Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
1.
J Neurochem ; 168(7): 1281-1296, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38339787

ABSTRACT

Insect neuronal nicotinic acetylcholine receptors (nAChRs) are transmembrane receptors that play a key role in the development and synaptic plasticity of both vertebrates and invertebrates and are considered to be major targets of neonicotinoid insecticides. We used dorsal unpaired median (DUM) neurons, which are insect neurosecretory cells, in order to explore the intracellular mechanisms leading to the regulation of insect neuronal nAChRs in more detail. Using whole-cell patch-clamp and fura-2AM calcium imaging techniques, we found that a novel CaMKK/AMPK pathway could be involved in the intracellular regulation of DUM neuron nAChRs. The CaMKK selective inhibitor, STO, reduced nicotinic current amplitudes, and strongly when co-applied with α-Bgt. Interestingly, intracellular application of the AMPK activator, A-76, prevented the reduction in nicotine-induced currents observed in the presence of the AMPK inhibitor, dorsomorphin. STO prevented the increase in intracellular calcium induced by nicotine, which was not dependent on α-Bgt. Currents induced by 1 mM LMA, a selective activator of nAChR2, were reduced under bath application of STO, and mecamylamine, which blocked nAChR2 subtype, inhibited the increase in intracellular calcium induced by LMA. These findings provide insight into potential complex mechanisms linked to the modulation of the DUM neuron nAChRs and CaMKK pathway.


Subject(s)
Calcium , Nicotine , Animals , Nicotine/pharmacology , Calcium/metabolism , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Nicotinic Agonists/pharmacology , Patch-Clamp Techniques , Neurons/drug effects , Neurons/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Kinase/antagonists & inhibitors , Naphthalimides/pharmacology , Protein Kinase Inhibitors/pharmacology , Benzimidazoles
2.
J Comput Chem ; 45(7): 377-391, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-37966816

ABSTRACT

Flupyradifurone (FLU) is a novel butenolide insecticide with partial agonist activity for insect nicotinic acetylcholine receptors. Its safety for non-target organisms has been questioned in the literature, despite initial claims of its harmlessness. Detailed understanding of its toxicity and related molecular mechanisms remain under discussion. Thus, in this work, an optimized set of CHARMM compatible parameters for FLU is presented. CHARMM General Force Field program was used as a starting point while the non-bonded and bonded parameters were adjusted and optimized to reproduce MP2/6-31G(d) accuracy level results. For the validity assessment of these parameters, infrared spectrum, water-octanol partition coefficient, and normal modes were computed and compared to experimental values found in the literature. Several MD simulations of FLU in water and FLU in complex with an acetylcholine-binding protein were performed to estimate the ability of the optimized parameters to correctly describe its torsional space and reproduce observed crystallographic trends respectively.


Subject(s)
4-Butyrolactone/analogs & derivatives , Molecular Dynamics Simulation , Pesticides , Pyridines , Water
3.
Toxicol Appl Pharmacol ; : 117123, 2024 Oct 09.
Article in English | MEDLINE | ID: mdl-39393466

ABSTRACT

We conducted electrophysiological and molecular docking studies using a heterologous expression system (Xenopus oocytes) to compare the effects of four neonicotinoids (acetamiprid, imidacloprid, clothianidin and thiamethoxam), one sulfoximine, (sulfoxaflor), and one butenolide (flupyradifurone), on human α7 neuronal nicotinic acetylcholine receptors (nAChRs). All neonicotinoids (except thiamethoxam), as well as the recently introduced nAChR competitive modulators, flupyradifurone and sulfoxaflor, appear to be weaker agonists than acetylcholine. Two mutations in loop C (E211N and E211P) and one mutation in loop D (Q79K), known to be involved in the binding properties of neonicotinoids were introduced to the α7 wild type. Interestingly, the acetylcholine and nicotine-evoked activation was not modified in human α7 mutated receptors, but the net charge was enhanced for clothianidin and imidacloprid, respectively. Flupyradifurone responses strongly increased under the Q79K mutation. The molecular docking investigations demonstrated that the orientations and interactions of the ligands considered were in accordance with those observed experimentally. Specifically, the charged fragments of acetylcholine and nicotine, used as reference ligands, and their neonicotinoid homologs were found to be surrounded by aromatic residues, with key interactions with Trp171 and Y210. Furthermore, the molecular docking investigations predicted the water-mediated interaction between the carbonyl oxygen of acetylcholine and the Nsp2 nitrogen of the pyridine ring for nicotine (as well as for the majority of the corresponding neonicotinoid fragments) and main chain NH of L141. The docking scores, extending over a significant range of 6 kcal/mol, showed that most neonicotinoids were poorly stabilized in the α7 nAChR compared to acetylcholine, except sulfoxaflor.

4.
Ecotoxicol Environ Saf ; 281: 116582, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38905934

ABSTRACT

Molecular docking, pivotal in predicting small-molecule ligand binding modes, struggles with accurately identifying binding conformations and affinities. This is particularly true for neonicotinoids, insecticides whose impacts on ecosystems require precise molecular interaction modeling. This study scrutinizes the effectiveness of prominent docking software (Ledock, ADFR, Autodock Vina, CDOCKER) in simulating interactions of environmental chemicals, especially neonicotinoid-like molecules with nicotinic acetylcholine receptors (nAChRs) and acetylcholine binding proteins (AChBPs). We aimed to assess the accuracy and reliability of these tools in reproducing crystallographic data, focusing on semi-flexible and flexible docking approaches. Our analysis identified Ledock as the most accurate in semi-flexible docking, while Autodock Vina with Vinardo scoring function proved most reliable. However, no software consistently excelled in both accuracy and reliability. Additionally, our evaluation revealed that none of the tools could establish a clear correlation between docking scores and experimental dissociation constants (Kd) for neonicotinoid-like compounds. In contrast, a strong correlation was found with drug-like compounds, bringing to light a bias in considered software towards pharmaceuticals, thus limiting their applicability to environmental chemicals. The comparison between semi-flexible and flexible docking revealed that the increased computational complexity of the latter did not result in enhanced accuracy. In fact, the higher computational cost of flexible docking with its lack of enhanced predictive accuracy, rendered this approach useless for this class of compounds. Conclusively, our findings emphasize the need for continued development of docking methodologies, particularly for environmental chemicals. This study not only illuminates current software capabilities but also underscores the urgency for advancements in computational molecular docking as it is a relevant tool to environmental sciences.


Subject(s)
Insecticides , Molecular Docking Simulation , Neonicotinoids , Receptors, Nicotinic , Software , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Receptors, Nicotinic/drug effects , Neonicotinoids/chemistry , Neonicotinoids/toxicity , Insecticides/chemistry , Insecticides/toxicity , Reproducibility of Results , Carrier Proteins/chemistry , Ligands
5.
Bioorg Med Chem Lett ; 80: 129124, 2023 01 15.
Article in English | MEDLINE | ID: mdl-36610552

ABSTRACT

Insect nicotinic acetylcholine receptors (nAChRs) are a recognized target for insecticide design. In this work, we have identified, from a structure-based approach using molecular modeling tools, ligands with potential selective activity for pests versus pollinators. A high-throughput virtual screening with the Openeye software was performed using a library from the ZINC database, thiacloprid being used as the target structure. The top sixteen molecules were then docked in α6 cockroach and honeybee homomeric nAChRs to check from a theoretical point of view relevant descriptors in favor of pest selectivity. Among the selected molecules, one original sulfonamide compound has afterward been synthesized, together with various analogs. Two compounds of this family have been shown to behave as activators of the cockroach cholinergic synaptic transmission.


Subject(s)
Cockroaches , Insecticides , Receptors, Nicotinic , Animals , Insecta , Models, Molecular , Insecticides/pharmacology , Nervous System
6.
Int J Mol Sci ; 24(6)2023 Mar 13.
Article in English | MEDLINE | ID: mdl-36982557

ABSTRACT

Since neonicotinoid insecticides were first introduced several years ago, most of them have been banned by the European Union due to their potentially adverse effects on humans and useful insects [...].


Subject(s)
Insecticides , Animals , Humans , Insecticides/toxicity , Insecta , Neonicotinoids/toxicity
7.
Pestic Biochem Physiol ; 184: 105126, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35715064

ABSTRACT

Synthetic insecticides continue to be the main strategy for managing insect pests, which are a major concern for both crop protection and public health. As nicotinic acetylcholine receptors play a central role in insect neurotransmission, they are the molecular target of neurotoxic insecticides such as neonicotinoids. These insecticides are used worldwide and have shown high efficiency in culture protection. However, the emergence of insect resistance mechanisms, and negative side-effects on non-target species have highlighted the need for a new control strategy. In this context, the use of insecticide mixtures with synergistic effects have been used in order to decrease the insecticide dose, and thus delay the selection of resistance-strains, and limit their negative impact. In this review, we summarize the available data concerning the mode of action of neonicotinoid mixtures, as well as their toxicity to various insect pests and non-target species. We found that insecticide mixtures containing neonicotinoids may be an effective strategy for limiting insect pests, and in particular resistant strains, although they could also negatively impact non-target species such as pollinating insects.


Subject(s)
Insecticides , Receptors, Nicotinic , Animals , Insecta , Insecticide Resistance , Insecticides/toxicity , Neonicotinoids/toxicity
8.
Int J Mol Sci ; 22(18)2021 Sep 13.
Article in English | MEDLINE | ID: mdl-34576043

ABSTRACT

The functional expression of the cockroach Pameα7 nicotinic acetylcholine receptor subunit has been previously studied, and was found to be able to form a homomeric receptor when expressed in Xenopus laevis oocytes. In this study, we found that the neonicotinoid insecticide imidacloprid is unable to activate the cockroach Pameα7 receptor, although thiacloprid induces low inward currents, suggesting that it is a partial agonist. In addition, the co-application or 5 min pretreatment with 10 µM imidacloprid increased nicotine current amplitudes, while the co-application or 5 min pretreatment with 10 µM thiacloprid decreased nicotine-evoked current amplitudes by 54% and 28%, respectively. This suggesting that these two representatives of neonicotinoid insecticides bind differently to the cockroach Pameα7 receptor. Interestingly, the docking models demonstrate that the orientation and interactions of the two insecticides in the cockroach Pameα7 nAChR binding pocket are very similar. Electrophysiological results have provided evidence to suggest that imidacloprid and thiacloprid could act as modulators of the cockroach Pameα7 receptors.


Subject(s)
Insecticides/pharmacology , Neonicotinoids/pharmacology , Nicotinic Antagonists/pharmacology , Nitro Compounds/pharmacology , Thiazines/pharmacology , Animals , Cockroaches/drug effects , Nicotinic Agonists/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Patch-Clamp Techniques , Receptors, Nicotinic , Xenopus laevis
9.
Pestic Biochem Physiol ; 168: 104633, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32711767

ABSTRACT

Some quinuclidine benzamide compounds have been found to modulate nicotinic acetylcholine receptors in both mammals and insects. In particular, the quaternarization of 3-amino quinuclidine benzamide derivatives with dichloromethane gave charged N-chloromethylated quinuclidine compounds, disclosing an antagonist profile on homomeric α7 nAChRs. Here, we synthesized and studied the toxicological effect of LMA10233, a quinuclidine-borane complex analogue, the LMA10233, on the pea aphid Acyrthosiphon pisum and found that LMA10233 only exhibit proper toxicity on A. pisum larvae when applied in concentrations of over 10 µg/ml. We assessed the ability of LMA10233 to enhance the toxicity of different insecticides. When a sublethal concentration of LMA10233 was combined with the LC10 of each compound, we found a strong increase in toxicity at 24 h and 48 h of exposure for clothianidin, fipronil and chlorpyrifos, and only at 24 h for imidacloprid, acetamiprid and deltamethrin. However, when the pesticide was used at the LC50, only acetamiprid showed a synergistic effect with LMA10233. When the concentration of LMA10233 was decreased, we found that up to 80-90% of mortality was obtained due to the synergism between acetamiprid and LMA10233. No similar effect was observed with other insecticides. We conclude that such quinuclidine-borane complex compounds could increase the toxic effect of insecticides at low concentrations.


Subject(s)
Boranes , Insecticides , Pesticides , Animals , Benzamides , Neonicotinoids , Nitro Compounds , Quinuclidines
10.
J Chem Inf Model ; 59(9): 3755-3769, 2019 09 23.
Article in English | MEDLINE | ID: mdl-31361951

ABSTRACT

Structural features and binding properties of sulfoxaflor (SFX) with Ac-AChBP, the surrogate of the insect nAChR ligand binding domain (LBD), are reported herein using various complementary molecular modeling approaches (QM, molecular docking, molecular dynamics, and QM/QM'). The different SFX stereoisomers show distinct behaviors in terms of binding and interactions with Ac-AChBP. Molecular docking and Molecular Dynamics (MD) simulations highlight the specific intermolecular contacts involved in the binding of the different SFX isomers and the relative contribution of the SFX functional groups. QM/QM' calculations provide further insights and a significant refinement of the geometric and energetic contributions of the various residues leading to a preference for the SS and RR stereoisomers. Notable differences in terms of binding interactions are pointed out for the four stereoisomers. The results point out the induced fit of the Ac-AChBP binding site according to the SFX stereoisomer. In this process, the water molecules-mediated contacts play a key role, their energetic contribution being among the most important for the various stereoisomers. In all cases, the interaction with Trp147 is the major binding component, through CH···π and π···π interactions. This study provides a rationale for the binding of SFX to insect nAChR, in particular with respect to the new class of sulfoximine-based insect nAChR competitive modulators, and points out the requirements of various levels of theory for an accurate description of ligand-receptor interactions.


Subject(s)
Aplysia/metabolism , Insecticides/metabolism , Pyridines/metabolism , Receptors, Cholinergic/metabolism , Sulfur Compounds/metabolism , Animals , Aplysia/chemistry , Aplysia/drug effects , Binding Sites , Insecticides/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Protein Binding , Pyridines/chemistry , Receptors, Cholinergic/chemistry , Sulfur Compounds/chemistry , Thermodynamics
11.
Pestic Biochem Physiol ; 151: 59-66, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30704714

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are the main target of neonicotinoid insecticides, which are widely used in crop protection against insect pests. Electrophysiological and molecular approaches have demonstrated the presence of several nAChR subtypes with different affinities for neonicotinoid insecticides. However, the precise mode of action of neonicotinoids on insect nAChRs remains to be elucidated. Radioligand binding studies with [3H]-α-bungarotoxin and [3H]-imidacloprid have proved instructive in understanding ligand binding interactions between insect nAChRs and neonicotinoid insecticides. The precise binding site interactions have been established using membranes from whole body and specific tissues. In this review, we discuss findings concerning the number of nAChR binding sites against neonicotinoid insecticides from radioligand binding studies on native tissues. We summarize the data available in the literature and compare the binding properties of the most commonly used neonicotinoid insecticides in several insect species. Finally, we demonstrate that neonicotinoid-nAChR binding sites are also linked to biological samples used and insect species.


Subject(s)
Insecticides/pharmacology , Neonicotinoids/chemistry , Neonicotinoids/metabolism , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Animals , Binding Sites , Humans , Protein Binding/drug effects
12.
J Neurochem ; 137(6): 931-8, 2016 06.
Article in English | MEDLINE | ID: mdl-27059649

ABSTRACT

Insect neurosecretory cells, called dorsal unpaired median neurons, are known to express two α-bungarotoxin-insensitive nicotinic acetylcholine receptor (nAChR) subtypes, nAChR1 and nAChR2. It was demonstrated that nAChR1 was sensitive to cAMP/cAMP-dependent protein kinase (PKA) regulation, resulting in a modulation of nicotine currents. In this study, we show that cyclic guanosine monophosphate (cGMP)/cGMP-dependent protein kinase (PKG) pathway modulates nicotine-induced currents, as increased cGMP affects the second compound of the biphasic current-voltage curve, corresponding to the nAChR2 receptors. Indeed, maintaining the guanosine triphosphate level with 100 µM guanosine triphosphate-γ-S increased nicotine currents through nAChR2. We also demonstrated that inhibition of PKG activity with 0.2 µM (8R,9S,11S)-(-)-9-methoxy-carbamyl-8-methyl-2,3,9,10-tetrahydro-8,11-epoxy-1H,8H,11H-2,7b,11a-trizadibenzo-(a,g)-cycloocta-(c,d,e)-trinden-1-one (KT5823), a PKG specific inhibitor, reduced nicotine-induced current amplitudes. KT5823 effect on nicotine currents is associated with calcium (Ca(2+) ) activity because inhibition of Ca(2+) concentration with cadmium chloride (CdCl2 ) abolished KT5823-induced inhibition mediated by nAChR2. However, specific inhibition of nitric oxide-guanylyl cyclase (GC) complex by 10 µM 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ) significantly increased nicotine-induced current amplitudes on both nAChR1 and nAChR2. These results suggest that nicotine-induced currents mediated by both α-bungarotoxin-insensitive nAChR1 and nAChR2 are coupled to the cGMP/PKG pathway. We propose that nicotinic acetylcholine receptor activation induces an increase in intracellular calcium (Ca(2+) ) concentration. Elevation of intracellular Ca(2+) results in the formation of Ca(2+) -calmodulin (CaM) complex, which activates guanylyl cyclase (GC) and/or adenylyl cyclase (AC). Ca(2+) -CaM complex could activate Ca(2+) calmodulin kinase II which could directly or indirectly modulate the nicotinic response. The mechanisms by which cyclic adenosine monophosphate (cAMP) and cyclic guanosine monophosphate (cGMP) interact remain unclear. We demonstrate that nicotine-induced currents are coupled to the cGMP/PKG pathway.


Subject(s)
Bungarotoxins/pharmacology , Cyclic GMP-Dependent Protein Kinases/metabolism , Cyclic GMP/metabolism , Neurons/drug effects , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Animals , Cadmium Chloride/pharmacology , Calcium/metabolism , Cholinergic Agents/pharmacology , Cockroaches , Cyclic GMP/pharmacology , Enzyme Inhibitors/pharmacology , Male , Membrane Potentials/drug effects , Patch-Clamp Techniques , Receptors, Nicotinic/metabolism
13.
Arch Insect Biochem Physiol ; 93(1): 40-54, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27357353

ABSTRACT

Nicotinic acetylcholine receptors are ligand-gated ion channels expressed in many insect structures, such as mushroom bodies, in which they play a central role. We have recently demonstrated using electrophysiological recordings that different native nicotinic receptors are expressed in cockroach mushroom bodies Kenyon cells. In the present study, we demonstrated that eight genes coding for cockroach nicotinic acetylcholine receptor subunits are expressed in the mushroom bodies. Quantitative real-time polymerase chain reaction (PCR) experiments demonstrated that ß1 subunit was the most expressed in the mushroom bodies. Moreover, antisense oligonucleotides performed against ß1 subunit revealed that inhibition of ß1 expression strongly decreases nicotine-induced currents amplitudes. Moreover, co-application with 0.5 µM α-bungarotoxin completely inhibited nicotine currents whereas 10 µM d-tubocurarine had a partial effect demonstrating that ß1-containing neuronal nicotinic acetylcholine receptor subtypes could be sensitive to the nicotinic acetylcholine receptor antagonist α-bungarotoxin.


Subject(s)
Insect Proteins/genetics , Periplaneta/physiology , Receptors, Nicotinic/genetics , Amino Acid Sequence , Animals , Bungarotoxins/pharmacology , Cloning, Molecular , Gene Expression , Gene Expression Regulation/drug effects , Insect Proteins/chemistry , Insect Proteins/metabolism , Male , Mushroom Bodies/metabolism , Periplaneta/drug effects , Periplaneta/genetics , Periplaneta/growth & development , Phylogeny , RNA, Messenger/genetics , RNA, Messenger/metabolism , Real-Time Polymerase Chain Reaction , Receptors, Nicotinic/chemistry , Receptors, Nicotinic/metabolism , Sequence Alignment
14.
Bioorg Med Chem Lett ; 25(16): 3184-8, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26087938

ABSTRACT

From quaternarization of quinuclidine enantiomers of 2-fluoro benzamide LMA10203 in dichloromethane, the corresponding N-chloromethyl derivatives LMA10227 and LMA10228 were obtained. Here, we compared the agonist action of known zacopride and its 2-fluoro benzamide analogues, LMA10203, LMA10227 and LMA10228 against mammalian homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We found that LMA10203 was a partial agonist of α7 receptor with a pEC50 value of 4.25 ± 0.06 µM whereas LMA10227 and LMA10228 were poorly active on α7 homomeric nicotinic receptor. LMA10227 and LMA10228 were identified as antagonists of acetylcholine-induced currents with IC50 values of 28.4 µM and 39.3 µM whereas LMA10203 and zacopride possessed IC50 values of 8.07 µM and 7.04 µM, respectively. Moreover, despite their IC50 values, LMA10227 was the most potent inhibitor of nicotine-induced current amplitudes (65.7 ± 2.1% inhibition). LMA10203 and LMA10228 had the same inhibitory effects (26.5 ± 7.5% and 33.2 ± 4.1%, respectively), whereas zacopride had no significant inhibitory effect (4.37 ± 4%) on nicotine-induced responses. Our results revealed different pharmacological properties between the four compounds on acetylcholine and nicotine currents. The mode of action of benzamide compounds may need to be reinterpreted with respect to the potential role of α7 receptor.


Subject(s)
Benzamides/chemical synthesis , Benzamides/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Nicotinic Antagonists/pharmacology , alpha7 Nicotinic Acetylcholine Receptor/drug effects , Acetylcholine/metabolism , Animals , Dose-Response Relationship, Drug , Female , Humans , Nicotine/metabolism , Oocytes/drug effects , Oocytes/metabolism , Stereoisomerism , Structure-Activity Relationship , Xenopus laevis
15.
J Comput Aided Mol Des ; 29(12): 1151-67, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26589615

ABSTRACT

The binding of thiaclopride (THI), a neonicotinoid insecticide, with Aplysia californica acetylcholine binding protein (Ac-AChBP), the surrogate of the extracellular domain of insects nicotinic acetylcholine receptors, has been studied with a QM/QM' hybrid methodology using the ONIOM approach (M06-2X/6-311G(d):PM6). The contributions of Ac-AChBP key residues for THI binding are accurately quantified from a structural and energetic point of view. The importance of water mediated hydrogen-bond (H-bond) interactions involving two water molecules and Tyr55 and Ser189 residues in the vicinity of the THI nitrile group, is specially highlighted. A larger stabilization energy is obtained with the THI-Ac-AChBP complex compared to imidacloprid (IMI), the forerunner of neonicotinoid insecticides. Pairwise interaction energy calculations rationalize this result with, in particular, a significantly more important contribution of the pivotal aromatic residues Trp147 and Tyr188 with THI through CH···π/CH···O and π-π stacking interactions, respectively. These trends are confirmed through a complementary non-covalent interaction (NCI) analysis of selected THI-Ac-AChBP amino acid pairs.


Subject(s)
Aplysia/drug effects , Aplysia/metabolism , Insecticides/metabolism , Receptors, Nicotinic/metabolism , Amino Acids/chemistry , Amino Acids/metabolism , Animals , Binding Sites , Hydrogen Bonding , Imidazoles/chemistry , Imidazoles/metabolism , Insecticides/chemistry , Molecular Docking Simulation , Neonicotinoids , Nitro Compounds/chemistry , Nitro Compounds/metabolism , Protein Binding , Protein Structure, Tertiary , Quantum Theory , Receptors, Nicotinic/chemistry , Thermodynamics
16.
Bioorg Med Chem ; 23(7): 1540-50, 2015 Apr 01.
Article in English | MEDLINE | ID: mdl-25716006

ABSTRACT

Structural features and selected physicochemical properties of four common pesticides: acetamiprid (neonicotinoid), chlorpyriphos (organophosphate insecticide), deltamethrin (pyrethroid) and fipronil (phenylpyrazole) have been investigated by Density Functional Theory quantum chemical calculations. The high flexible character of these insecticides is revealed by the numerous conformers obtained, located within a 20kJmol(-1) range in the gas phase. In line with this trend, a redistribution of the energetic minima is observed in water medium. Molecular electrostatic potential calculations provide a ranking of the potential interaction sites of the four insecticides. The theoretical studies reported in the present work are completed by comparative toxicological assays against three aphid strains. Thus, the same toxicity order for the two susceptible strains Myzus persicae 4106A and Acyrthosiphon pisum LSR1: acetamiprid>fipronil>deltamethrin>chlorpyriphos is revealed. In the resistant strain M. persicae 1300145, the toxicity order is modified: acetamiprid>fipronil>chlorpyriphos>deltamethrin. Interestingly, the strain 1300145 which is known to be resistant to neonicotinoids, is also less sensitive to deltamethrin, chlorpyriphos and fipronil.


Subject(s)
Chlorpyrifos/chemistry , Nitriles/chemistry , Pesticides/chemistry , Pyrazoles/chemistry , Pyrethrins/chemistry , Pyridines/chemistry , Animals , Chlorpyrifos/toxicity , Dose-Response Relationship, Drug , Female , Insecta/drug effects , Neonicotinoids , Nitriles/toxicity , Pesticides/toxicity , Pyrazoles/toxicity , Pyrethrins/toxicity , Pyridines/toxicity
17.
J Neurochem ; 130(4): 507-13, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24773052

ABSTRACT

Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII), which transduces the signal into downstream effects. We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms, and only PaCaMKII-E isoform is specifically expressed in the dorsal unpaired median neurosecretory cells. In the present study, using antisense oligonucleotides, we demonstrated that PaCaMKII-E isoform inhibition reduced nicotine-induced currents through α-bungarotoxin-sensitive and -insensitive nicotinic acetylcholine receptor subtypes. Specifically, PaCaMKII-E isoform is sufficient to repress nicotinic current amplitudes as a result of its depression by antisense oligonucleotides. Similar results were found using the neonicotinoid insecticide clothianidin, which acted as a full agonist of dorsal unpaired median neuron nicotinic acetylcholine receptors. Clothianidin current amplitudes are strongly reduced under bath application of PaCaMKII-E antisense oligonucleotides but no significant results are found with α-bungarotoxin co-applied, demonstrating that CaMKII-E isoform affects nicotine currents through α-bungarotoxin-sensitive and -insensitive receptor subtypes whereas clothianidin currents are reduced via α-bungarotoxin-insensitive receptors. In addition, we found that intracellular calcium increase induced by nicotine and clothianidin were reduced by PaCaMKII-E antisense oligonucleotides, demonstrating that intracellular calcium increase induced by nicotine and clothianidin are affected by PaCaMKII-E inhibition. Cellular responses to Ca(2+) require intermediary proteins such as calcium/calmodulin-dependent protein kinase II (CaMKII). We recently demonstrated that the cockroach genome encodes five different CaMKII isoforms and only PaCaMKII-E isoform was specifically expressed in the dorsal unpaired median neurosecretory cells. Here we show that specific inhibition of PaCaMKII-E isoform is associated with a decrease in nicotine- and clothianidin-induced currents. In addition, analysis of calcium changes demonstrates that PaCaMKII-E inhibition induces a decrease in intracellular calcium concentration.


Subject(s)
Calcium Channels/drug effects , Calcium-Calmodulin-Dependent Protein Kinase Type 2/antagonists & inhibitors , Cockroaches/physiology , Guanidines/pharmacology , Neurosecretory Systems/metabolism , Nicotine/pharmacology , Nicotinic Agonists/pharmacology , Thiazoles/pharmacology , Animals , Calcium Signaling/drug effects , Electrophysiological Phenomena , Ganglia, Invertebrate/drug effects , Ganglia, Invertebrate/metabolism , Immunohistochemistry , Male , Neonicotinoids , Neurosecretory Systems/cytology , Neurosecretory Systems/drug effects , Patch-Clamp Techniques , Real-Time Polymerase Chain Reaction , Receptors, Nicotinic/drug effects
18.
Bioorg Med Chem Lett ; 24(15): 3552-5, 2014 Aug 01.
Article in English | MEDLINE | ID: mdl-24915877

ABSTRACT

Here, we describe the synthesis of two new fluorescent derivatives of thiamethoxam and compared their toxicity on aphid Acyrthosiphon pisum and their mode of action on insect nicotinic acetylcholine receptors expressed on the sixth abdominal ganglion. The compound 3 with two 2-chlorothiazole moieties was found to be more toxic using toxicological bioassays 24 h and 48 h after exposure while compound 4 appeared more active using cockroach ganglionic depolarization. Interestingly, thiamethoxam appeared more effective than component 3 and 4, respectively. Our results demonstrated that component 3 and 4 act as agonists of insect nicotinic acetylcholine receptors.


Subject(s)
Aphids/drug effects , Fluorescent Dyes/pharmacology , Insecticides/pharmacology , Nitro Compounds/pharmacology , Oxazines/pharmacology , Receptors, Nicotinic/metabolism , Thiazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Fluorescent Dyes/chemical synthesis , Fluorescent Dyes/chemistry , Insecticides/chemical synthesis , Insecticides/chemistry , Molecular Conformation , Neonicotinoids , Nitro Compounds/chemical synthesis , Nitro Compounds/chemistry , Oxazines/chemical synthesis , Oxazines/chemistry , Structure-Activity Relationship , Thiamethoxam , Thiazoles/chemical synthesis , Thiazoles/chemistry
19.
Insects ; 15(1)2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38249060

ABSTRACT

Toxicological studies have shown that the American cockroach Periplaneta americana (Linnaeus) is a classical model for studying the mode of action of commonly used insecticides. In a previous study, we demonstrated that thiamethoxam and clothianidin decreased locomotor activity in an open-field-like apparatus. Here, we tested the effect of the neonicotinoid acetamiprid when applied orally, topically, or injected into the haemolymph. We found that acetamiprid was also able to impair locomotor activity in the open-field-like apparatus. When treated with acetamiprid, a strong alteration in locomotor activity was observed 1 h, 24 h, and 48 h after haemolymph and topical applications. Oral application induced an impairment of locomotor activity at 24 h and 48 h. A comparison of the present data with our previously published results showed that neonicotinoids were more active when injected into the haemolymph compared to oral and topical applications. These findings increased our understanding of the effect of neonicotinoid insecticides on insect locomotor activity, and demonstrated that the cyano-substituted neonicotinoid, acetamiprid, was able to alter cockroach locomotor activity.

20.
SELECTION OF CITATIONS
SEARCH DETAIL