Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
1.
Proc Natl Acad Sci U S A ; 119(28): e2200721119, 2022 07 12.
Article in English | MEDLINE | ID: mdl-35867756

ABSTRACT

Most retinoblastomas develop from maturing cone precursors in response to biallelic RB1 loss and are dependent on cone maturation-related signaling. Additionally, ∼2% lack RB1 mutations but have MYCN amplification (MYCNA), N-Myc protein overexpression, and more rapid and invasive growth, yet the MYCNA retinoblastoma cell of origin and basis for its responses to deregulated N-Myc are unknown. Here, using explanted cultured retinae, we show that ectopic N-Myc induces cell cycle entry in cells expressing markers of several retinal types yet induces continuous proliferation and tumorigenesis only in cone precursors. Unlike the response to RB1 loss, both immature cone arrestin-negative (ARR3-) and maturing ARR3+ cone precursors proliferate, and maturing cone precursors rapidly dedifferentiate, losing ARR3 as well as L/M-opsin expression. N-Myc-overexpressing retinal cells also lose cell lineage constraints, occasionally coexpressing the cone-specific RXRγ with the rod-specific NRL or amacrine-specific AP2α and widely coexpressing RXRγ with the progenitor and Müller cell-specific SOX9 and retinal ganglion cell-specific BRN3 and GAP43. Mechanistically, N-Myc induced Cyclin D2 and CDK4 overexpression, pRB phosphorylation, and SOX9-dependent proliferation without a retinoma-like stage that characterizes pRB-deficient retinoblastoma, despite continuous p16INK4A expression. Orthotopic xenografts of N-Myc-overexpressing retinal cells formed tumors with retinal cell marker expression similar to those in MYCN-transduced retinae and MYCNA retinoblastomas in patients. These findings demonstrate the MYCNA retinoblastoma origin from immature and lineage-deconstrained cone precursors, reveal their opportunistic use of an undifferentiated retinal progenitor cell feature, and illustrate that different cancer-initiating mutations cooperate with distinct developmental stage-specific cell signaling circuitries to drive retinoblastoma tumorigenesis.


Subject(s)
Carcinogenesis , N-Myc Proto-Oncogene Protein , Retinal Cone Photoreceptor Cells , Retinal Neoplasms , Retinoblastoma , Carcinogenesis/genetics , Cell Cycle , Humans , N-Myc Proto-Oncogene Protein/genetics , N-Myc Proto-Oncogene Protein/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Neoplasms/metabolism , Retinal Neoplasms/pathology , Retinoblastoma/metabolism , Retinoblastoma/pathology
2.
Development ; 148(23)2021 12 01.
Article in English | MEDLINE | ID: mdl-34738615

ABSTRACT

The development of the first synapse of the visual system between photoreceptors and bipolar cells in the outer plexiform layer (OPL) of the human retina is crucial for visual processing but poorly understood. By studying the maturation state and spatial organization of photoreceptors, depolarizing bipolar cells and horizontal cells in the human fetal retina, we establish a pseudo-temporal staging system for OPL development that we term OPL-Stages 0 to 4. This was validated through quantification of increasingly precise subcellular localization of bassoon to the OPL with each stage (P<0.0001). By applying these OPL staging criteria to human retinal organoids (HROs) derived from human embryonic and induced pluripotent stem cells, we observed comparable maturation from OPL-Stage 0 at day 100 in culture up to OPL-Stage 3 by day 160. Quantification of presynaptic protein localization confirmed progression from OPL-Stage 0 to 3 (P<0.0001). Overall, this study defines stages of human OPL development through mid-gestation and establishes HROs as a model system that recapitulates key aspects of human photoreceptor-bipolar cell synaptogenesis in vitro.


Subject(s)
Human Embryonic Stem Cells/metabolism , Induced Pluripotent Stem Cells/metabolism , Organoids/metabolism , Retina/metabolism , Cell Line , Human Embryonic Stem Cells/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Organoids/cytology , Retina/cytology
3.
Exp Eye Res ; 244: 109947, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815793

ABSTRACT

The non-canonical Wnt pathway is an evolutionarily conserved pathway essential for tissue patterning and development across species and tissues. In mammals, this pathway plays a role in neuronal migration, dendritogenesis, axon growth, and synapse formation. However, its role in development and synaptogenesis of the human retina remains less established. In order to address this knowledge gap, we analyzed publicly available single-cell RNA sequencing (scRNAseq) datasets for mouse retina, human retina, and human retinal organoids over multiple developmental time points during outer retinal maturation. We identified ligands, receptors, and mediator genes with a putative role in retinal development, including those with novel or species-specific expression, and validated this expression using fluorescence in situ hybridization (FISH). By quantifying outer nuclear layer (ONL) versus inner nuclear layer (INL) expression, we provide evidence for the differential expression of certain non-canonical Wnt signaling components in the developing mouse and human retina during outer plexiform layer (OPL) development. Importantly, we identified distinct expression patterns of mouse and human FZD3 and WNT10A, as well as previously undescribed expression, such as for mouse Wnt2b in Chat+ starburst amacrine cells. Human retinal organoids largely recapitulated the human non-canonical Wnt pathway expression. Together, this work provides the basis for further study of non-canonical Wnt signaling in mouse and human retinal development and synaptogenesis.


Subject(s)
Gene Expression Regulation, Developmental , Retina , Wnt Signaling Pathway , Animals , Mice , Humans , Retina/metabolism , Retina/growth & development , Retina/embryology , Wnt Signaling Pathway/physiology , In Situ Hybridization, Fluorescence , Organoids/metabolism , Mice, Inbred C57BL
4.
Ann Surg ; 278(6): e1313-e1326, 2023 12 01.
Article in English | MEDLINE | ID: mdl-37450698

ABSTRACT

OBJECTIVES: To test whether mitochondrial transplantation (MITO) mitigates damage in 2 models of acute kidney injury (AKI). BACKGROUND: MITO is a process where exogenous isolated mitochondria are taken up by cells. As virtually any morbid clinical condition is characterized by mitochondrial distress, MITO may find a role as a treatment modality in numerous clinical scenarios including AKI. METHODS: For the in vitro experiments, human proximal tubular cells were damaged and then treated with mitochondria or placebo. For the ex vivo experiments, we developed a non-survival ex vivo porcine model mimicking the donation after cardiac death renal transplantation scenario. One kidney was treated with mitochondria, although the mate organ received placebo, before being perfused at room temperature for 24 hours. Perfusate samples were collected at different time points and analyzed with Raman spectroscopy. Biopsies taken at baseline and 24 hours were analyzed with standard pathology, immunohistochemistry, and RNA sequencing analysis. RESULTS: In vitro, cells treated with MITO showed higher proliferative capacity and adenosine 5'-triphosphate production, preservation of physiological polarization of the organelles and lower toxicity and reactive oxygen species production. Ex vivo, kidneys treated with MITO shed fewer molecular species, indicating stability. In these kidneys, pathology showed less damage whereas RNAseq analysis showed modulation of genes and pathways most consistent with mitochondrial biogenesis and energy metabolism and downregulation of genes involved in neutrophil recruitment, including IL1A, CXCL8, and PIK3R1. CONCLUSIONS: MITO mitigates AKI both in vitro and ex vivo.


Subject(s)
Acute Kidney Injury , Kidney Transplantation , Reperfusion Injury , Humans , Swine , Animals , Kidney/metabolism , Mitochondria/metabolism , Mitochondria/pathology , Acute Kidney Injury/prevention & control , Acute Kidney Injury/metabolism
5.
Stem Cells ; 40(7): 691-703, 2022 07 27.
Article in English | MEDLINE | ID: mdl-35429397

ABSTRACT

Lung maturation is not limited to proper structural development but also includes differentiation and functionality of various highly specialized alveolar cell types. Alveolar type 1 (AT1s) cells occupy nearly 95% of the alveolar surface and are critical for establishing efficient gas exchange in the mature lung. AT1 cells arise from progenitors specified during the embryonic stage as well as alveolar epithelial progenitors expressing surfactant protein C (Sftpcpos cells) during postnatal and adult stages. Previously, we found that Wnt5a, a non-canonical Wnt ligand, is required for differentiation of AT1 cells during the saccular phase of lung development. To further investigate the role of Wnt5a in AT1 cell differentiation, we generated and characterized a conditional Wnt5a gain-of-function mouse model. Neonatal Wnt5a gain-of-function disrupted alveologenesis through inhibition of cell proliferation. In this setting Wnt5a downregulated ß-catenin-dependent canonical Wnt signaling, repressed AT2 (anti-AT2) and promoted AT1 (pro-AT1) lineage-specific gene expression. In addition, we identified 2 subpopulations of Sftpchigh and Sftpclow alveolar epithelial cells. In Sftpclow cells, Wnt5a exhibits pro-AT1 and anti-AT2 effects, concurrent with inhibition of canonical Wnt signaling. Interestingly, in the Sftpchigh subpopulation, although increasing AT1 lineage-specific gene expression, Wnt5a gain-of-function did not change AT2 gene expression, nor inhibit canonical Wnt signaling. Using primary epithelial cells isolated from human fetal lungs, we demonstrate that this property of Wnt5a is evolutionarily conserved. Wnt5a therefore serves as a selective regulator that ensures proper AT1/AT2 balance in the developing lung.


Subject(s)
Alveolar Epithelial Cells , Wnt Signaling Pathway , Alveolar Epithelial Cells/metabolism , Animals , Cell Differentiation/genetics , Epithelial Cells/metabolism , Gene Expression , Humans , Infant, Newborn , Mice , Wnt Signaling Pathway/genetics , Wnt-5a Protein/genetics , Wnt-5a Protein/metabolism
6.
Mol Ther ; 29(3): 1057-1069, 2021 03 03.
Article in English | MEDLINE | ID: mdl-33160457

ABSTRACT

Homology-directed repair (HDR) of a DNA break allows copying of genetic material from an exogenous DNA template and is frequently exploited in CRISPR-Cas9 genome editing. However, HDR is in competition with other DNA repair pathways, including non-homologous end joining (NHEJ) and microhomology-mediated end joining (MMEJ), and the efficiency of HDR outcomes is not predictable. Consequently, to optimize HDR editing, panels of CRISPR-Cas9 guide RNAs (gRNAs) and matched homology templates must be evaluated. We report here that CRISPR-Cas9 indel signatures can instead be used to identify gRNAs that maximize HDR outcomes. Specifically, we show that the frequency of deletions resulting from MMEJ repair, characterized as deletions greater than or equal to 3 bp, better predicts HDR frequency than consideration of total indel frequency. We further demonstrate that tools that predict gRNA indel signatures can be repurposed to identify gRNAs to promote HDR. Finally, by comparing indels generated by S. aureus and S. pyogenes Cas9 targeted to the same site, we add to the growing body of data that the targeted DNA sequence is a major factor governing genome editing outcomes.


Subject(s)
CRISPR-Associated Protein 9/metabolism , CRISPR-Cas Systems , DNA End-Joining Repair , Gene Editing , INDEL Mutation , RNA, Guide, Kinetoplastida/genetics , Recombinational DNA Repair , CRISPR-Associated Protein 9/genetics , DNA Breaks, Double-Stranded , HEK293 Cells , Humans , K562 Cells
7.
Am J Physiol Lung Cell Mol Physiol ; 320(6): L1158-L1168, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33881909

ABSTRACT

The TGF-ß signaling pathway plays a pivotal role in controlling organogenesis during fetal development. Although the role of TGF-ß signaling in promoting lung alveolar epithelial growth has been determined, mesenchymal TGF-ß signaling in regulating lung development has not been studied in vivo due to a lack of genetic tools for specifically manipulating gene expression in lung mesenchymal cells. Therefore, the integral roles of TGF-ß signaling in regulating lung development and congenital lung diseases are not completely understood. Using a Tbx4 lung enhancer-driven Tet-On inducible Cre transgenic mouse system, we have developed a mouse model in which lung mesenchyme-specific deletion of TGF-ß receptor 2 gene (Tgfbr2) is achieved. Reduced airway branching accompanied by defective airway smooth muscle growth and later peripheral cystic lesions occurred when lung mesenchymal Tgfbr2 was deleted from embryonic day 13.5 to 15.5, resulting in postnatal death due to respiratory insufficiency. Although cell proliferation in both lung epithelium and mesenchyme was reduced, epithelial differentiation was not significantly affected. Tgfbr2 downstream Smad-independent ERK1/2 may mediate these mesenchymal effects of TGF-ß signaling through the GSK3ß-ß-catenin-Wnt canonical pathway in fetal mouse lung. Our study suggests that Tgfbr2-mediated TGF-ß signaling in prenatal lung mesenchyme is essential for lung development and maturation, and defective TGF-ß signaling in lung mesenchyme may be related to abnormal airway branching morphogenesis and congenital airway cystic lesions.


Subject(s)
Cysts/metabolism , Lung Diseases/pathology , Mesoderm/cytology , Receptors, Transforming Growth Factor beta/metabolism , Animals , Cysts/pathology , Epithelial Cells/metabolism , Gene Expression Regulation, Developmental/genetics , Lung/metabolism , Lung/pathology , Lung Diseases/metabolism , Mice , Mice, Transgenic , Morphogenesis/drug effects , Morphogenesis/physiology , Organogenesis/physiology , Protein Serine-Threonine Kinases/metabolism , Receptor, Transforming Growth Factor-beta Type II/metabolism
8.
Proc Natl Acad Sci U S A ; 115(40): E9391-E9400, 2018 10 02.
Article in English | MEDLINE | ID: mdl-30213853

ABSTRACT

Most retinoblastomas initiate in response to the inactivation of the RB1 gene and loss of functional RB protein. The tumors may form with few additional genomic changes and develop after a premalignant retinoma phase. Despite this seemingly straightforward etiology, mouse models have not recapitulated the genetic, cellular, and stage-specific features of human retinoblastoma genesis. For example, whereas human retinoblastomas appear to derive from cone photoreceptor precursors, current mouse models develop tumors that derive from other retinal cell types. To investigate the basis of the human cone-specific oncogenesis, we compared developmental stage-specific cone precursor responses to RB loss in human and murine retina cultures and in cone-specific Rb1-knockout mice. We report that RB-depleted maturing (ARR3+) but not immature (ARR3-) human cone precursors enter the cell cycle, proliferate, and form retinoblastoma-like lesions with Flexner-Wintersteiner rosettes, then form low or nonproliferative premalignant retinoma-like lesions with fleurettes and p16INK4A and p130 expression, and finally form highly proliferative retinoblastoma-like masses. In contrast, in murine retina, only RB-depleted immature (Arr3-) cone precursors entered the cell cycle, and they failed to progress from S to M phase. Moreover, whereas intrinsically highly expressed MDM2 and MYCN contribute to RB-depleted maturing (ARR3+) human cone precursor proliferation, ectopic MDM2 and Mycn promoted only immature (Arr3-) murine cone precursor cell-cycle entry. These findings demonstrate that developmental stage-specific as well as species- and cell type-specific features sensitize to RB1 inactivation and reveal the human cone precursors' capacity to model retinoblastoma initiation, proliferation, premalignant arrest, and tumor growth.


Subject(s)
Cell Division , Retinal Cone Photoreceptor Cells/metabolism , Retinal Neoplasms/metabolism , Retinoblastoma Protein/deficiency , Retinoblastoma/metabolism , S Phase , Animals , Humans , Mice , Mice, Knockout , Retinal Cone Photoreceptor Cells/pathology , Retinal Neoplasms/genetics , Retinal Neoplasms/pathology , Retinoblastoma/genetics , Retinoblastoma/pathology , Species Specificity
9.
J Pathol ; 247(2): 254-265, 2019 02.
Article in English | MEDLINE | ID: mdl-30357827

ABSTRACT

Fibroblast growth factor (FGF) signaling plays an important role in lung organogenesis. Over recent decades, FGF signaling in lung development has been extensively studied in animal models. However, little is known about the expression, localization, and functional roles of FGF ligands during human fetal lung development. Therefore, we aimed to determine the expression and function of several FGF ligands and receptors in human lung development. Using in situ hybridization (ISH) and RNA sequencing, we assessed their expression and distribution in native human fetal lung. Human fetal lung explants were treated with recombinant FGF7, FGF9, or FGF10 in air-liquid interface culture. Explants were analyzed grossly to observe differences in branching pattern as well as at the cellular and molecular level. ISH demonstrated that FGF7 is expressed in both the epithelium and mesenchyme; FGF9 is mainly localized in the distal epithelium, whereas FGF10 demonstrated diffuse expression throughout the parenchyma, with some expression in the smooth muscle cells (SMCs). FGFR2 expression was high in both proximal and distal epithelial cells as well as the SMCs. FGFR3 was expressed mostly in the epithelial cells, with lower expression in the mesenchyme, while FGFR4 was highly expressed throughout the mesenchyme and in the distal epithelium. Using recombinant FGFs, we demonstrated that FGF7 and FGF9 had similar effects on human fetal lung as on mouse fetal lung; however, FGF10 caused the human explants to expand and form cysts as opposed to inducing epithelial branching as seen in the mouse. In conjunction with decreased branching, treatment with recombinant FGF7, FGF9, and FGF10 also resulted in decreased double-positive SOX2/SOX9 progenitor cells, which are exclusively present in the distal epithelial tips in early human fetal lung. Although FGF ligand localization may be somewhat comparable between developing mouse and human lungs, their functional roles may differ substantially. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Subject(s)
Fibroblast Growth Factors/metabolism , Fibroblasts/metabolism , Lung/metabolism , Receptors, Fibroblast Growth Factor/metabolism , Animals , Cells, Cultured , Fibroblast Growth Factors/genetics , Gene Expression Regulation, Developmental , Gestational Age , Humans , Ligands , Lung/embryology , Mice, Inbred C57BL , Morphogenesis , Receptors, Fibroblast Growth Factor/genetics , SOX Transcription Factors/genetics , SOX Transcription Factors/metabolism , Signal Transduction , Species Specificity , Tissue Culture Techniques
10.
Biochem Biophys Res Commun ; 510(2): 205-210, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30691694

ABSTRACT

Postnatal organ-specific stem and progenitor cells are an attractive potential donor cell for tissue-engineering because they can be harvested autologous from the recipient and have sufficient potential to regenerate the tissue of interest with less risk for ectopic growth or tumor formation compared to donor cells from embryonic or fetal sources. We describe the generation of tissue-engineered larynx and trachea (TELT) from human and mouse postnatal organoid units (OU) as well as from human fetal OU. Mouse TELT contained differentiated respiratory epithelium lining large lumens, cartilage and smooth muscle. In contrast, human postnatal TE trachea, formed small epithelial lumens with rare differentiation, in addition to smooth muscle and cartilage. Human fetal TELT contained the largest epithelial lumens with all differentiated cell types as well as smooth muscle and cartilage. Increased epithelial cytokeratin 14 was identified in both human fetal and postnatal TELT compared to native trachea, consistent with regenerative basal cells. Cilia in TELT epithelium also demonstrated function with beating movements. While both human postnatal and fetal progenitors have the potential to generate TELT, there is more epithelial growth and differentiation from fetal progenitors, highlighting fundamental differences in these cell populations.


Subject(s)
Epithelium/metabolism , Larynx/physiology , Stem Cells/metabolism , Tissue Engineering/methods , Trachea/physiology , Animals , Cartilage/metabolism , Cell Differentiation , Cell Proliferation , Cilia/metabolism , Epithelial Cells/metabolism , Epithelium/embryology , ErbB Receptors/metabolism , Humans , Interleukin-2/genetics , Keratin-14/metabolism , Larynx/metabolism , Mice , Mice, Inbred C57BL , Mice, SCID , Muscle, Smooth/metabolism , Organoids/metabolism , Respiratory Mucosa/metabolism , Trachea/metabolism
11.
J Am Soc Nephrol ; 29(3): 825-840, 2018 03.
Article in English | MEDLINE | ID: mdl-29449451

ABSTRACT

The nephron is the functional unit of the kidney, but the mechanism of nephron formation during human development is unclear. We conducted a detailed analysis of nephron development in humans and mice by immunolabeling, and we compared human and mouse nephron patterning to describe conserved and divergent features. We created protein localization maps that highlight the emerging patterns along the proximal-distal axis of the developing nephron and benchmark expectations for localization of functionally important transcription factors, which revealed unanticipated cellular diversity. Moreover, we identified a novel nephron subdomain marked by Wnt4 expression that we fate-mapped to the proximal mature nephron. Significant conservation was observed between human and mouse patterning. We also determined the time at which markers for mature nephron cell types first emerge-critical data for the renal organoid field. These findings have conceptual implications for the evolutionary processes driving the diversity of mammalian organ systems. Furthermore, these findings provide practical insights beyond those gained with mouse and rat models that will guide in vitro efforts to harness the developmental programs necessary to build human kidney structures.


Subject(s)
Cell Differentiation , Nephrons/embryology , Nephrons/metabolism , Stem Cells/physiology , Animals , Apoptosis Regulatory Proteins , Cell Lineage , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Immunohistochemistry , Lymphoid Enhancer-Binding Factor 1/genetics , Lymphoid Enhancer-Binding Factor 1/metabolism , Mice , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Stem Cells/metabolism , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Wnt4 Protein/metabolism
12.
J Am Soc Nephrol ; 29(3): 806-824, 2018 03.
Article in English | MEDLINE | ID: mdl-29449449

ABSTRACT

Cellular interactions among nephron, interstitial, and collecting duct progenitors drive mammalian kidney development. In mice, Six2+ nephron progenitor cells (NPCs) and Foxd1+ interstitial progenitor cells (IPCs) form largely distinct lineage compartments at the onset of metanephric kidney development. Here, we used the method for analyzing RNA following intracellular sorting (MARIS) approach, single-cell transcriptional profiling, in situ hybridization, and immunolabeling to characterize the presumptive NPC and IPC compartments of the developing human kidney. As in mice, each progenitor population adopts a stereotypical arrangement in the human nephron-forming niche: NPCs capped outgrowing ureteric branch tips, whereas IPCs were sandwiched between the NPCs and the renal capsule. Unlike mouse NPCs, human NPCs displayed a transcriptional profile that overlapped substantially with the IPC transcriptional profile, and key IPC determinants, including FOXD1, were readily detected within SIX2+ NPCs. Comparative gene expression profiling in human and mouse Six2/SIX2+ NPCs showed broad agreement between the species but also identified species-biased expression of some genes. Notably, some human NPC-enriched genes, including DAPL1 and COL9A2, are linked to human renal disease. We further explored the cellular diversity of mesenchymal cell types in the human nephrogenic niche through single-cell transcriptional profiling. Data analysis stratified NPCs into two main subpopulations and identified a third group of differentiating cells. These findings were confirmed by section in situ hybridization with novel human NPC markers predicted through the single-cell studies. This study provides a benchmark for the mesenchymal progenitors in the human nephrogenic niche and highlights species-variability in kidney developmental programs.


Subject(s)
Kidney Cortex/embryology , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Nephrons/embryology , Animals , Apoptosis Regulatory Proteins , Cell Differentiation , Cell Lineage , Female , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Gene Expression Profiling , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Humans , Male , Mice , Myeloid Ecotropic Viral Integration Site 1 Protein/genetics , Myeloid Ecotropic Viral Integration Site 1 Protein/metabolism , Nephrons/anatomy & histology , Nephrons/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Trans-Activators/genetics , Trans-Activators/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
13.
J Am Soc Nephrol ; 29(3): 785-805, 2018 03.
Article in English | MEDLINE | ID: mdl-29449453

ABSTRACT

Human kidney function is underpinned by approximately 1,000,000 nephrons, although the number varies substantially, and low nephron number is linked to disease. Human kidney development initiates around 4 weeks of gestation and ends around 34-37 weeks of gestation. Over this period, a reiterative inductive process establishes the nephron complement. Studies have provided insightful anatomic descriptions of human kidney development, but the limited histologic views are not readily accessible to a broad audience. In this first paper in a series providing comprehensive insight into human kidney formation, we examined human kidney development in 135 anonymously donated human kidney specimens. We documented kidney development at a macroscopic and cellular level through histologic analysis, RNA in situ hybridization, immunofluorescence studies, and transcriptional profiling, contrasting human development (4-23 weeks) with mouse development at selected stages (embryonic day 15.5 and postnatal day 2). The high-resolution histologic interactive atlas of human kidney organogenesis generated can be viewed at the GUDMAP database (www.gudmap.org) together with three-dimensional reconstructions of key components of the data herein. At the anatomic level, human and mouse kidney development differ in timing, scale, and global features such as lobe formation and progenitor niche organization. The data also highlight differences in molecular and cellular features, including the expression and cellular distribution of anchor gene markers used to identify key cell types in mouse kidney studies. These data will facilitate and inform in vitro efforts to generate human kidney structures and comparative functional analyses across mammalian species.


Subject(s)
Kidney/embryology , Kidney/metabolism , Organogenesis , Ureter/embryology , Animals , Cell Differentiation , Fluorescent Antibody Technique , Gene Expression Profiling , Gestational Age , Histological Techniques , Humans , In Situ Hybridization , Kidney/anatomy & histology , Mice , Nephrons/embryology , Nephrons/metabolism , RNA/analysis , Ureter/metabolism
14.
Am J Physiol Lung Cell Mol Physiol ; 314(1): L144-L149, 2018 01 01.
Article in English | MEDLINE | ID: mdl-28971977

ABSTRACT

Lung morphogenesis relies on a number of important processes, including proximal-distal patterning, cell proliferation, migration and differentiation, as well as epithelial-mesenchymal interactions. In mouse lung development, SOX2+ cells are localized in the proximal epithelium, whereas SOX9+ cells are present in the distal epithelium. We show that, in human lung, expression of these transcription factors differs, in that during the pseudoglandular stage distal epithelial progenitors at the tips coexpress SOX2 and SOX9. This double-positive population was no longer present by the canalicular stages of development. As in mouse, the human proximal epithelial progenitors express solely SOX2 and are surrounded by smooth muscle cells (SMCs) both in the proximal airways and at the epithelial clefts. Upon Ras-related C3 botulinum toxin substrate 1 inhibition, we noted decreased branching, as well as increased SMC differentiation, attenuated peristalsis, and a reduction in the distal double-positive SOX2/SOX9 progenitor cell population. Thus, the presence of SOX2/SOX9 double-positive progenitor cells in the distal epithelium during the pseudoglandular stage of human lung development appears to be critical to proximal-distal patterning and lung branching. Moreover, SMCs promote a SOX2 proximal phenotype and seem to suppress the SOX9+ population.


Subject(s)
Actins/metabolism , Fetus/metabolism , Lung/embryology , Lung/metabolism , Organogenesis , SOX9 Transcription Factor/metabolism , SOXB1 Transcription Factors/metabolism , Animals , Cell Differentiation , Cell Proliferation , Cells, Cultured , Fetus/cytology , Humans , Mice , Signal Transduction
15.
BMC Genomics ; 18(1): 23, 2017 01 25.
Article in English | MEDLINE | ID: mdl-28118819

ABSTRACT

BACKGROUND: Much of the morbidity associated with short bowel syndrome (SBS) is attributed to effects of decreased enteral nutrition and administration of total parenteral nutrition (TPN). We hypothesized that acute SBS alone has significant effects on gene expression beyond epithelial proliferation, and tested this in a zebrafish SBS model. METHODS: In a model of SBS in zebrafish (laparotomy, proximal stoma, distal ligation, n = 29) or sham (laparotomy alone, n = 28) surgery, RNA-Seq was performed after 2 weeks. The proximal intestine was harvested and RNA isolated. The three samples from each group with the highest amount of RNA were spiked with external RNA controls consortium (ERCC) controls, sequenced and aligned to reference genome with gene ontology (GO) enrichment analysis performed. Gene expression of ctnnb1, ccnb1, ccnd1, cyp7a1a, dkk3, ifng1-2, igf2a, il1b, lef1, nos2b, saa1, stat3, tnfa and wnt5a were confirmed to be elevated in SBS by RT-qPCR. RESULTS: RNA-seq analysis identified 1346 significantly upregulated genes and 678 significantly downregulated genes in SBS zebrafish intestine compared to sham with Ingenuity analysis. The upregulated genes were involved in cell proliferation, acute phase response signaling, innate and adaptive immunity, bile acid regulation, production of nitric oxide and reactive oxygen species, cellular barrier and coagulation. The downregulated genes were involved in folate synthesis, gluconeogenesis, glycogenolysis, fatty-acid oxidation and activation and drug and steroid metabolism. RT-qPCR confirmed gene expression differences from RNA-Sequencing. CONCLUSION: Changes of gene expression after 2 weeks of SBS indicate complex and extensive alterations of multiple pathways, some previously implicated as effects of TPN. The systemic sequelae of SBS alone are significant and indicate multiple targets for investigating future therapies.


Subject(s)
Bile Acids and Salts/metabolism , Gene Expression , Immune System/immunology , Immune System/metabolism , Short Bowel Syndrome/etiology , Short Bowel Syndrome/metabolism , Animals , Cell Proliferation , Cluster Analysis , Disease Models, Animal , Gene Expression Profiling , Inflammation/genetics , Inflammation/immunology , Inflammation/metabolism , Inflammation/pathology , Intestinal Mucosa/metabolism , Intestinal Mucosa/pathology , Sequence Analysis, RNA , Short Bowel Syndrome/pathology , Zebrafish
16.
bioRxiv ; 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-37808788

ABSTRACT

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study, we dissected the roles of BMP receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.

17.
Elife ; 122024 Jun 10.
Article in English | MEDLINE | ID: mdl-38856718

ABSTRACT

Abnormal lung development can cause congenital pulmonary cysts, the mechanisms of which remain largely unknown. Although the cystic lesions are believed to result directly from disrupted airway epithelial cell growth, the extent to which developmental defects in lung mesenchymal cells contribute to abnormal airway epithelial cell growth and subsequent cystic lesions has not been thoroughly examined. In the present study using genetic mouse models, we dissected the roles of bone morphogenetic protein (BMP) receptor 1a (Bmpr1a)-mediated BMP signaling in lung mesenchyme during prenatal lung development and discovered that abrogation of mesenchymal Bmpr1a disrupted normal lung branching morphogenesis, leading to the formation of prenatal pulmonary cystic lesions. Severe deficiency of airway smooth muscle cells and subepithelial elastin fibers were found in the cystic airways of the mesenchymal Bmpr1a knockout lungs. In addition, ectopic mesenchymal expression of BMP ligands and airway epithelial perturbation of the Sox2-Sox9 proximal-distal axis were detected in the mesenchymal Bmpr1a knockout lungs. However, deletion of Smad1/5, two major BMP signaling downstream effectors, from the lung mesenchyme did not phenocopy the cystic abnormalities observed in the mesenchymal Bmpr1a knockout lungs, suggesting that a Smad-independent mechanism contributes to prenatal pulmonary cystic lesions. These findings reveal for the first time the role of mesenchymal BMP signaling in lung development and a potential pathogenic mechanism underlying congenital pulmonary cysts.


Congenital disorders are medical conditions that are present from birth. Although many congenital disorders are rare, they can have a severe impact on the quality of life of those affected. For example, congenital pulmonary airway malformation (CPAM) is a rare congenital disorder that occurs in around 1 out of every 25,000 pregnancies. In CPAM, abnormal, fluid-filled sac-like pockets of tissue, known as cysts, form within the lungs of unborn babies. After birth, these cysts become air-filled and do not behave like normal lung tissue and stop a baby's lungs from working properly. In severe cases, babies with CPAM need surgery immediately after birth. We still do not understand exactly what the underlying causes of CPAM might be. CPAM is not considered to be hereditary ­ that is, it does not appear to be passed down in families ­ nor is it obviously linked to any environmental factors. CPAM is also very difficult to study, because researchers cannot access tissue samples during the critical early stages of the disease. To overcome these difficulties, Luo et al. wanted to find a way to study CPAM in the laboratory. First, they developed a non-human animal 'model' that naturally forms CPAM-like lung cysts, using genetically modified mice where the gene for the signaling molecule Bmpr1a had been deleted in lung cells. Normally, Bmpr1a is part of a set of the molecular instructions, collectively termed BMP signaling, which guide healthy lung development early in life. However, mouse embryos lacking Bmpr1a developed abnormal lung cysts that were similar to those found in CPAM patients, suggesting that problems with BMP signalling might also trigger CPAM in humans. Luo et al. also identified several other genes in the Bmpr1a-deficient mouse lungs that had abnormal patterns of activity. All these genes were known to be controlled by BMP signaling, and to play a role in the development and organisation of lung tissue. This suggests that when these genes are not controlled properly, they could drive formation of CPAM cysts when BMP signaling is compromised. This work is a significant advance in the tools available to study CPAM. Luo et al.'s results also shed new light on the molecular mechanisms underpinning this rare disorder. In the future, Luo et al. hope this knowledge will help us develop better treatments for CPAM, or even help to prevent it altogether.


Subject(s)
Bone Morphogenetic Protein Receptors, Type I , Lung , Mesoderm , Mice, Knockout , Signal Transduction , Animals , Bone Morphogenetic Protein Receptors, Type I/genetics , Bone Morphogenetic Protein Receptors, Type I/metabolism , Bone Morphogenetic Protein Receptors, Type I/deficiency , Mice , Lung/embryology , Lung/metabolism , Lung/pathology , Mesoderm/embryology , Mesoderm/metabolism , Cysts/metabolism , Cysts/pathology , Cysts/genetics , Bone Morphogenetic Proteins/metabolism , Bone Morphogenetic Proteins/genetics , Lung Diseases/metabolism , Lung Diseases/pathology , Lung Diseases/genetics , Disease Models, Animal
18.
bioRxiv ; 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38915659

ABSTRACT

Human cone photoreceptors differ from rods and serve as the retinoblastoma cell-of-origin. Here, we used deep full-length single-cell RNA-sequencing to distinguish post-mitotic cone and rod developmental states and cone-specific features that contribute to retinoblastomagenesis. The analyses revealed early post-mitotic cone- and rod-directed populations characterized by higher THRB or NRL regulon activities, an immature photoreceptor precursor population with concurrent cone and rod gene and regulon expression, and distinct early and late cone and rod maturation states distinguished by maturation-associated declines in RAX regulon activity. Unexpectedly, both L/M cone and rod precursors co-expressed NRL and THRB RNAs, yet they differentially expressed functionally antagonistic NRL isoforms and prematurely terminated THRB transcripts. Early L/M cone precursors exhibited successive expression of lncRNAs along with MYCN, which composed the seventh most L/M-cone-specific regulon, and SYK, which contributed to the early cone precursors' proliferative response to RB1 loss. These findings reveal previously unrecognized photoreceptor precursor states and a role for early cone-precursor-intrinsic SYK expression in retinoblastoma initiation.

19.
Cell Stem Cell ; 31(6): 921-939.e17, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38692273

ABSTRACT

Nephron progenitor cells (NPCs) self-renew and differentiate into nephrons, the functional units of the kidney. Here, manipulation of p38 and YAP activity allowed for long-term clonal expansion of primary mouse and human NPCs and induced NPCs (iNPCs) from human pluripotent stem cells (hPSCs). Molecular analyses demonstrated that cultured iNPCs closely resemble primary human NPCs. iNPCs generated nephron organoids with minimal off-target cell types and enhanced maturation of podocytes relative to published human kidney organoid protocols. Surprisingly, the NPC culture medium uncovered plasticity in human podocyte programs, enabling podocyte reprogramming to an NPC-like state. Scalability and ease of genome editing facilitated genome-wide CRISPR screening in NPC culture, uncovering genes associated with kidney development and disease. Further, NPC-directed modeling of autosomal-dominant polycystic kidney disease (ADPKD) identified a small-molecule inhibitor of cystogenesis. These findings highlight a broad application for the reported iNPC platform in the study of kidney development, disease, plasticity, and regeneration.


Subject(s)
Nephrons , Organoids , Animals , Organoids/cytology , Organoids/metabolism , Humans , Nephrons/cytology , Mice , Cell Differentiation , Induced Pluripotent Stem Cells/metabolism , Induced Pluripotent Stem Cells/cytology , Podocytes/metabolism , Podocytes/cytology , Kidney/pathology , Polycystic Kidney, Autosomal Dominant/pathology , Polycystic Kidney, Autosomal Dominant/metabolism , Polycystic Kidney, Autosomal Dominant/genetics , Models, Biological , Gene Editing
20.
Front Chem ; 11: 1232690, 2023.
Article in English | MEDLINE | ID: mdl-37583568

ABSTRACT

Macrocyclic lanthanide complexes have become widely developed due to their distinctive luminescence characteristics and wide range of applications in biological imaging. However, systems with sufficient brightness and metal selectivity can be difficult to produce on a molecular scale. Presented herein is the stepwise introduction of differing lanthanide ions in a bis-DO3A/DTPA scaffold to afford three trinuclear bimetallic [Ln2Ln'] lanthanide complexes with site-specific, controlled binding [(Yb2Tb), (Eu2Tb), (Yb2Eu)]. The complexes display simultaneous emission from all LnIII centers across the visible (TbIII, EuIII) and near infra-red (YbIII) spectrum when excited via phenyl ligand sensitization at a wide range of temperatures and are consequently of interest for exploiting imaging in the near infra-red II biological window. Analysis of lifetime data over a range of excitation regimes reveals intermetallic communication between TbIII and EuIII centers and further develops the understanding of multimetallic lanthanide complexes.

SELECTION OF CITATIONS
SEARCH DETAIL