Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
1.
Sensors (Basel) ; 22(20)2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36298349

ABSTRACT

Soil moisture, soil organic carbon, and nitrogen content prediction are considered significant fields of study as they are directly related to plant health and food production. Direct estimation of these soil properties with traditional methods, for example, the oven-drying technique and chemical analysis, is a time and resource-consuming approach and can predict only smaller areas. With the significant development of remote sensing and hyperspectral (HS) imaging technologies, soil moisture, carbon, and nitrogen can be estimated over vast areas. This paper presents a generalized approach to predicting three different essential soil contents using a comprehensive study of various machine learning (ML) models by considering the dimensional reduction in feature spaces. In this study, we have used three popular benchmark HS datasets captured in Germany and Sweden. The efficacy of different ML algorithms is evaluated to predict soil content, and significant improvement is obtained when a specific range of bands is selected. The performance of ML models is further improved by applying principal component analysis (PCA), a dimensional reduction method that works with an unsupervised learning method. The effect of soil temperature on soil moisture prediction is evaluated in this study, and the results show that when the soil temperature is considered with the HS band, the soil moisture prediction accuracy does not improve. However, the combined effect of band selection and feature transformation using PCA significantly enhances the prediction accuracy for soil moisture, carbon, and nitrogen content. This study represents a comprehensive analysis of a wide range of established ML regression models using data preprocessing, effective band selection, and data dimension reduction and attempt to understand which feature combinations provide the best accuracy. The outcomes of several ML models are verified with validation techniques and the best- and worst-case scenarios in terms of soil content are noted. The proposed approach outperforms existing estimation techniques.


Subject(s)
Nitrogen , Soil , Soil/chemistry , Nitrogen/analysis , Carbon , Algorithms , Machine Learning
2.
Sensors (Basel) ; 16(7)2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27447631

ABSTRACT

Existing automatic building extraction methods are not effective in extracting buildings which are small in size and have transparent roofs. The application of large area threshold prohibits detection of small buildings and the use of ground points in generating the building mask prevents detection of transparent buildings. In addition, the existing methods use numerous parameters to extract buildings in complex environments, e.g., hilly area and high vegetation. However, the empirical tuning of large number of parameters reduces the robustness of building extraction methods. This paper proposes a novel Gradient-based Building Extraction (GBE) method to address these limitations. The proposed method transforms the Light Detection And Ranging (LiDAR) height information into intensity image without interpolation of point heights and then analyses the gradient information in the image. Generally, building roof planes have a constant height change along the slope of a roof plane whereas trees have a random height change. With such an analysis, buildings of a greater range of sizes with a transparent or opaque roof can be extracted. In addition, a local colour matching approach is introduced as a post-processing stage to eliminate trees. This stage of our proposed method does not require any manual setting and all parameters are set automatically from the data. The other post processing stages including variance, point density and shadow elimination are also applied to verify the extracted buildings, where comparatively fewer empirically set parameters are used. The performance of the proposed GBE method is evaluated on two benchmark data sets by using the object and pixel based metrics (completeness, correctness and quality). Our experimental results show the effectiveness of the proposed method in eliminating trees, extracting buildings of all sizes, and extracting buildings with and without transparent roof. When compared with current state-of-the-art building extraction methods, the proposed method outperforms the existing methods in various evaluation metrics.

3.
Foods ; 12(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37835306

ABSTRACT

Insect pests like Tribolium and Sitophilus siblings are major threats to grain storage and processing, causing quality and quantity losses that endanger food security. These closely related species, having very similar morphological and biological characteristics, often exhibit variations in biology and pesticide resistance, complicating control efforts. Accurate pest species identification is essential for effective control, but workplace safety in the grain bin associated with grain deterioration, clumping, fumigator hazards, and air quality create challenges. Therefore, there is a pressing need for an online automated detection system. In this work, we enriched the stored-grain pest sibling image dataset, which includes 25,032 annotated Tribolium samples of two species and five geographical strains from real warehouse and another 1774 from the lab. As previously demonstrated on the Sitophilus family, Convolutional Neural Networks demonstrate distinct advantages over other model architectures in detecting Tribolium. Our CNN model, MCSNet+, integrates Soft-NMS for better recall in dense object detection, a Position-Sensitive Prediction Model to handle translation issues, and anchor parameter fine-tuning for improved matching and speed. This approach significantly enhances mean Average Precision (mAP) for Sitophilus and Tribolium, reaching a minimum of 92.67 ± 1.74% and 94.27 ± 1.02%, respectively. Moreover, MCSNet+ exhibits significant improvements in prediction speed, advancing from 0.055 s/img to 0.133 s/img, and elevates the recognition rates of moving insect sibling species in real wheat storage and visible light, rising from 2.32% to 2.53%. The detection performance of the model on laboratory-captured images surpasses that of real storage facilities, with better results for Tribolium compared to Sitophilus. Although inter-strain variances are less pronounced, the model achieves acceptable detection results across different Tribolium geographical strains, with a minimum recognition rate of 82.64 ± 1.27%. In real-time monitoring videos of grain storage facilities with wheat backgrounds, the enhanced deep learning model based on Convolutional Neural Networks successfully detects and identifies closely related stored-grain pest images. This achievement provides a viable solution for establishing an online pest management system in real storage facilities.

4.
IEEE Trans Image Process ; 31: 721-733, 2022.
Article in English | MEDLINE | ID: mdl-34928799

ABSTRACT

Bidirectional mapping-based generalized zero-shot learning (GZSL) methods rely on the quality of synthesized features to recognize seen and unseen data. Therefore, learning a joint distribution of seen-unseen classes and preserving the distinction between seen-unseen classes is crucial for GZSL methods. However, existing methods only learn the underlying distribution of seen data, although unseen class semantics are available in the GZSL problem setting. Most methods neglect retaining seen-unseen classes distinction and use the learned distribution to recognize seen and unseen data. Consequently, they do not perform well. In this work, we utilize the available unseen class semantics alongside seen class semantics and learn joint distribution through a strong visual-semantic coupling. We propose a bidirectional mapping coupled generative adversarial network (BMCoGAN) by extending the concept of the coupled generative adversarial network into a bidirectional mapping model. We further integrate a Wasserstein generative adversarial optimization to supervise the joint distribution learning. We design a loss optimization for retaining distinctive information of seen-unseen classes in the synthesized features and reducing bias towards seen classes, which pushes synthesized seen features towards real seen features and pulls synthesized unseen features away from real seen features. We evaluate BMCoGAN on benchmark datasets and demonstrate its superior performance against contemporary methods.

5.
Pest Manag Sci ; 78(5): 1925-1937, 2022 May.
Article in English | MEDLINE | ID: mdl-35080793

ABSTRACT

BACKGROUND: Sitophilus oryzae and Sitophilus zeamais are the two main insect pests that infest stored grain worldwide. Accurate and rapid identification of the two pests is challenging because of their similar appearances. The S. zeamais adults are darker and shinier than S. oryzae in visible light. Convolutional neural network (CNN) can be applied for the effective differentiation due to its high effectiveness in object recognition. RESULTS: We propose a multilayer convolutional structure (MCS) feature extractor to extract insect characteristics within each layer of the CNN architecture. A region proposal network is adopted to determine the location of a potential pest in the wheat background. The precision of classification and the robustness of bounding box regression are increased by including deeper layer variables into the classification and bounding box regression subnets, as well as combining loss functions softmax and smooth L1. The proposed multilayer convolutional structure network (MCSNet) achieves the mean average precision of 87.89 ± 2.36% from the laboratory test, with an average detection speed of 0.182 ± 0.005 s per test. The model was further assessed with the field trials, and the obtained accuracy was 90.35 ± 3.12%. For all test conditions, the average precision for S. oryzae was higher than that for S. zeamais. CONCLUSION: The proposed MCSNet model has demonstrated that it is a fast and accurate method for detecting sibling species from visible light images in both laboratory and field trials. This will ultimately be applied for pest management together with an upgraded industrial camera system, which has been installed in over 100 000 grain depots of China.


Subject(s)
Triticum , Weevils , Animals , China , Edible Grain , Neural Networks, Computer
6.
BMC Bioinformatics ; 7: 320, 2006 Jun 23.
Article in English | MEDLINE | ID: mdl-16796748

ABSTRACT

BACKGROUND: Due to the large number of genes in a typical microarray dataset, feature selection looks set to play an important role in reducing noise and computational cost in gene expression-based tissue classification while improving accuracy at the same time. Surprisingly, this does not appear to be the case for all multiclass microarray datasets. The reason is that many feature selection techniques applied on microarray datasets are either rank-based and hence do not take into account correlations between genes, or are wrapper-based, which require high computational cost, and often yield difficult-to-reproduce results. In studies where correlations between genes are considered, attempts to establish the merit of the proposed techniques are hampered by evaluation procedures which are less than meticulous, resulting in overly optimistic estimates of accuracy. RESULTS: We present two realistically evaluated correlation-based feature selection techniques which incorporate, in addition to the two existing criteria involved in forming a predictor set (relevance and redundancy), a third criterion called the degree of differential prioritization (DDP). DDP functions as a parameter to strike the balance between relevance and redundancy, providing our techniques with the novel ability to differentially prioritize the optimization of relevance against redundancy (and vice versa). This ability proves useful in producing optimal classification accuracy while using reasonably small predictor set sizes for nine well-known multiclass microarray datasets. CONCLUSION: For multiclass microarray datasets, especially the GCM and NCI60 datasets, DDP enables our filter-based techniques to produce accuracies better than those reported in previous studies which employed similarly realistic evaluation procedures.


Subject(s)
Computational Biology/methods , Gene Expression Profiling/methods , Oligonucleotide Array Sequence Analysis/methods , Animals , Computers , Data Interpretation, Statistical , Databases, Genetic , Humans , Models, Statistical , Pattern Recognition, Automated , Reproducibility of Results , Sequence Analysis, DNA , Software
7.
J Cell Biol ; 191(6): 1189-203, 2010 Dec 13.
Article in English | MEDLINE | ID: mdl-21135139

ABSTRACT

Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal fluorescence lifetime imaging microscopy (FLIM) reveals direct interactions between PTP1B and EphA3 before ligand-stimulated receptor internalization and, subsequently, on endosomes. Moreover, overexpression of wild-type (w/t) PTP1B and the [D-A] substrate-trapping mutant decelerate ephrin-induced EphA3 trafficking in a dose-dependent manner, which reveals its role in controlling EphA3 cell surface concentration. Furthermore, we provide evidence that in areas of Eph/ephrin-mediated cell-cell contacts, the EphA3-PTP1B interaction can occur directly at the plasma membrane. Our studies for the first time provide molecular, mechanistic, and functional insights into the role of PTP1B controlling Eph/ephrin-facilitated cellular interactions.


Subject(s)
Protein Tyrosine Phosphatase, Non-Receptor Type 1/metabolism , Receptor, EphA1/metabolism , Cell Membrane/metabolism , Cells, Cultured , Humans , Microscopy, Confocal
8.
Algorithms Mol Biol ; 2: 7, 2007 Jun 04.
Article in English | MEDLINE | ID: mdl-17547742

ABSTRACT

BACKGROUND: Feature selection plays an undeniably important role in classification problems involving high dimensional datasets such as microarray datasets. For filter-based feature selection, two well-known criteria used in forming predictor sets are relevance and redundancy. However, there is a third criterion which is at least as important as the other two in affecting the efficacy of the resulting predictor sets. This criterion is the degree of differential prioritization (DDP), which varies the emphases on relevance and redundancy depending on the value of the DDP. Previous empirical works on publicly available microarray datasets have confirmed the effectiveness of the DDP in molecular classification. We now propose to establish the fundamental strengths and merits of the DDP-based feature selection technique. This is to be done through a simulation study which involves vigorous analyses of the characteristics of predictor sets found using different values of the DDP from toy datasets designed to mimic real-life microarray datasets. RESULTS: A simulation study employing analytical measures such as the distance between classes before and after transformation using principal component analysis is implemented on toy datasets. From these analyses, the necessity of adjusting the differential prioritization based on the dataset of interest is established. This conclusion is supported by comparisons against both simplistic rank-based selection and state-of-the-art equal-priorities scoring methods, which demonstrates the superiority of the DDP-based feature selection technique. Reapplying similar analyses to real-life multiclass microarray datasets provides further confirmation of our findings and of the significance of the DDP for practical applications. CONCLUSION: The findings have been achieved based on analytical evaluations, not empirical evaluation involving classifiers, thus providing further basis for the usefulness of the DDP and validating the need for unequal priorities on relevance and redundancy during feature selection for microarray datasets, especially highly multiclass datasets.

SELECTION OF CITATIONS
SEARCH DETAIL