Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Mol Cell ; 80(4): 562-577, 2020 11 19.
Article in English | MEDLINE | ID: mdl-33217316

ABSTRACT

Intratumoral heterogeneity can occur via phenotype transitions, often after chronic exposure to targeted anticancer agents. This process, termed lineage plasticity, is associated with acquired independence to an initial oncogenic driver, resulting in treatment failure. In non-small cell lung cancer (NSCLC) and prostate cancers, lineage plasticity manifests when the adenocarcinoma phenotype transforms into neuroendocrine (NE) disease. The exact molecular mechanisms involved in this NE transdifferentiation remain elusive. In small cell lung cancer (SCLC), plasticity from NE to nonNE phenotypes is driven by NOTCH signaling. Herein we review current understanding of NE lineage plasticity dynamics, exemplified by prostate cancer, NSCLC, and SCLC.


Subject(s)
Cell Lineage , Cell Plasticity , Lung Neoplasms/pathology , Neuroendocrine Tumors/pathology , Phenotype , Prostatic Neoplasms/pathology , Disease Progression , Humans , Lung Neoplasms/therapy , Male , Neuroendocrine Tumors/therapy , Prostatic Neoplasms/therapy
2.
Diagn Pathol ; 19(1): 83, 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38907236

ABSTRACT

BACKGROUND: Catenin (Cadherin-Associated Protein), Beta 1 (CTNNB1) genomic alterations are rare in prostate cancer (PCa). Gain-of-function mutations lead to overexpression of ß-catenin, with consequent hyperactivation of the Wnt/ß-catenin signaling pathway, implicated in PCa progression and treatment resistance. To date, successful targeted treatment options for Wnt/ß-catenin - driven PCa are lacking. METHODS: We report a rare histologic transformation of a CTNNB1 (ß-catenin) mutated metastatic castration resistant prostate cancer (mCRPC), clinically characterized by highly aggressive disease course. We histologically and molecularly characterized the liver metastatic tumor samples, as well as successfully generated patient-derived organoids (PDOs) and patient-derived xenograft (PDX) from a liver metastasis. We used the generated cell models for further molecular characterization and drug response assays. RESULTS: Immunohistochemistry of liver metastatic biopsies and PDX tumor showed lack of expression of typical PCa (e.g., AR, PSA, PSAP, ERG) or neuroendocrine markers (synaptophysin), compatible with double-negative CRPC, but was positive for nuclear ß-catenin expression, keratin 7 and 34ßE12. ERG rearrangement was confirmed by fluorescent in situ hybridization (FISH). Drug response assays confirmed, in line with the clinical disease course, lack of sensitivity to common drugs used in mCRPC (e.g., enzalutamide, docetaxel). The casein kinase 1 (CK1) inhibitor IC261 and the tankyrase 1/2 inhibitor G700-LK showed modest activity. Moreover, despite harbouring a CTNNB1 mutation, PDOs were largely insensitive to SMARCA2/4- targeting PROTAC degraders and inhibitor. CONCLUSIONS: The reported CTNNB1-mutated mCRPC case highlights the potential challenges of double-negative CRPC diagnosis and underlines the relevance of further translational research to enable successful targeted treatment of rare molecular subtypes of mCRPC.


Subject(s)
Mutation , beta Catenin , Humans , Male , beta Catenin/genetics , beta Catenin/metabolism , Prostatic Neoplasms, Castration-Resistant/pathology , Prostatic Neoplasms, Castration-Resistant/genetics , Prostatic Neoplasms, Castration-Resistant/metabolism , Prostatic Neoplasms, Castration-Resistant/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/secondary , Liver Neoplasms/pathology , Animals , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Aged , Disease Progression
3.
Cancer Immunol Res ; 10(1): 87-107, 2022 01.
Article in English | MEDLINE | ID: mdl-34782346

ABSTRACT

Targeting chromatin binding proteins and modifying enzymes can concomitantly affect tumor cell proliferation and survival, as well as enhance antitumor immunity and augment cancer immunotherapies. By screening a small-molecule library of epigenetics-based therapeutics, BET (bromo- and extra-terminal domain) inhibitors (BETi) were identified as agents that sensitize tumor cells to the antitumor activity of CD8+ T cells. BETi modulated tumor cells to be sensitized to the cytotoxic effects of the proinflammatory cytokine TNF. By preventing the recruitment of BRD4 to p65-bound cis-regulatory elements, BETi suppressed the induction of inflammatory gene expression, including the key NF-κB target genes BIRC2 (cIAP1) and BIRC3 (cIAP2). Disruption of prosurvival NF-κB signaling by BETi led to unrestrained TNF-mediated activation of the extrinsic apoptotic cascade and tumor cell death. Administration of BETi in combination with T-cell bispecific antibodies (TCB) or immune-checkpoint blockade increased bystander killing of tumor cells and enhanced tumor growth inhibition in vivo in a TNF-dependent manner. This novel epigenetic mechanism of immunomodulation may guide future use of BETi as adjuvants for immune-oncology agents.


Subject(s)
Antineoplastic Agents/administration & dosage , Colorectal Neoplasms/drug therapy , Inhibitor of Apoptosis Proteins/genetics , Nuclear Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/genetics , Animals , Apoptosis/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Gene Expression Regulation, Neoplastic/drug effects , Humans , Inhibitor of Apoptosis Proteins/metabolism , NF-kappa B/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Signal Transduction/drug effects , Transcription Factors/genetics , Transcription Factors/metabolism , Ubiquitin-Protein Ligases/metabolism
4.
Cancer Cell ; 38(3): 309-311, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32931739

ABSTRACT

An outgrowth of therapy-resistant prostate cancers (PCa) with enhanced metastatic potential may be triggered by inhibitors of androgen receptor (AR) signaling, often via epigenetic rewiring. In this issue of Cancer Cell, Yuan et al. demonstrate how SETD2 integrates EZH2 and AMPK signaling pathways to keep PCa metastasis in check.


Subject(s)
Prostatic Neoplasms , Receptors, Androgen , AMP-Activated Protein Kinases , Cell Line, Tumor , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Neoplastic , Humans , Male , Prostatic Neoplasms/genetics , Receptors, Androgen/genetics , Receptors, Androgen/metabolism
5.
Nat Commun ; 11(1): 5549, 2020 11 03.
Article in English | MEDLINE | ID: mdl-33144576

ABSTRACT

Advanced prostate cancer initially responds to hormonal treatment, but ultimately becomes resistant and requires more potent therapies. One mechanism of resistance observed in around 10-20% of these patients is lineage plasticity, which manifests in a partial or complete small cell or neuroendocrine prostate cancer (NEPC) phenotype. Here, we investigate the role of the mammalian SWI/SNF (mSWI/SNF) chromatin remodeling complex in NEPC. Using large patient datasets, patient-derived organoids and cancer cell lines, we identify mSWI/SNF subunits that are deregulated in NEPC and demonstrate that SMARCA4 (BRG1) overexpression is associated with aggressive disease. We also show that SWI/SNF complexes interact with different lineage-specific factors in NEPC compared to prostate adenocarcinoma. These data point to a role for mSWI/SNF complexes in therapy-related lineage plasticity, which may also be relevant for other solid tumors.


Subject(s)
Cell Lineage , Cell Plasticity , Chromosomal Proteins, Non-Histone/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Transcription Factors/metabolism , Adenocarcinoma/genetics , Adenocarcinoma/pathology , Cell Line, Tumor , Cohort Studies , DNA Helicases/genetics , DNA Helicases/metabolism , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Male , Models, Biological , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Neuroendocrine Tumors/metabolism , Neuroendocrine Tumors/pathology , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Prostatic Neoplasms/genetics , Protein Subunits/metabolism , Transcription Factors/genetics , Transcriptome/genetics
6.
ACS Chem Biol ; 14(10): 2215-2223, 2019 10 18.
Article in English | MEDLINE | ID: mdl-31553577

ABSTRACT

Proteolysis targeting chimeras are bifunctional small molecules capable of recruiting a target protein of interest to an E3 ubiquitin ligase that facilitates target ubiquitination followed by proteasome-mediated degradation. The first molecules acting on this novel therapeutic paradigm have just entered clinical testing. Here, by using Bromodomain Containing 4 (BRD4) degraders engaging cereblon and Von Hippel-Lindau E3 ligases, we investigated key determinants of resistance to this new mode of action. A loss-of-function screen for genes required for BRD4 degradation revealed strong dependence on the E2 and E3 ubiquitin ligases as well as for members of the COP9 signalosome complex for both cereblon- and Von Hippel-Lindau-engaging BRD4 degraders. Cancer cell lines raised to resist BRD4 degraders manifested a degrader-specific mechanism of resistance, resulting from the loss of components of the ubiquitin proteasome system. In addition, degrader profiling in a cancer cell line panel revealed a differential pattern of activity of Von Hippel-Lindau- and cereblon-based degraders, highlighting the need for the identification of degradation-predictive biomarkers enabling effective patient stratification.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Azepines/pharmacology , Cell Cycle Proteins/metabolism , Drug Resistance/drug effects , Transcription Factors/metabolism , Von Hippel-Lindau Tumor Suppressor Protein/metabolism , Cell Cycle Proteins/chemistry , Cell Line, Tumor , Dipeptides/pharmacology , HEK293 Cells , Humans , Phthalimides/pharmacology , Proof of Concept Study , Proteolysis , Transcription Factors/chemistry , Ubiquitin-Protein Ligases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL