenesis of other alphaviruses.


Subject(s)
Antiviral Agents/pharmacology , Interferon Type I/immunology , Interferon Type I/pharmacology , Ross River virus/drug effects , Ross River virus/immunology , Alphavirus/genetics , Alphavirus/immunology , Alphavirus Infections/virology , Animals , Base Sequence , Cell Line , Chlorocebus aethiops , Cytokines , HeLa Cells , Humans , Mice , Mice, Inbred C57BL , Mutagenesis, Site-Directed , Ross River virus/genetics , Vero Cells , Viral Nonstructural Proteins/genetics , Viral Nonstructural Proteins/immunology , Viral Proteins/genetics , Viral Proteins/immunology , Virulence , Virus Replication/drug effects
15.
Ann Rheum Dis ; 80(12): 1584-1593, 2021 12.
Article in English | MEDLINE | ID: mdl-34230031

ABSTRACT

OBJECTIVES: Clinical heterogeneity is a cardinal feature of systemic sclerosis (SSc). Hallmark SSc autoantibodies are central to diagnosis and associate with distinct patterns of skin-based and organ-based complications. Understanding molecular differences between patients will benefit clinical practice and research and give insight into pathogenesis of the disease. We aimed to improve understanding of the molecular differences between key diffuse cutaneous SSc subgroups as defined by their SSc-specific autoantibodies METHODS: We have used high-dimensional transcriptional and proteomic analysis of blood and the skin in a well-characterised cohort of SSc (n=52) and healthy controls (n=16) to understand the molecular basis of clinical diversity in SSc and explore differences between the hallmark antinuclear autoantibody (ANA) reactivities. RESULTS: Our data define a molecular spectrum of SSc based on skin gene expression and serum protein analysis, reflecting recognised clinical subgroups. Moreover, we show that antitopoisomerase-1 antibodies and anti-RNA polymerase III antibodies specificities associate with remarkably different longitudinal change in serum protein markers of fibrosis and divergent gene expression profiles. Overlapping and distinct disease processes are defined using individual patient pathway analysis. CONCLUSIONS: Our findings provide insight into clinical diversity and imply pathogenetic differences between ANA-based subgroups. This supports stratification of SSc cases by ANA antibody subtype in clinical trials and may explain different outcomes across ANA subgroups in trials targeting specific pathogenic mechanisms.


Subject(s)
Antibodies, Antinuclear/immunology , DNA Topoisomerases, Type I/immunology , RNA Polymerase III/immunology , Scleroderma, Diffuse/immunology , Adult , Aged , Aged, 80 and over , Autoantibodies/immunology , Case-Control Studies , Disease Progression , Female , Gene Expression Profiling , Humans , Hyaluronic Acid/blood , Immunosuppressive Agents/therapeutic use , Male , Middle Aged , Peptide Fragments/blood , Procollagen/blood , Prospective Studies , Proteomics , Scleroderma, Diffuse/blood , Scleroderma, Diffuse/drug therapy , Tissue Inhibitor of Metalloproteinase-1/blood , Transcriptome , Young Adult
16.
Calcif Tissue Int ; 109(3): 291-302, 2021 09.
Article in English | MEDLINE | ID: mdl-34417863

ABSTRACT

Osteoarthritis (OA) is one of the most prevalent conditions in the world, particularly in the developed world with a significant increase in cases and their predicted impact as we move through the twenty-first century and this will be exacerbated by the covid pandemic. The degeneration of cartilage and bone as part of this condition is becoming better understood but there are still significant challenges in painting a complete picture to recognise all aspects of the condition and what treatment(s) are most appropriate in individual causes. OA encompasses many different types and this causes some of the challenges in fully understanding the condition. There have been examples through history where much has been learnt about common disease(s) from the study of rare or extreme phenotypes, particularly where Mendelian disorders are involved. The often early onset of symptoms combined with the rapid and aggressive pathogenesis of these diseases and their predictable outcomes give an often-under-explored resource. It is these "rarer forms of disease" that William Harvey referred to that offer novel insights into more common conditions through their more extreme presentations. In the case of OA, GWAS analyses demonstrate the multiple genes that are implicated in OA in the general population. In some of these rarer forms, single defective genes are responsible. The extreme phenotypes seen in conditions such as Camptodactyly Arthropathy-Coxa Vara-pericarditis Syndrome, Chondrodysplasias and Alkaptonuria all present potential opportunities for greater understanding of disease pathogenesis, novel therapeutic interventions and diagnostic imaging. This review examines some of the rarer presenting forms of OA and linked conditions, some of the novel discoveries made whilst studying them, and findings on imaging and treatment strategies.


Subject(s)
COVID-19 , Coxa Vara , Osteoarthritis , Synovitis , Humans , Osteoarthritis/genetics , SARS-CoV-2
18.
Allergy ; 75(2): 370-380, 2020 02.
Article in English | MEDLINE | ID: mdl-31506971

ABSTRACT

BACKGROUND: Whether the clinical or pathophysiologic significance of the "treatable trait" high blood eosinophil count in COPD is the same as for asthma remains controversial. We sought to determine the relationship between the blood eosinophil count, clinical characteristics and gene expression from bronchial brushings in COPD and asthma. METHODS: Subjects were recruited into a COPD (emphysema versus airway disease [EvA]) or asthma cohort (Unbiased BIOmarkers in PREDiction of respiratory disease outcomes, U-BIOPRED). We determined gene expression using RNAseq in EvA (n = 283) and Affymetrix microarrays in U-BIOPRED (n = 85). We ran linear regression analysis of the bronchial brushings transcriptional signal versus blood eosinophil counts as well as differential expression using a blood eosinophil > 200 cells/µL as a cut-off. The false discovery rate was controlled at 1% (with continuous values) and 5% (with dichotomized values). RESULTS: There were no differences in age, gender, lung function, exercise capacity and quantitative computed tomography between eosinophilic versus noneosinophilic COPD cases. Total serum IgE was increased in eosinophilic asthma and COPD. In EvA, there were 12 genes with a statistically significant positive association with the linear blood eosinophil count, whereas in U-BIOPRED, 1197 genes showed significant associations (266 positive and 931 negative). The transcriptome showed little overlap between genes and pathways associated with blood eosinophil counts in asthma versus COPD. Only CST1 was common to eosinophilic asthma and COPD and was replicated in independent cohorts. CONCLUSION: Despite shared "treatable traits" between asthma and COPD, the molecular mechanisms underlying these clinical entities are predominately different.


Subject(s)
Asthma/genetics , Asthma/immunology , Eosinophils/immunology , Pulmonary Disease, Chronic Obstructive/genetics , Pulmonary Disease, Chronic Obstructive/immunology , Respiratory Mucosa/immunology , Transcriptome , Aged , Asthma/blood , Biomarkers/blood , Female , Humans , Immunoglobulin E/blood , Leukocyte Count , Male , Middle Aged , Prospective Studies , Pulmonary Disease, Chronic Obstructive/blood , RNA-Seq , Th2 Cells/immunology
19.
Lancet ; 391(10125): 1085-1096, 2018 03 17.
Article in English | MEDLINE | ID: mdl-29395273

ABSTRACT

BACKGROUND: Patients with Lennox-Gastaut syndrome, a rare, severe form of epileptic encephalopathy, are frequently treatment resistant to available medications. No controlled studies have investigated the use of cannabidiol for patients with seizures associated with Lennox-Gastaut syndrome. We therefore assessed the efficacy and safety of cannabidiol as an add-on anticonvulsant therapy in this population of patients. METHODS: In this randomised, double-blind, placebo-controlled trial done at 24 clinical sites in the USA, the Netherlands, and Poland, we investigated the efficacy of cannabidiol as add-on therapy for drop seizures in patients with treatment-resistant Lennox-Gastaut syndrome. Eligible patients (aged 2-55 years) had Lennox-Gastaut syndrome, including a history of slow (<3 Hz) spike-and-wave patterns on electroencephalogram, evidence of more than one type of generalised seizure for at least 6 months, at least two drop seizures per week during the 4-week baseline period, and had not responded to treatment with at least two antiepileptic drugs. Patients were randomly assigned (1:1) using an interactive voice response system, stratified by age group, to receive 20 mg/kg oral cannabidiol daily or matched placebo for 14 weeks. All patients, caregivers, investigators, and individuals assessing data were masked to group assignment. The primary endpoint was percentage change from baseline in monthly frequency of drop seizures during the treatment period, analysed in all patients who received at least one dose of study drug and had post-baseline efficacy data. All randomly assigned patients were included in the safety analyses. This study is registered with ClinicalTrials.gov, number NCT02224690. FINDINGS: Between April 28, 2015, and Oct 15, 2015, we randomly assigned 171 patients to receive cannabidiol (n=86) or placebo (n=85). 14 patients in the cannabidiol group and one in the placebo group discontinued study treatment; all randomly assigned patients received at least one dose of study treatment and had post-baseline efficacy data. The median percentage reduction in monthly drop seizure frequency from baseline was 43·9% (IQR -69·6 to -1·9) in the cannibidiol group and 21·8% (IQR -45·7 to 1·7) in the placebo group. The estimated median difference between the treatment groups was -17·21 (95% CI -30·32 to -4·09; p=0·0135) during the 14-week treatment period. Adverse events occurred in 74 (86%) of 86 patients in the cannabidiol group and 59 (69%) of 85 patients in the placebo group; most were mild or moderate. The most common adverse events were diarrhoea, somnolence, pyrexia, decreased appetite, and vomiting. 12 (14%) patients in the cannabidiol group and one (1%) patient in the placebo group withdrew from the study because of adverse events. One patient (1%) died in the cannabidiol group, but this was considered unrelated to treatment. INTERPRETATION: Add-on cannabidiol is efficacious for the treatment of patients with drop seizures associated with Lennox-Gastaut syndrome and is generally well tolerated. The long-term efficacy and safety of cannabidiol is currently being assessed in the open-label extension of this trial. FUNDING: GW Pharmaceuticals.


Subject(s)
Anticonvulsants/therapeutic use , Cannabidiol/therapeutic use , Lennox Gastaut Syndrome/drug therapy , Seizures/drug therapy , Adolescent , Adult , Child , Child, Preschool , Double-Blind Method , Drug Therapy, Combination , Female , Humans , Lennox Gastaut Syndrome/complications , Male , Middle Aged , Seizures/etiology , Treatment Outcome , Young Adult
20.
PLoS Pathog ; 13(12): e1006788, 2017 12.
Article in English | MEDLINE | ID: mdl-29281739

ABSTRACT

Chikungunya virus (CHIKV) belongs to a group of mosquito-borne alphaviruses associated with acute and chronic arthropathy, with peripheral and limb joints most commonly affected. Using a mouse model of CHIKV infection and arthritic disease, we show that CHIKV replication and the ensuing foot arthropathy were dramatically reduced when mice were housed at 30°C, rather than the conventional 22°C. The effect was not associated with a detectable fever, but was dependent on type I interferon responses. Bioinformatics analyses of RNA-Seq data after injection of poly(I:C)/jetPEI suggested the unfolded protein response and certain type I interferon responses are promoted when feet are slightly warmer. The ambient temperature thus appears able profoundly to effect anti-viral activity in the periphery, with clear consequences for alphaviral replication and the ensuing arthropathy. These observations may provide an explanation for why alphaviral arthropathies are largely restricted to joints of the limbs and the extremities.


Subject(s)
Alphavirus Infections/immunology , Alphavirus Infections/virology , Arthritis, Experimental/immunology , Arthritis, Experimental/virology , Arthritis, Infectious/immunology , Arthritis, Infectious/virology , Interferon Type I/metabolism , Alphavirus Infections/pathology , Animals , Arthritis, Experimental/pathology , Arthritis, Infectious/pathology , Chikungunya Fever/immunology , Chikungunya Fever/pathology , Chikungunya Fever/virology , Chikungunya virus/immunology , Chikungunya virus/pathogenicity , Chikungunya virus/physiology , Female , Foot , Host-Pathogen Interactions/immunology , Humans , Mice , Mice, Inbred C57BL , Mice, Knockout , Ross River virus/immunology , Ross River virus/pathogenicity , Ross River virus/physiology , Temperature , Viral Load , Virus Replication/immunology , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL