Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
1.
Cell ; 166(4): 907-919, 2016 Aug 11.
Article in English | MEDLINE | ID: mdl-27499021

ABSTRACT

Classically, G protein-coupled receptor (GPCR) stimulation promotes G protein signaling at the plasma membrane, followed by rapid ß-arrestin-mediated desensitization and receptor internalization into endosomes. However, it has been demonstrated that some GPCRs activate G proteins from within internalized cellular compartments, resulting in sustained signaling. We have used a variety of biochemical, biophysical, and cell-based methods to demonstrate the existence, functionality, and architecture of internalized receptor complexes composed of a single GPCR, ß-arrestin, and G protein. These super-complexes or "megaplexes" more readily form at receptors that interact strongly with ß-arrestins via a C-terminal tail containing clusters of serine/threonine phosphorylation sites. Single-particle electron microscopy analysis of negative-stained purified megaplexes reveals that a single receptor simultaneously binds through its core region with G protein and through its phosphorylated C-terminal tail with ß-arrestin. The formation of such megaplexes provides a potential physical basis for the newly appreciated sustained G protein signaling from internalized GPCRs.


Subject(s)
Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins/metabolism , Bioluminescence Resonance Energy Transfer Techniques , Cyclic AMP/metabolism , Endosomes/metabolism , GTP-Binding Protein alpha Subunits, Gs/metabolism , HEK293 Cells , Humans , Microscopy, Confocal , Microscopy, Electron , Multiprotein Complexes , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/antagonists & inhibitors , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry
2.
Trends Biochem Sci ; 49(6): 520-531, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643023

ABSTRACT

G protein-coupled receptors (GPCRs) located at the cell surface bind extracellular ligands and convey intracellular signals via activation of heterotrimeric G proteins. Traditionally, G protein signaling was viewed to occur exclusively at this subcellular region followed by rapid desensitization facilitated by ß-arrestin (ßarr)-mediated G protein uncoupling and receptor internalization. However, emerging evidence over the past 15 years suggests that these ßarr-mediated events do not necessarily terminate receptor signaling and that some GPCRs continue to activate G proteins after having been internalized into endosomes. Here, we review the recently elucidated mechanistic basis underlying endosomal GPCR signaling and discuss physiological implications and pharmacological targeting of this newly appreciated signaling mode.


Subject(s)
Endosomes , Receptors, G-Protein-Coupled , Signal Transduction , Endosomes/metabolism , Receptors, G-Protein-Coupled/metabolism , Humans , Animals , beta-Arrestins/metabolism
3.
Proc Natl Acad Sci U S A ; 120(22): e2220979120, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37216510

ABSTRACT

The hypothesis that sustained G protein-coupled receptor (GPCR) signaling from endosomes mediates pain is based on studies with endocytosis inhibitors and lipid-conjugated or nanoparticle-encapsulated antagonists targeted to endosomes. GPCR antagonists that reverse sustained endosomal signaling and nociception are needed. However, the criteria for rational design of such compounds are ill-defined. Moreover, the role of natural GPCR variants, which exhibit aberrant signaling and endosomal trafficking, in maintaining pain is unknown. Herein, substance P (SP) was found to evoke clathrin-mediated assembly of endosomal signaling complexes comprising neurokinin 1 receptor (NK1R), Gαq/i, and ßarrestin-2. Whereas the FDA-approved NK1R antagonist aprepitant induced a transient disruption of endosomal signals, analogs of netupitant designed to penetrate membranes and persist in acidic endosomes through altered lipophilicity and pKa caused sustained inhibition of endosomal signals. When injected intrathecally to target spinal NK1R+ve neurons in knockin mice expressing human NK1R, aprepitant transiently inhibited nociceptive responses to intraplantar injection of capsaicin. Conversely, netupitant analogs had more potent, efficacious, and sustained antinociceptive effects. Mice expressing C-terminally truncated human NK1R, corresponding to a natural variant with aberrant signaling and trafficking, displayed attenuated SP-evoked excitation of spinal neurons and blunted nociceptive responses to SP. Thus, sustained antagonism of the NK1R in endosomes correlates with long-lasting antinociception, and domains within the C-terminus of the NK1R are necessary for the full pronociceptive actions of SP. The results support the hypothesis that endosomal signaling of GPCRs mediates nociception and provides insight into strategies for antagonizing GPCRs in intracellular locations for the treatment of diverse diseases.


Subject(s)
Endosomes , Receptors, Neurokinin-1 , Mice , Humans , Animals , Receptors, Neurokinin-1/genetics , Aprepitant/pharmacology , Substance P/pharmacology , Receptors, G-Protein-Coupled , Pain/drug therapy
4.
Proc Natl Acad Sci U S A ; 114(10): 2562-2567, 2017 03 07.
Article in English | MEDLINE | ID: mdl-28223524

ABSTRACT

ß-Arrestins (ßarrs) interact with G protein-coupled receptors (GPCRs) to desensitize G protein signaling, to initiate signaling on their own, and to mediate receptor endocytosis. Prior structural studies have revealed two unique conformations of GPCR-ßarr complexes: the "tail" conformation, with ßarr primarily coupled to the phosphorylated GPCR C-terminal tail, and the "core" conformation, where, in addition to the phosphorylated C-terminal tail, ßarr is further engaged with the receptor transmembrane core. However, the relationship of these distinct conformations to the various functions of ßarrs is unknown. Here, we created a mutant form of ßarr lacking the "finger-loop" region, which is unable to form the core conformation but retains the ability to form the tail conformation. We find that the tail conformation preserves the ability to mediate receptor internalization and ßarr signaling but not desensitization of G protein signaling. Thus, the two GPCR-ßarr conformations can carry out distinct functions.


Subject(s)
Endocytosis/genetics , Mutant Proteins/chemistry , Receptors, G-Protein-Coupled/chemistry , beta-Arrestins/chemistry , Amino Acid Sequence/genetics , GTP-Binding Protein Regulators/genetics , HEK293 Cells , Humans , Molecular Conformation , Multiprotein Complexes , Mutant Proteins/genetics , Receptors, G-Protein-Coupled/genetics , beta-Arrestins/genetics
6.
Nat Chem Biol ; 12(9): 709-16, 2016 09.
Article in English | MEDLINE | ID: mdl-27398998

ABSTRACT

G-protein-coupled receptor (GPCR) ligands function by stabilizing multiple, functionally distinct receptor conformations. This property underlies the ability of 'biased agonists' to activate specific subsets of a given receptor's signaling profile. However, stabilizing distinct active GPCR conformations to enable structural characterization of mechanisms underlying GPCR activation remains difficult. These challenges have accentuated the need for receptor tools that allosterically stabilize and regulate receptor function through unique, previously unappreciated mechanisms. Here, using a highly diverse RNA library combined with advanced selection strategies involving state-of-the-art next-generation sequencing and bioinformatics analyses, we identify RNA aptamers that bind a prototypical GPCR, the ß2-adrenoceptor (ß2AR). Using biochemical, pharmacological, and biophysical approaches, we demonstrate that these aptamers bind with nanomolar affinity at defined surfaces of the receptor, allosterically stabilizing active, inactive, and ligand-specific receptor conformations. The discovery of RNA aptamers as allosteric GPCR modulators significantly expands the diversity of ligands available to study the structural and functional regulation of GPCRs.


Subject(s)
Aptamers, Nucleotide/metabolism , Receptors, Adrenergic, beta-2/metabolism , Allosteric Regulation/drug effects , Aptamers, Nucleotide/chemistry , Benzoxazines/chemistry , Benzoxazines/pharmacology , Humans , Models, Molecular , Protein Conformation , Receptors, Adrenergic, beta-2/chemistry
7.
Commun Biol ; 7(1): 826, 2024 Jul 07.
Article in English | MEDLINE | ID: mdl-38972875

ABSTRACT

Classically, G protein-coupled receptors (GPCRs) promote signaling at the plasma membrane through activation of heterotrimeric Gαßγ proteins, followed by the recruitment of GPCR kinases and ßarrestin (ßarr) to initiate receptor desensitization and internalization. However, studies demonstrated that some GPCRs continue to signal from internalized compartments, with distinct cellular responses. Both ßarr and Gßγ contribute to such non-canonical endosomal G protein signaling, but their specific roles and contributions remain poorly understood. Here, we demonstrate that the vasopressin V2 receptor (V2R)-ßarr complex scaffolds Gßγ at the plasma membrane through a direct interaction with ßarr, enabling its transport to endosomes. Gßγ subsequently potentiates Gαs endosomal translocation, presumably to regenerate an endosomal pool of heterotrimeric Gs. This work shines light on the mechanism underlying G protein subunits translocation from the plasma membrane to the endosomes and provides a basis for understanding the role of ßarr in mediating sustained G protein signaling.


Subject(s)
Endosomes , GTP-Binding Protein beta Subunits , GTP-Binding Protein gamma Subunits , Protein Transport , Receptors, Vasopressin , beta-Arrestins , Humans , beta-Arrestins/metabolism , Cell Membrane/metabolism , Endosomes/metabolism , GTP-Binding Protein beta Subunits/metabolism , GTP-Binding Protein beta Subunits/genetics , GTP-Binding Protein gamma Subunits/metabolism , GTP-Binding Protein gamma Subunits/genetics , HEK293 Cells , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/genetics , Signal Transduction
8.
bioRxiv ; 2024 Oct 21.
Article in English | MEDLINE | ID: mdl-38106002

ABSTRACT

Nerve growth factor (NGF) monoclonal antibodies inhibit chronic pain yet, failed to gain approval due to worsened joint damage in osteoarthritis patients. We report that neuropilin-1 (NRP1) is a co-receptor for NGF and tropomyosin-related kinase A (TrkA) pain signaling. NRP1 is coexpressed with TrkA in human and mouse nociceptors. NRP1 inhibitors suppress NGF-stimulated excitation of human and mouse nociceptors and NGF-evoked nociception in mice. NRP1 knockdown inhibits NGF/TrkA signaling, whereas NRP1 overexpression enhances signaling. NGF binds NRP1 with high affinity and interacts with and chaperones TrkA from the biosynthetic pathway to the plasma membrane and endosomes, enhancing TrkA signaling. Molecular modeling suggests that C-terminal R/KXXR/K NGF motif interacts with extracellular "b" NRP1 domain within a plasma membrane NGF/TrkA/NRP1 of 2:2:2 stoichiometry. G Alpha Interacting Protein C-terminus 1 (GIPC1) scaffolds NRP1 and TrkA to myosin VI and colocalizes in nociceptors with NRP1/TrkA. GIPC1 knockdown abrogates NGF-evoked excitation of nociceptors and pain-like behavior. NRP1 is a nociceptor-enriched co-receptor that facilitates NGF/TrkA pain signaling. NRP binds NGF and chaperones TrkA to the plasma membrane and signaling endosomes via the GIPC1 adaptor. NRP1 and GIPC1 antagonism in nociceptors offers a long-awaited non-opioid alternative to systemic antibody NGF sequestration for the treatment of chronic pain. Summary: Neuropilin-1 and G Alpha Interacting Protein C-terminus 1 are necessary for nerve growth factor-evoked pain and are non-opioid therapeutic targets for chronic pain.

9.
Am J Physiol Endocrinol Metab ; 304(3): E310-20, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23233539

ABSTRACT

Calcium and phosphorus homeostasis are highly interrelated and share common regulatory hormones, including FGF23. However, little is known about calcium's role in the regulation of FGF23. We sought to investigate the regulatory roles of calcium and phosphorus in FGF23 production using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR; PTH-CaSR DKO). In wild-type, PTH KO, and PTH-CaSR DKO mice, elevation of either serum calcium or phosphorus by intraperitoneal injection increased serum FGF23 levels. In PTH KO and PTH-CaSR DKO mice, however, increases in serum phosphorus by dietary manipulation were accompanied by severe hypocalcemia, which appeared to blunt stimulation of FGF23 release. Increases in dietary phosphorus in PTH-CaSR DKO mice markedly decreased serum 1,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] despite no change in FGF23, suggesting direct regulation of 1,25(OH)(2)D(3) synthesis by serum phosphorus. Calcium-mediated increases in serum FGF23 required a threshold level of serum phosphorus of about 5 mg/dl. Analogously, phosphorus-elicited increases in FGF23 were markedly blunted if serum calcium was less than 8 mg/dl. The best correlation between calcium and phosphorus and serum FGF23 was found between FGF23 and the calcium × phosphorus product. Since calcium stimulated FGF23 production in the PTH-CaSR DKO mice, this effect cannot be mediated by the full-length CaSR. Thus the regulation of FGF23 by both calcium and phosphorus appears to be fundamentally important in coordinating the serum levels of both mineral ions and ensuring that the calcium × phosphorus product remains within a physiological range.


Subject(s)
Calcium/blood , Fibroblast Growth Factors/biosynthesis , Fibroblast Growth Factors/blood , Homeostasis/physiology , Phosphorus/blood , Animals , Fibroblast Growth Factor-23 , Gene Expression Regulation/physiology , Male , Mice , Mice, Knockout
10.
Am J Physiol Endocrinol Metab ; 304(7): E724-33, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23360827

ABSTRACT

Calcium (Ca) and magnesium (Mg) homeostasis are interrelated and share common regulatory hormones, including parathyroid hormone (PTH) and vitamin D. However, the role of the calcium-sensing receptor (CaSR) in Mg homeostasis in vivo is not well understood. We sought to investigate the interactions between Mg and Ca homeostasis using genetic mouse models with targeted inactivation of PTH (PTH KO) or both PTH and the calcium-sensing receptor (CaSR) (double knockout, DKO). Serum Mg is lower in PTH KO and DKO mice than in WT mice on standard chow, whereas supplemental dietary Ca leads to equivalent Mg levels for all three genotypes. Mg loading increases serum Mg in all genotypes; however, the increase in serum Mg is most pronounced in the DKO mice. Serum Ca is increased with Mg loading in the PTH KO and DKO mice but not in the WT mice. Here, too, the hypercalcemia is much greater in the DKO mice. Serum and especially urinary phosphate are reduced during Mg loading, which is likely due to intestinal chelation of phosphate by Mg. Mg loading decreases serum PTH in WT mice and increases serum calcitonin in both WT and PTH KO mice but not DKO mice. Furthermore, Mg loading elevates serum 1,25-dihydroxyvitamin D in all genotypes, with greater effects in PTH KO and DKO mice, possibly due to reduced levels of serum phosphorus and FGF23. These hormonal responses to Mg loading and the CaSR's role in regulating renal function may help to explain changes in serum Mg and Ca found during Mg loading.


Subject(s)
Calcium/metabolism , Magnesium/metabolism , Receptors, G-Protein-Coupled/physiology , Animals , Calcium, Dietary/metabolism , Fibroblast Growth Factor-23 , Homeostasis/genetics , Homeostasis/physiology , Mice , Mice, Knockout , Parathyroid Hormone/genetics , Parathyroid Hormone/physiology , Receptors, Calcium-Sensing , Receptors, G-Protein-Coupled/genetics , Vitamin D/analogs & derivatives , Vitamin D/metabolism
11.
ACS Pharmacol Transl Sci ; 3(2): 221-236, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-32296764

ABSTRACT

G protein-coupled receptors (GPCRs) are cell surface receptors that for many years have been considered to function exclusively at the plasma membrane, where they bind to extracellular ligands and activate G protein signaling cascades. According to the conventional model, these signaling events are rapidly terminated by ß-arrestin (ß-arr) recruitment to the activated GPCR resulting in signal desensitization and receptor internalization. However, during the past decade, emerging evidence suggest that many GPCRs can continue to activate G proteins from intracellular compartments after they have been internalized. G protein signaling from intracellular compartments is in general more sustained compared to G protein signaling at the plasma membrane. Notably, the particular location closer to the nucleus is beneficial for selective cellular functions such as regulation of gene transcription. Here, we review key GPCRs that undergo compartmentalized G protein signaling and discuss molecular considerations and requirements for this signaling to occur. Our main focus will be on receptors involved in the regulation of important physiological and pathological cardiovascular functions. We also discuss how sustained G protein activation from intracellular compartments may be involved in cellular functions that are distinct from functions regulated by plasma membrane G protein signaling, and the corresponding significance in cardiovascular physiology.

12.
Nat Struct Mol Biol ; 26(12): 1123-1131, 2019 12.
Article in English | MEDLINE | ID: mdl-31740855

ABSTRACT

Classically, G-protein-coupled receptors (GPCRs) are thought to activate G protein from the plasma membrane and are subsequently desensitized by ß-arrestin (ß-arr). However, some GPCRs continue to signal through G protein from internalized compartments, mediated by a GPCR-G protein-ß-arr 'megaplex'. Nevertheless, the molecular architecture of the megaplex remains unknown. Here, we present its cryo-electron microscopy structure, which shows simultaneous engagement of human G protein and bovine ß-arr to the core and phosphorylated tail, respectively, of a single active human chimeric ß2-adrenergic receptor with the C-terminal tail of the arginine vasopressin type 2 receptor (ß2V2R). All three components adopt their canonical active conformations, suggesting that a single megaplex GPCR is capable of simultaneously activating G protein and ß-arr. Our findings provide a structural basis for GPCR-mediated sustained internalized G protein signaling.


Subject(s)
GTP-Binding Proteins/metabolism , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , beta-Arrestins/metabolism , Animals , Cattle , Cryoelectron Microscopy , Endosomes/metabolism , GTP-Binding Proteins/chemistry , GTP-Binding Proteins/ultrastructure , Humans , Models, Molecular , Protein Conformation , Receptors, Adrenergic, beta-2/chemistry , Receptors, Adrenergic, beta-2/metabolism , Receptors, Adrenergic, beta-2/ultrastructure , Receptors, G-Protein-Coupled/chemistry , Receptors, G-Protein-Coupled/ultrastructure , Receptors, Vasopressin/chemistry , Receptors, Vasopressin/metabolism , Receptors, Vasopressin/ultrastructure , beta-Arrestins/chemistry , beta-Arrestins/ultrastructure
14.
Trends Pharmacol Sci ; 39(10): 879-891, 2018 10.
Article in English | MEDLINE | ID: mdl-30180973

ABSTRACT

G-protein-coupled receptors (GPCRs) are conventionally considered to function at the plasma membrane, where they detect extracellular ligands and activate heterotrimeric G proteins that transmit intracellular signals. Consequently, drug discovery efforts have focused on identification of agonists and antagonists of cell surface GPCRs. However, ß-arrestin (ARR)-dependent desensitization and endocytosis rapidly terminate G protein signaling at the plasma membrane. Emerging evidence indicates that GPCRs can continue to signal from endosomes by G-protein- and ßARR-dependent processes. By regulating the duration and location of intracellular signaling events, GPCRs in endosomes control critically important processes, including gene transcription and ion channel activity. Thus, GPCRs in endosomes, in addition to at the cell surface, have emerged as important therapeutic targets.


Subject(s)
Endosomes/metabolism , Receptors, G-Protein-Coupled/metabolism , Animals , Humans , Molecular Targeted Therapy , Signal Transduction
15.
Elife ; 72018 02 02.
Article in English | MEDLINE | ID: mdl-29393851

ABSTRACT

Luminal fluid reabsorption plays a fundamental role in male fertility. We demonstrated that the ubiquitous GPCR signaling proteins Gq and ß-arrestin-1 are essential for fluid reabsorption because they mediate coupling between an orphan receptor ADGRG2 (GPR64) and the ion channel CFTR. A reduction in protein level or deficiency of ADGRG2, Gq or ß-arrestin-1 in a mouse model led to an imbalance in pH homeostasis in the efferent ductules due to decreased constitutive CFTR currents. Efferent ductule dysfunction was rescued by the specific activation of another GPCR, AGTR2. Further mechanistic analysis revealed that ß-arrestin-1 acts as a scaffold for ADGRG2/CFTR complex formation in apical membranes, whereas specific residues of ADGRG2 confer coupling specificity for different G protein subtypes, this specificity is critical for male fertility. Therefore, manipulation of the signaling components of the ADGRG2-Gq/ß-arrestin-1/CFTR complex by small molecules may be an effective therapeutic strategy for male infertility.


Subject(s)
Cystic Fibrosis Transmembrane Conductance Regulator/metabolism , Fertility , GTP-Binding Protein alpha Subunits, Gq-G11/metabolism , Receptors, G-Protein-Coupled/metabolism , beta-Arrestin 1/metabolism , Animals , Cystic Fibrosis Transmembrane Conductance Regulator/genetics , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, G-Protein-Coupled/genetics , beta-Arrestin 1/genetics
16.
Nat Commun ; 8: 14335, 2017 02 09.
Article in English | MEDLINE | ID: mdl-28181498

ABSTRACT

Acute hormone secretion triggered by G protein-coupled receptor (GPCR) activation underlies many fundamental physiological processes. GPCR signalling is negatively regulated by ß-arrestins, adaptor molecules that also activate different intracellular signalling pathways. Here we reveal that TRV120027, a ß-arrestin-1-biased agonist of the angiotensin II receptor type 1 (AT1R), stimulates acute catecholamine secretion through coupling with the transient receptor potential cation channel subfamily C 3 (TRPC3). We show that TRV120027 promotes the recruitment of TRPC3 or phosphoinositide-specific phospholipase C (PLCγ) to the AT1R-ß-arrestin-1 signalling complex. Replacing the C-terminal region of ß-arrestin-1 with its counterpart on ß-arrestin-2 or using a specific TAT-P1 peptide to block the interaction between ß-arrestin-1 and PLCγ abolishes TRV120027-induced TRPC3 activation. Taken together, our results show that the GPCR-arrestin complex initiates non-desensitized signalling at the plasma membrane by coupling with ion channels. This fast communication pathway might be a common mechanism of several cellular processes.


Subject(s)
Catecholamines/metabolism , Receptor, Angiotensin, Type 1/agonists , TRPC Cation Channels/metabolism , beta-Arrestin 1/metabolism , beta-Arrestin 2/metabolism , Animals , Calcium/metabolism , Estrenes/pharmacology , HEK293 Cells , Humans , Ligands , Mice, Knockout , Oligopeptides/pharmacology , Phospholipase C gamma/metabolism , Pyrrolidinones/pharmacology , Receptor, Angiotensin, Type 1/metabolism , Signal Transduction/drug effects , beta-Arrestin 1/chemistry
17.
Curr Opin Cell Biol ; 27: 18-24, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24680426

ABSTRACT

The classic paradigm of G protein-coupled receptor (GPCR) activation was based on the understanding that agonist binding to a receptor induces or stabilizes a conformational change to an 'active' conformation. In the past decade, however, it has been appreciated that ligands can induce distinct 'active' receptor conformations with unique downstream functional signaling profiles. Building on the initial recognition of the existence of such 'biased ligands', recent years have witnessed significant developments in several areas of GPCR biology. These include increased understanding of structural and biophysical mechanisms underlying biased agonism, improvements in characterization and quantification of ligand efficacy, as well as clinical development of these novel ligands. Here we review recent major developments in these areas over the past several years.


Subject(s)
Ligands , Receptors, G-Protein-Coupled/agonists , Receptors, G-Protein-Coupled/metabolism , Signal Transduction , Animals , Biophysical Phenomena , Humans , Protein Conformation , Receptors, G-Protein-Coupled/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL