Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 152
Filter
1.
Cell ; 180(5): 895-914.e27, 2020 03 05.
Article in English | MEDLINE | ID: mdl-32142680

ABSTRACT

A safe and controlled manipulation of endocytosis in vivo may have disruptive therapeutic potential. Here, we demonstrate that the anti-emetic/anti-psychotic prochlorperazine can be repurposed to reversibly inhibit the in vivo endocytosis of membrane proteins targeted by therapeutic monoclonal antibodies, as directly demonstrated by our human tumor ex vivo assay. Temporary endocytosis inhibition results in enhanced target availability and improved efficiency of natural killer cell-mediated antibody-dependent cellular cytotoxicity (ADCC), a mediator of clinical responses induced by IgG1 antibodies, demonstrated here for cetuximab, trastuzumab, and avelumab. Extensive analysis of downstream signaling pathways ruled out on-target toxicities. By overcoming the heterogeneity of drug target availability that frequently characterizes poorly responsive or resistant tumors, clinical application of reversible endocytosis inhibition may considerably improve the clinical benefit of ADCC-mediating therapeutic antibodies.


Subject(s)
Antibody-Dependent Cell Cytotoxicity/drug effects , Drug Resistance, Neoplasm/immunology , Neoplasms/drug therapy , Prochlorperazine/pharmacology , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/immunology , Antigen Presentation/drug effects , Biopsy , Cetuximab/pharmacology , Drug Delivery Systems/methods , Drug Resistance, Neoplasm/genetics , Endocytosis/drug effects , Endocytosis/immunology , Heterografts , Humans , Immunoglobulin G/genetics , Immunoglobulin G/immunology , Killer Cells, Natural/drug effects , Killer Cells, Natural/immunology , MCF-7 Cells , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Neoplasms/genetics , Neoplasms/immunology , Signal Transduction/drug effects , Signal Transduction/immunology , Trastuzumab/pharmacology
2.
Immunity ; 51(5): 885-898.e7, 2019 11 19.
Article in English | MEDLINE | ID: mdl-31542340

ABSTRACT

Graft-versus-host disease (GVHD) in the gastrointestinal (GI) tract is the principal determinant of lethality following allogeneic bone marrow transplantation (BMT). Here, we examined the mechanisms that initiate GVHD, including the relevant antigen-presenting cells. MHC class II was expressed on intestinal epithelial cells (IECs) within the ileum at steady state but was absent from the IECs of germ-free mice. IEC-specific deletion of MHC class II prevented the initiation of lethal GVHD in the GI tract. MHC class II expression on IECs was absent from mice deficient in the TLR adaptors MyD88 and TRIF and required IFNγ secretion by lamina propria lymphocytes. IFNγ responses are characteristically driven by IL-12 secretion from myeloid cells. Antibiotic-mediated depletion of the microbiota inhibited IL-12/23p40 production by ileal macrophages. IL-12/23p40 neutralization prevented MHC class II upregulation on IECs and initiation of lethal GVHD in the GI tract. Thus, MHC class II expression by IECs in the ileum initiates lethal GVHD, and blockade of IL-12/23p40 may represent a readily translatable therapeutic strategy.


Subject(s)
Antigen Presentation/immunology , Antigen-Presenting Cells/immunology , Gastrointestinal Microbiome/immunology , Graft vs Host Disease/etiology , Histocompatibility Antigens Class II/immunology , Intestinal Mucosa/immunology , Animals , Antigen-Presenting Cells/metabolism , Biomarkers , Cytokines/metabolism , Disease Susceptibility , Female , Gene Expression , Graft vs Host Disease/mortality , Histocompatibility Antigens Class II/genetics , Ileum/metabolism , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Kaplan-Meier Estimate , Lymphocyte Subsets/immunology , Lymphocyte Subsets/metabolism , Male , Mice , Mice, Transgenic , Prognosis , Promoter Regions, Genetic , Signal Transduction
3.
Blood ; 143(18): 1873-1877, 2024 May 02.
Article in English | MEDLINE | ID: mdl-38457663

ABSTRACT

ABSTRACT: High prevalence of IDH mutations in seronegative rheumatoid arthritis (RA) with myeloid neoplasm, elevated 2-hydroxyglutarate, dysregulated innate immunity, and proinflammatory microenvironment suggests causative association between IDH mutations and seronegative RA. Our findings merit investigation of IDH inhibitors as therapeutics for seronegative IDH-mutated RA.


Subject(s)
Arthritis, Rheumatoid , Immunity, Innate , Isocitrate Dehydrogenase , Mutation , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/genetics , Isocitrate Dehydrogenase/genetics , Male , Female , Middle Aged , Aged
4.
Immunol Cell Biol ; 102(5): 353-357, 2024.
Article in English | MEDLINE | ID: mdl-38216149

ABSTRACT

Immunology research holds significant potential for enhanced inclusivity at the beginning of the science literacy journey, but persistent challenges stem from limited awareness that improvement is needed in this field. At the 2023 Monash Sensory Science Exhibition, we had the opportunity to present several tactile posters, using simple materials, for visually impaired participants to showcase our research on the pathogenesis of rheumatoid arthritis as a result of immune tolerance breakdown and liposome-based tolerogenic immunotherapy. The posters stimulated lively discussions about autoimmune arthritic diseases and our research. With consideration of the diversity of the participants, the efforts of scientists in promoting science literacy for the community can promote a more inclusive environment and engage and inspire a broader audience.


Subject(s)
Arthritis, Rheumatoid , Calcitriol , Immune Tolerance , Immunotherapy , Liposomes , Animals , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/therapy , Autoantigens/immunology , Calcitriol/administration & dosage , Immunotherapy/methods , Peptides/administration & dosage , Peptides/immunology
5.
Ann Rheum Dis ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38777379

ABSTRACT

OBJECTIVE: Tissue-resident memory cells (Trm) are a subset of T cells residing persistently and long-term within specific tissues that contribute to persistent inflammation and tissue damage. We characterised the phenotype and function of Trm and the role of CD103 in primary Sjogren's syndrome (pSS). METHODS: In both pSS and non-pSS sicca syndrome patients, we examined Trm frequency, cytokine production in salivary glands (SG) and peripheral blood (PB). We also analysed Trm-related gene expression in SG biopsies through bulk and single-cell RNA sequencing (scRNAseq). Additionally, we investigated Trm properties in an immunisation-induced animal model of pSS (experimental SS, ESS) mouse model and assessed the effects of Trm inhibition via intraglandular anti-CD103 monoclonal antibody administration. RESULTS: Transcriptomic pSS SG showed an upregulation of genes associated with tissue recruitment and long-term survival of Trm cells, confirmed by a higher frequency of CD8+CD103+CD69+ cells in pSS SG, compared with non-specific sialadenitis (nSS). In SG, CD8+ CD103+ Trm contributed to the secretion of granzyme-B and interferon-γ, CD8+ Trm cells were localised within inflammatory infiltrates, where PD1+CD8+ T cells were also increased compared with nSS and MALT lymphoma. scRNAseq of PB and pSS SG T cells confirmed expression of CD69, ITGAE, GZMB, GZMK and HLA-DRB1 among CD3+CD8+ SG T cells. In the SG of ESS, CD8+CD69+CD103+ Trm producing Granzyme B progressively expanded. However, intraglandular blockade of CD103 in ESS reduced Trm, reduced glandular damage and improved salivary flow. CONCLUSIONS: CD103+CD8+Trm cells are expanded in the SG of pSS and ESS, participate in tissue inflammation and can be therapeutically targeted.

6.
Clin Immunol ; 247: 109220, 2023 02.
Article in English | MEDLINE | ID: mdl-36596403

ABSTRACT

Disturbances in immune regulation, intestinal dysbiosis and inflammation characterize ankylosing spondylitis (AS), which is associated with RUNX3 loss-of-function variants. ZAP70W163C mutant (SKG) mice have reduced ZAP70 signaling, spondyloarthritis and ileitis. In small intestine, Foxp3+ regulatory T cells (Treg) and CD4+CD8αα+TCRαß+ intraepithelial lymphocytes (CD4-IEL) control inflammation. TGF-ß and retinoic acid (RA)-producing dendritic cells and MHC-class II+ intestinal epithelial cells (IEC) are required for Treg and CD4-IEL differentiation from CD4+ conventional or Treg precursors, with upregulation of Runx3 and suppression of ThPOK. We show in SKG mouse ileum, that ZAP70W163C or ZAP70 inhibition prevented CD4-IEL but not Treg differentiation, dysregulating Runx3 and ThPOK. TGF-ß/RA-mediated CD4-IEL development, T-cell IFN-γ production, MHC class-II+ IEC, tissue-resident memory T-cell and Runx3-regulated genes were reduced. In AS intestine, CD4-IEL were decreased, while in AS blood CD4+CD8+ T cells were reduced and Treg increased. Thus, genetically-encoded TCR signaling dysfunction links intestinal T-cell immunodeficiency in mouse and human spondyloarthropathy.


Subject(s)
CD8-Positive T-Lymphocytes , Core Binding Factor Alpha 3 Subunit , Spondylarthropathies , Animals , Humans , Mice , CD4-Positive T-Lymphocytes , Core Binding Factor Alpha 3 Subunit/genetics , Inflammation , Intestinal Mucosa , Intestines , Receptors, Antigen, T-Cell, alpha-beta , Spondylarthropathies/genetics , Transforming Growth Factor beta
7.
Clin Exp Immunol ; 211(2): 164-175, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36545825

ABSTRACT

Type 1 diabetes and Graves' disease are chronic autoimmune conditions, characterized by a dysregulated immune response. In Type 1 diabetes, there is beta cell destruction and subsequent insulin deficiency whereas in Graves' disease, there is unregulated excessive thyroid hormone production. Both diseases result in significant psychosocial, physiological, and emotional burden. There are associated risks of diabetic ketoacidosis and hypoglycaemia in Type 1 diabetes and risks of thyrotoxicosis and orbitopathy in Graves' disease. Advances in the understanding of the immunopathogenesis and response to immunotherapy in Type 1 diabetes and Graves' disease have facilitated the introduction of targeted therapies to induce self-tolerance, and subsequently, the potential to induce long-term remission if effective. We explore current research surrounding the use of antigen-specific immunotherapies, with a focus on human studies, in Type 1 diabetes and Graves' disease including protein-based, peptide-based, dendritic-cell-based, and nanoparticle-based immunotherapies, including discussion of factors to be considered when translating immunotherapies to clinical practice.


Subject(s)
Diabetes Mellitus, Type 1 , Graves Disease , Humans , Diabetes Mellitus, Type 1/therapy , Graves Disease/therapy , Immunotherapy , Immune Tolerance , Self Tolerance
8.
Immunol Cell Biol ; 100(1): 33-48, 2022 01.
Article in English | MEDLINE | ID: mdl-34668580

ABSTRACT

The autoimmune disease type 1 diabetes is predominantly mediated by CD8+ cytotoxic T-cell destruction of islet beta cells, of which islet-specific glucose-6-phosphatase catalytic subunit-related protein (IGRP)206-214 is a dominant target antigen specificity. Previously, we found that a liposome-based antigen-specific immunotherapy encapsulating the CD4+ T-cell islet epitope 2.5mim together with the nuclear factor-κB inhibitor calcitriol induced regulatory T cells and protected from diabetes in NOD mice. Here we investigated whether the same system delivering IGRP206-214 could induce antigen-specific CD8+ T-cell-targeted immune regulation and delay diabetes. Subcutaneous administration of IGRP206-214 /calcitriol liposomes transiently activated and expanded IGRP-specific T-cell receptor transgenic 8.3 CD8+ T cells. Liposomal co-delivery of calcitriol was required to optimally suppress endogenous IGRP-specific CD8+ T-cell interferon-γ production and cytotoxicity. Concordantly, a short course of IGRP206-214 /calcitriol liposomes delayed diabetes progression and reduced insulitis. However, when IGRP206-214 /calcitriol liposomes were delivered together with 2.5mim /calcitriol liposomes, disease protection was not observed and the regulatory effect of 2.5mim /calcitriol liposomes was abrogated. Thus, tolerogenic liposomes that target either a dominant CD8+ or a CD4+ T-cell islet epitope can delay diabetes progression but combining multiple epitopes does not enhance protection.


Subject(s)
Diabetes Mellitus, Type 1 , Animals , CD8-Positive T-Lymphocytes , Epitopes, T-Lymphocyte , Glucose-6-Phosphatase/metabolism , Immune Tolerance , Liposomes/metabolism , Mice , Mice, Inbred NOD , T-Lymphocytes, Regulatory
9.
Clin Exp Immunol ; 207(1): 72-83, 2022 01 28.
Article in English | MEDLINE | ID: mdl-35020859

ABSTRACT

Antigen-specific T cells can serve as a response biomarker in non-clinical or clinical immunotherapy studies in autoimmune disease. There are protocols with optimized multimer staining methods to detect peptide (p)MHCII+ CD4+ T cells, and some qualified and validated protocols for pMHCI+ CD8+ T cells. However, no protocol is fully or partially qualified to enumerate and characterize antigen-specific pMHCII+ CD4+ T cells from patient samples. Implementing such an assay requires a desired level of specificity and precision, in terms of assay repeatability and reproducibility. In transgenic type II collagen (CII)-immunized HLA-DR1/DR4 humanized mouse models of collagen-induced arthritis (CIA), CII259-273-specific T cells dominantly expand. Therefore antigen-specific T cells recognizing this epitope presented by rheumatoid arthritis (RA)-associated risk HLA-DR allomorphs are of interest to understand disease progression and responses to immunotherapy in RA patients. Using HLA-DRB1∗04:01 or ∗01:01-collagen type II (CII)259-273 tetramers, we evaluated parameters influencing precision and reproducibility of an optimized flow cytometry-based method for antigen-specific CD4+ T cells and eight specific subpopulations with and without tetramer positivity. We evaluated specificity, precision, and reproducibility for research environments and non-regulated laboratories. The assay has excellent overall precision with %CV<25% for intra-assay repeatability, inter-analyst precision, and inter-assay reproducibility. The precision of the assay correlated negatively with the cell viability after thawing, indicating that post-thaw viability is a critical parameter for reproducibility. This assay is suitable for longitudinal analysis of treatment response and disease activity outcome in RA patients, and adaptable for translational or immunotherapy clinical trial settings.


Subject(s)
Arthritis, Rheumatoid , CD4-Positive T-Lymphocytes , Animals , Flow Cytometry , HLA-DR4 Antigen , Humans , Mice , Mice, Transgenic , Peptides , Reproducibility of Results , Staining and Labeling
10.
J Immunol ; 204(7): 1787-1797, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32111734

ABSTRACT

Ag-specific tolerizing immunotherapy is considered the optimal strategy to control type 1 diabetes, a childhood disease involving autoimmunity toward multiple islet antigenic peptides. To understand whether tolerizing immunotherapy with a single peptide could control diabetes driven by multiple Ags, we coencapsulated the high-affinity CD4+ mimotope (BDC2.5mim) of islet autoantigen chromogranin A (ChgA) with or without calcitriol (1α,25-dihydroxyvitamin D3) into liposomes. After liposome administration, we followed the endogenous ChgA-specific immune response with specific tetramers. Liposome administration s.c., but not i.v., induced ChgA-specific Foxp3+ and Foxp3- PD1+ CD73+ ICOS+ IL-10+ peripheral regulatory T cells in prediabetic mice, and liposome administration at the onset of hyperglycemia significantly delayed diabetes progression. After BDC2.5mim/calcitriol liposome administration, adoptive transfer of CD4+ T cells suppressed the development of diabetes in NOD severe combined immunodeficiency mice receiving diabetogenic splenocytes. After BDC2.5mim/calcitriol liposome treatment and expansion of ChgA-specific peripheral regulatory T cells. IFN-γ production and expansion of islet-specific glucose-6-phosphatase catalytic subunit-related protein-specific CD8+ T cells were also suppressed in pancreatic draining lymph node, demonstrating bystander tolerance at the site of Ag presentation. Thus, liposomes encapsulating the single CD4+ peptide, BDC2.5mim, and calcitriol induce ChgA-specific CD4+ T cells that regulate CD4+ and CD8+ self-antigen specificities and autoimmune diabetes in NOD mice.


Subject(s)
Autoantigens/immunology , Autoimmune Diseases/immunology , Autoimmunity/immunology , Diabetes Mellitus, Type 1/immunology , Islets of Langerhans/immunology , Liposomes/immunology , T-Lymphocytes, Regulatory/immunology , Animals , Autoimmune Diseases/therapy , CD4-Positive T-Lymphocytes , CD8-Positive T-Lymphocytes , Diabetes Mellitus, Type 1/therapy , Female , Immune Tolerance/immunology , Immunotherapy/methods , Mice , Mice, Inbred NOD , Mice, SCID , Peptides/immunology
11.
Intern Med J ; 52(5): 711-716, 2022 05.
Article in English | MEDLINE | ID: mdl-34553824

ABSTRACT

New evidence shows that up to 40% of rheumatoid arthritis (RA) cases are attributable to exposure to potentially modifiable factors. We can now identify people at higher risk of RA (pre-RA) through their family history, risk factors, autoantibodies and symptoms. Counselling these patients to act to modify factors known to be associated with RA risk could prevent the development of RA, and evidence shows that informing individuals of their risk and of ways to reduce it leads to positive behavioural change and is not harmful. This consumer-focussed narrative review is targeted at primary care providers and physicians to describe 11 changes that can be made, based on current evidence linking potentially modifiable factors to RA risk. These evidence-based recommendations are: (i) cease smoking; (ii) reduce exposure to inhaled silica, dusts and occupational risks; (iii) maintain a healthy weight; (iv) increase leisure time physical activity; (v) maintain good dental hygiene; (vi) maximise breastfeeding if able; (vii) maximise dietary quality and avoid high-salt diets; (viii) consume high levels of omega-3 fatty acids and fish; (ix) reduce consumption of sugar-sweetened soft drinks; (x) consume moderate levels of alcohol; and (xi) remain vitamin D replete.


Subject(s)
Arthritis, Rheumatoid , Animals , Arthritis, Rheumatoid/epidemiology , Arthritis, Rheumatoid/prevention & control , Autoantibodies , Diet , Humans , Risk Factors , Smoking/adverse effects
12.
13.
Ann Rheum Dis ; 80(10): 1268-1277, 2021 10.
Article in English | MEDLINE | ID: mdl-34380700

ABSTRACT

Increasingly earlier identification of individuals at high risk of rheumatoid arthritis (RA) (eg, with autoantibodies and mild symptoms) improves the feasibility of preventing or curing disease. The use of antigen-specific immunotherapies to reinstate immunological self-tolerance represent a highly attractive strategy due to their potential to induce disease resolution, in contrast to existing approaches that require long-term treatment of underlying symptoms.Preclinical animal models have been used to understand disease mechanisms and to evaluate novel immunotherapeutic approaches. However, models are required to understand critical processes supporting disease development such as the breach of self-tolerance that triggers autoimmunity and the progression from asymptomatic autoimmunity to joint pain and bone loss. These models would also be useful in evaluating the response to treatment in the pre-RA period.This review proposes that focusing on immune processes contributing to initial disease induction rather than end-stage pathological consequences is essential to allow development and evaluation of novel immunotherapies for early intervention. We will describe and critique existing models in arthritis and the broader field of autoimmunity that may fulfil these criteria. We will also identify key gaps in our ability to study these processes in animal models, to highlight where further research should be targeted.


Subject(s)
Arthritis, Experimental/immunology , Arthritis, Rheumatoid/immunology , Autoantibodies/immunology , Autoimmunity/immunology , Immunotherapy , Self Tolerance/immunology , Animals , Anti-Citrullinated Protein Antibodies/immunology , Arthritis, Experimental/prevention & control , Arthritis, Experimental/therapy , Arthritis, Rheumatoid/prevention & control , Arthritis, Rheumatoid/therapy , Asymptomatic Diseases , Desensitization, Immunologic , Disease Models, Animal , Disease Progression , Immune Tolerance/immunology , Mice , Rats , Rheumatoid Factor/immunology
14.
Ann Rheum Dis ; 80(5): 573-581, 2021 05.
Article in English | MEDLINE | ID: mdl-33397732

ABSTRACT

OBJECTIVES: Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS: After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS: RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS: Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.


Subject(s)
Arthritis, Rheumatoid/microbiology , Biopolymers/isolation & purification , Dysbiosis/microbiology , Peptidoglycan/isolation & purification , Periodontitis/microbiology , Streptococcus/isolation & purification , Adult , Animals , Disease Susceptibility/microbiology , Female , Humans , Male , Mice , Microbiota , Middle Aged , Mouth/microbiology , Pedigree , RNA, Ribosomal, 16S
15.
Cell Immunol ; 349: 104043, 2020 03.
Article in English | MEDLINE | ID: mdl-32044112

ABSTRACT

Type I Interferon (IFN) signaling plays a critical role in dendritic cell (DC) development and functions. Inhibition of hyper type I IFN signaling promotes cDC2 subtype development. Relb is essential to development of cDC2 subtype and here we analyzed its effect on type I IFN signaling in DCs. We show that Relb suppresses the homeostatic type I IFN signaling in cDC2 cultures. TLR stimulation of FL-DCs led to RelB induction coinciding with fall in IFN signatures; conforming with the observation Relb expression reduced TLR stimulated IFN induction along with decrease in ISGs. Towards understanding mechanism, we show that effects of RelB are mediated by increased levels of IκBα. We demonstrate that RelB dampened antiviral responses by lowering ISG levels and the defect in cDC2 development in RelB null mice can be rescued in Ifnar1-/- background. Overall, we propose a novel role of RelB as a negative regulator of the type I IFN signaling pathway; fine tuning development of cDC2 subtype.


Subject(s)
Dendritic Cells/immunology , Interferon Type I/immunology , NF-KappaB Inhibitor alpha/physiology , Transcription Factor RelB/physiology , Amino Acid Sequence , Animals , Cell Differentiation , Cells, Cultured , Crosses, Genetic , Dendritic Cells/classification , Dendritic Cells/cytology , Gene Expression Regulation/immunology , Mice , NIH 3T3 Cells , Newcastle disease virus/immunology , Peptides/pharmacology , Receptor, Interferon alpha-beta/deficiency , Receptor, Interferon alpha-beta/genetics , Receptor, Interferon alpha-beta/physiology , Signal Transduction/immunology , Spleen/cytology , Transcription Factor RelB/deficiency , Transcription Factor RelB/genetics , Viral Load
16.
J Biol Chem ; 293(9): 3236-3251, 2018 03 02.
Article in English | MEDLINE | ID: mdl-29317506

ABSTRACT

The HLA-DRB1 locus is strongly associated with rheumatoid arthritis (RA) susceptibility, whereupon citrullinated self-peptides bind to HLA-DR molecules bearing the shared epitope (SE) amino acid motif. However, the differing propensity for citrullinated/non-citrullinated self-peptides to bind given HLA-DR allomorphs remains unclear. Here, we used a fluorescence polarization assay to determine a hierarchy of binding affinities of 34 self-peptides implicated in RA against three HLA-DRB1 allomorphs (HLA-DRB1*04:01/*04:04/*04:05) each possessing the SE motif. For all three HLA-DRB1 allomorphs, we observed a strong correlation between binding affinity and citrullination at P4 of the bound peptide ligand. A differing hierarchy of peptide-binding affinities across the three HLA-DRB1 allomorphs was attributable to the ß-chain polymorphisms that resided outside the SE motif and were consistent with sequences of naturally presented peptide ligands. Structural determination of eight HLA-DR4-self-epitope complexes revealed strict conformational convergence of the P4-Cit and surrounding HLA ß-chain residues. Polymorphic residues that form part of the P1 and P9 pockets of the HLA-DR molecules provided a structural basis for the preferential binding of the citrullinated self-peptides to the HLA-DR4 allomorphs. Collectively, we provide a molecular basis for the interplay between citrullination of self-antigens and HLA polymorphisms that shape peptide-HLA-DR4 binding affinities in RA.


Subject(s)
Arthritis, Rheumatoid/genetics , Arthritis, Rheumatoid/metabolism , Citrullination , HLA-DRB1 Chains/genetics , HLA-DRB1 Chains/metabolism , Peptides/metabolism , Polymorphism, Genetic , Amino Acid Sequence , Arthritis, Rheumatoid/immunology , Autoantigens/chemistry , Autoantigens/metabolism , Citrulline/metabolism , HLA-DRB1 Chains/chemistry , Humans , Models, Molecular , Peptides/chemistry , Protein Binding , Protein Conformation, beta-Strand , Substrate Specificity
17.
Ann Rheum Dis ; 78(4): 494-503, 2019 04.
Article in English | MEDLINE | ID: mdl-30700427

ABSTRACT

OBJECTIVES: Certain gut bacterial families, including Bacteroidaceae, Porphyromonadaceae and Prevotellaceae, are increased in people suffering from spondyloarthropathy (SpA), a disease group associated with IL23R signalling variants. To understand the relationship between host interleukin (IL)-23 signalling and gut bacterial dysbiosis in SpA, we inhibited IL-23 in dysbiotic ZAP-70-mutant SKG mice that develop IL-23-dependent SpA-like arthritis, psoriasis-like skin inflammation and Crohn's-like ileitis in response to microbial beta 1,3-glucan (curdlan). METHODS: We treated SKG mice weekly with anti-IL-23 or isotype mAb for 3 weeks, rested them for 3 weeks, then administered curdlan or saline. We collected faecal samples longitudinally, assessed arthritis, spondylitis, psoriasis and ileitis histologically, and analysed the microbiota community profiles using next-generation sequencing. We used multivariate sparse partial least squares discriminant analysis to identify operational taxonomic unit (OTU) signatures best classifying treatment groups and linear regression to develop a predictive model of disease severity. RESULTS: IL-23p19 inhibition in naïve SKG mice decreased Bacteroidaceae, Porphyromonadaceae and Prevotellaceae. Abundance of Clostridiaceae and Lachnospiraceae families concomitantly increased, and curdlan-mediated SpA development decreased. Abundance of Enterobacteriaceae and Porphyromonadaceae family and reduction in Lachnospiraceae Dorea genus OTUs early in disease course were associated with disease severity in affected tissues. CONCLUSIONS: Dysbiosis in SKG mice reflects human SpA and is IL-23p19 dependent. In genetically susceptible hosts, IL-23p19 favours outgrowth of SpA-associated pathobionts and reduces support for homeostatic-inducing microbiota. The relative abundance of specific pathobionts is associated with disease severity.


Subject(s)
Bacteria/growth & development , Dysbiosis/microbiology , Gastrointestinal Microbiome/immunology , Interleukin-23 Subunit p19/immunology , Spondylarthritis/microbiology , Animals , Dysbiosis/immunology , Feces/microbiology , Female , Homeostasis/immunology , Host-Pathogen Interactions/immunology , Interleukin-23 Subunit p19/antagonists & inhibitors , Mice, Mutant Strains , Severity of Illness Index , Spondylarthritis/chemically induced , Spondylarthritis/immunology , beta-Glucans
18.
Pediatr Diabetes ; 20(2): 166-171, 2019 03.
Article in English | MEDLINE | ID: mdl-30556344

ABSTRACT

BACKGROUND: Stimulated C-peptide measurement after a mixed meal tolerance test (MMTT) is the accepted gold standard for assessing residual beta-cell function in type 1 diabetes (T1D); however, this approach is impractical outside of clinical trials. OBJECTIVE: To develop an improved estimate of residual beta-cell function in children with T1D using commonly measured clinical variables. SUBJECTS/METHODS: A clinical model to predict 90-minute MMTT stimulated C-peptide in children with recent-onset T1D was developed from the combined AbATE, START, and TIDAL placebo subjects (n = 46) 6 months post-recruitment using multiple linear regression. This model was then validated in a clinical cohort (Hvidoere study group, n = 262). RESULTS: A model of estimated C-peptide at 6 months post-diagnosis, which included age, gender, body mass index (BMI), hemoglobin A1c (HbA1c), and insulin dose predicted 90-minute stimulated C-peptide measurements (adjusted R2 = 0.63, P < 0.0001). The predictive value of insulin dose and HbA1c alone (IDAA1c) for 90-minute stimulated C-peptide was significantly lower (R2 = 0.37, P < 0.0001). The slopes of linear regression lines of the estimated and stimulated 90-minute C-peptide levels obtained at 6 and 12 months post diagnosis in the Hvidoere clinical cohort were R2 = 0.36, P < 0.0001 at 6 months and R2 = 0.37, P < 0.0001 at 12 months. CONCLUSIONS: A clinical model including age, gender, BMI, HbA1c, and insulin dose predicts stimulated C-peptide levels in children with recent-onset T1D. Estimated C-peptide is an improved surrogate to monitor residual beta-cell function outside clinical trial settings.


Subject(s)
C-Peptide/metabolism , Diabetes Mellitus, Type 1/diagnosis , Diabetes Mellitus, Type 1/drug therapy , Diabetes Mellitus, Type 1/metabolism , Insulin-Secreting Cells/physiology , Models, Biological , Adolescent , Adult , Age of Onset , Antibodies, Monoclonal, Humanized/therapeutic use , Child , Cohort Studies , Diabetes Mellitus, Type 1/epidemiology , Female , Humans , Insulin Secretion/physiology , Insulin-Secreting Cells/pathology , Male , Prognosis , Remission Induction , Treatment Outcome , Young Adult
19.
Am J Respir Cell Mol Biol ; 58(3): 352-365, 2018 03.
Article in English | MEDLINE | ID: mdl-28960101

ABSTRACT

RelB is a member of the NF-κB family, which is essential for dendritic cell (DC) function and maturation. However, the contribution of RelB to the development of allergic airway inflammation (AAI) is unknown. Here, we identify a pivotal role for RelB in the development of spontaneous AAI that is independent of exogenous allergen exposure. We assessed AAI in two strains of RelB-deficient (RelB-/-) mice: one with a targeted deletion and one expressing a major histocompatibility complex transgene. To determine the importance of RelB in DCs, RelB-sufficient DCs (RelB+/+ or RelB-/-) were adoptively transferred into RelB-/- mice. Both strains had increased pulmonary inflammation compared with their respective wild-type (RelB+/+) and heterozygous (RelB+/-) controls. RelB-/- mice also had increased inflammatory cell influx into the airways, levels of chemokines (CCL2/3/4/5/11/17 and CXCL9/10/13) and T-helper cell type 2-associated cytokines (IL-4/5) in lung tissues, serum IgE, and airway remodeling (mucus-secreting cell numbers, collagen deposition, and epithelial thickening). Transfer of RelB+/- CD11c+ DCs into RelB-/- mice decreased pulmonary inflammation, with reductions in lung chemokines, T-helper cell type 2-associated cytokines (IL-4/5/13/25/33 and thymic stromal lymphopoietin), serum IgE, type 2 innate lymphoid cells, myeloid DCs, γδ T cells, lung Vß13+ T cells, mucus-secreting cells, airway collagen deposition, and epithelial thickening. These data indicate that RelB deficiency may be a key pathway underlying AAI, and that DC-encoded RelB is sufficient to restore control of this inflammation.


Subject(s)
Asthma/immunology , Dendritic Cells/immunology , Pneumonia/immunology , Th2 Cells/immunology , Transcription Factor RelB/genetics , Adoptive Transfer , Airway Remodeling/immunology , Animals , Asthma/pathology , Chemokines/blood , Dendritic Cells/transplantation , Female , Immunoglobulin E/blood , Male , Mice , Mice, Knockout
20.
Intern Med J ; 48(12): 1498-1504, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29808525

ABSTRACT

BACKGROUND: Early treatment ensures optimal outcomes in rheumatoid arthritis (RA) yet there are limited data in Australia quantifying treatment delays in clinical practice. AIMS: To quantify treatment delays in new RA patients and to explore factors influencing delay and resultant patient outcomes. METHODS: Data were obtained for 88 patients presenting with a new diagnosis of RA to an early arthritis clinic (EAC) in Australia between 2008 and 2015. Date and details of symptom onset, initial general practitioner (GP) presentation, GP referral and review at EAC were collected. Patient demographics and clinical features were analysed for outcomes and features predictive of delay. RESULTS: Median overall delay from symptom onset to rheumatology review was 26.4 weeks. Patient delay (8.7 weeks) was the longest delay and predicted overall delay. Delays in GP referral and time to EAC review were 4 and 8.4 weeks respectively. Increased overall delay was predicted by lower fatigue and disease activity scores (DAS28) and increased tender joint counts (TJC). Patient delay was increased by socioeconomic disadvantage. Increased GP delay was associated with lower DAS28 and higher TJC and ESR. Patients seen within 16 weeks had greater improvement in DAS28 and probability of remission at 6 months. CONCLUSIONS: In this Australian EAC setting, patient delay was the greatest contributor to RA treatment delay. Delays in treatment were associated with lower disease severity and socioeconomic disadvantage. Remission was more likely after prompt initiation of treatment.


Subject(s)
Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid , Time-to-Treatment/statistics & numerical data , Adult , Arthritis, Rheumatoid/diagnosis , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/epidemiology , Australia/epidemiology , Female , General Practice/statistics & numerical data , Humans , Male , Middle Aged , Patient Outcome Assessment , Referral and Consultation/statistics & numerical data , Remission Induction/methods , Risk Assessment , Risk Factors , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL